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Abstract. In the paper, a new polarization decomposition 
of the optimal detection algorithm in the partially homoge-
neous environment is presented. Firstly, the detectors 
Matched Subspace Detector (MSD) and Adaptive Subspace 
Detector (ASD) are adopted to deal with detection prob-
lems in the partially homogeneous environment. Secondly, 
the fitness function with polarization parameters is equiva-
lently decomposed to enhance time detection efficiency in 
the algorithm. 
It makes the multiplication number of the fitness function 
from square to a linear increase along with the increase in 
parameters. Simulation results indicate that the proposed 
decomposition is much more efficient than direct use of the 
fitness function. 
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1. Introduction 
The problem of detecting a target signal in the pres-

ence of noise is often encountered in radar signal process-
ing. In a homogeneous environment, the noise in test data 
(primary data) is considered to be scaled the same as that in 
training data (secondary data). Many classic algorithms, 
such as generalized likelihood ratio (GLR) [1], [2] and 
adaptive matched filter (AMF) [3], [4], have been devel-
oped for this ideal case in the past. In many realistic sce-
narios, however, the noise power in the test data does not 
remain the same as that in the training data. For example, 
in a partially homogeneous environment, the noise covari-
ance matrix in the test and training data has the same struc-
ture but may differ in a scaling factor [5]-[8]. The ASD and 
MSD are proposed to deal with detection problems in the 
partially homogeneous environment [9]. 

As well known, a diversely polarized antenna (DPA) 
possesses several advantages over a scalar sensor due to its 
ability to handle signals based on their polarization 
characteristics. The tripole antenna is a common DPA [10]. 

Usually, the performance of a system is associated 
with polarization of its transmitted signals [10]. Therefore, 
the system performance can be enhanced by optimally 
selecting the transmitted signals to max. the target re-
sponse. In [9], a waveform design algorithm to enhance the 
detection performance of ASD and MSD was developed in 
partially homogeneous environment. Its detection perform-
ance was improved by optimally choosing the polarization 
of the transmitted pulses to maximize a fitness function.   

In this paper, we study the detection problem based 
on a DPA in partially homogeneous environment. The 
ASD and MSD are employed and the fitness function in [9] 
with polarization parameters is equivalently decomposed to 
enhance time detection efficiency in the proposed method. 
As increase with the parameters, the multiplication number 
of the fitness function in the proposed method (using the 
fitness function decomposition) is a linear increase, while 
in the previous method (direct use of the fitness function 
expression) [9], [11] it is a square increase.  

Next, Taguchi optimization algorithm [12]-[15] is 
used in this paper to get the optimum solution because of 
its high efficiency. Now, a brief introduction about the 
ASD and MSD are explained in order to study their 
performance. 

2. Signal Model 
In this section, we consider a detection problem in 

partially homogeneous environments. The received Q-
dimensional complex vector x , commonly called primary 
data or test data, is constrained to be of the form [9] 

 x Σs + n   (1) 

where Σ  is a known Q q dimension signal subspace ma-
trix representing the system response associated with the 
characteristics of the transmitted signals (e.g., polarization) 
and suppose that Q q and ( )rank qΣ ; s is a q-dimen-
sional deterministic but unknown complex vector account-
ing for the target reflectivity and the channel propagation 
effects; n  is a noise data vector and is assumed to have 
a complex circular Gaussian distribution with zero mean 
and covariance matrix R , i.e. ~ (0, )n RCN , where R  
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denotes the noise covariance matrix structure and γ is 
an unknown scaling of the noise in the test data. Notice 
that the scaling factor accounts for the noise power mis-
match between the primary and secondary data. The arbi-
trary scaling between the primary and secondary data is 
important in some realistic scenarios [5].  

Suppose that K(K > Q) secondary data samples free 
of the target signal, i.e.  , 1,..., (0 )k kk Ky y ,R~CN , are 

available. The problem of detection is to decide whether 
the target signal is present or not in the range cell under 
test. This problem can be posed in terms of a binary hy-
potheses test. We let the null hypothesis (H0) be that no 
target signal is present and the alternative hypothesis (H1) 
be that the data contains target signal. Hence, the detection 
problem is to decide between the null hypothesis and the 
alternative one and can be stated as a parameter test: 
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3. Detection Performance of ASD and 
MSD 
We begin by considering the detection problem in the 

case of known R . According to [9], the detector referred to 
as MSD can be expressed as 
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where  is the detection threshold; 1/2u R x ; 1/ 2Θ R Σ ; 
1( )H H

 P Θ Θ Θ Θ ; 
  P I P  with I denoting the iden-

tity matrix. The probability of false alarm can be obtained 
as [9] 
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Then, the probability of detection can be obtained by 
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   1H H      s Σ R Σ s .  (7) 

In practice, a prior knowledge on the covariance ma-
trix structure is usually unknown. According to [9], the 
detector used to handle the detection problem with un-
known R , which is referred to as ASD, is 
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where   is the detection threshold and 
^

1

K H
k kk

 R y y . 

The probability of false alarm of the ASD can be 
written as 

  
1
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where   denotes a loss factor whose distribution is 
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and 
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Furthermore, the probability of detection is 
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with   defined as that in (7). In [9] it is concluded the 
greater the value of ( 0)   , the better detection per-
formance. The detection performance of the MSD and 
ASD can be enhanced by designing the system response Σ  
to maximize the parameter  .The system response matrix 
can be parameterized as ( )Σ Σ . The fitness function 
can be written as 

 1( ) [ ( )( ) ( )]H H     s Σ R Σ s .   (14) 

From (5) and (9) we can see that the MSD and ASD 
have the desirable constant false alarm rate (CFAR) prop-
erty with respect to the optimization parameter. 

4. Polarization Decomposition Algo-
rithm Theory Analysis 
Let V denotes a response of the diversely polarized 

sensor array acts as a detector [10]. If the array is a tripole 
antenna, it can be written as 
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where   and   denote the elevation and azimuth angles 
of the target return with [0, ]   and [ , ]    . 
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The vector ( )p tz is the p-th pulse of the narrowband 

transmitted signal which can be represented by 
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where 1pz  and 2 pz  are the signal components on the 

polarization basis of transmitter; p  and p  are the 

orientation and ellipticity angles of polarization ellipse 
with [ / 2, / 2]p     and [ / 4, / 4]p    ; ( )pa t  

(p = 1,…,P) is the complex envelope of the p-th 
transmitted signal pulse and each element of 

1[ ( ),..., ( )]T
p p p p Mpa t a ta  (p = 1,…,P) with ( 1,..., )mpt m M  

denoting the m-th sampling instant within the p-th pulse. 

The polarization matrix of each diversely polarized 
pulse ( 1,...,p P ) is given by 
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So the system response matrix can be written as 
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and matrix Σ has dimension 3 3MP , where P is the 
number of the transmitted pulses. 

The noise covariance matrix is supposed to be 
2

3 3( )n P M M  R I C , where 2
n  is the noise power of 

each sample, PI  denotes the P-dimensional identity matrix, 

and m nC  is Gaussian shaped with one-lag correlation 

coefficient 0.9c  [9] and it represents correlation 

between the samples within a pulse. That is to say  
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where  20.9 , 1,..., ; 1,...,i j
ijc i m j n   . 

Suppose  

'
3 3P M M R I C  and ' 1

2

1
( )H H

n
    s Σ R Σ s . Note 

that 'R  is real symmetric matrix, and ' 1( )R  is also real 

symmetric matrix. So ' 1( )R  can be decomposed into 
' 1( ) T R G G  uniquely, where G  is 3 3MP MP  dimen-

sion real upper triangular matrix. Therefore, the fitness can 
be written as 

  2 2
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Suppose H GΣs , and H  is 3 1MP dimension 
complex vector. Then finding the maximum value of   is 
equivalent to finding the maximum modulus value of H . 

Note that 3 3M MC  is real symmetric matrix, and 
1

3 3M M

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posed into 1
3 3

T
M M


 C g g  uniquely, where g is 3 3M M  

dimension real upper triangular matrix. Now we have 
an important discovery: P G I g . 

Proof: From the above analysis, we can get 
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Due to   1

3 3
T

P M M


 I C G G , we can get 

 P G I g .   (22) 

The proof is completed.  

Then H can be written as 

  

 
1 1

1 1

1 2

[ ,..., ]

[ , ,..., ]

P

P P

T
P

P P

diag

 
      
  

 
   
  





a VE

H GΣs I g Σs g g s

a VE

ga VE s

h h h

ga VE s

 (23) 

where , 1,...,p p p p P  h ga VE s   is a P-dimensional 

complex vector group and each one of it is a 3 1M   di-
mension complex vector. 

It is considered in our system that the polarization pa-
rameters of different transmitted signal pulses are inde-
pendent of each other, i.e. when i ≠ j (i = 1,…, P; 
j = 1,…, P) (αi, βi) and (αj, βj) are independent of each 
other. Thus, we can get a conclusion that finding the maxi-
mum modulus value of H is equivalently decomposed into 
finding the maximum modulus value of every vector in the 
complex vector group: hp, p = 1,…, P. 

Now we analyze the complex vector group: 
, 1,...,p p p p P  h ga VE s , where real upper triangular 

matrix g  is fixed; when transmitted signal pulses and the 

sampling form are fixed, the complex envelope of the p-th 
transmitted signal pulse ap is fixed; when the target is 
deterministic, the target reflectivity vector s  is fixed; in the 
same pulse interval, we assume that the elevation and azi-
muth angles of the target fixed, i.e. V  is fixed. Thus, there 
are two variable parameters (αp, βp) to be optimized in each 
vector hp, p = 1,…, P. Therefore, the proposed algorithm is 
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to optimally choose the parameters (αp, βp) to meet the 
maximum modulus value of every vector in the complex 
vector group: hp, p = 1,…, P. 

The optimization detection algorithm in [9] is to find 
the maximum fitness function value: 

1( ) [ ( )( ) ( )]H H     s Σ R Σ s , and there are 
2 2

1 9 36 3N M P MP    multiplications in the fitness. The 

proposed algorithm is the equivalently decomposed of 
previous method. There are p fitness functions: using 
(23) , 1,...,p p p p P  h ga VE s  and they totally have 

2
2 9 30N M P MP   multiplications. The multiplication 

number of the proposed method is a linear increasing as the 
parameters increase, while it is a square increasing in the 
previous method. From Fig. 1 we can see that the proposed 
method is much more efficient than the previous method. 
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Fig. 1. The multiplication numbers of two methods. 

In a special circumstance, λ1a1 = λ2a2 =…= λPaP =a 
(λk  R, k = 1,…,P), i.e. a1, a1,…,aP are linear correlation, 
e.g. rectangular pulses [11]. Thus, we get a conclusion that 
finding the maximum modulus value of every vector in the 
complex vector group: hp, p = 1,…, P is degraded equiva-
lent to finding the maximum modulus value of any vector. 

5. Simulation Results and Discussions 
The experiment results are done by MATLAB pro-

gram in a PC computer with CPU: inter I3-2100, 3.1 GHz 
dual-core processor, and 2 GB memory. 

5.1 The Simulation Results and Discussions in 
Normal Circumstance 

We validated the analytical performance of the algo-
rithms by computer simulations. In the following simula-
tions, we select P = 1,2,3,4,; M = 2; 2 1 / 3n  ; 3  ; 

0.2  ; 0.5  ; [2i,-1i,0.5]Ts ; 1 [7 8i,8-2i]T a ;

2 [5 3i,6-9i]T a ; 3 [3 7i,4-4i]T a ; 4 [1 5i,2-8i]T a  in 

normal circumstance. The analytical solution can be solved 
by the proposed method theoretically, but the solution 
procedure is very complex. Therefore, we use Taguchi 
optimization algorithm to solve this problem. 
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Fig. 2. The fitness curves of two methods.  
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As shown in Fig. 2 and Tab. 1, the sum of the maxi-
mum fitness function values in the proposed method is the 
same as the maximum fitness function value in the previ-
ous method. And from Tab. 2 we can see that the two 
methods get the same optimal polarization parameters. 
There is no doubt that the numerical simulations are con-
ducted to attest to the validity of the above theoretical equi-
valence relation.  

From Tab. 3 we can see that the proposed method 
costs less time than the previous method. The numerical 
simulations confirm the truth that the multiplication num-
ber of the proposed method is a linear increasing as the 
parameters increase, while it is a square increasing in the 
previous method. 

From the above theoretical analysis and simulation 
experiments we can get a conclusion that the proposed 
method can get the same detection performance as the 
previous method, but it is more efficient than the previous 
method. 
 

Methods P 1 2 3 4 
Fitness 1 1.5560 1.5560 1.5560 1.5560 
Fitness 2  1.9668 1.9668 1.9668 
Fitness 3   1.2143 1.2143 
Fitness 4    1.5471 

Proposed 
method 

Sum 1.5560 3.5228 4.7371 6.2842 
Previous 
method 

Fitness 1.5560 3.5228 4.7371 6.2842 

Tab. 1.  The maximum fitness function values got by two 
methods (×106). 

 
 

 ,p p   Previous method Proposed method 

1  0.5648 0.5648 

1  1.7805 1.7805 

2  0.4070 0.4070 

2  1.7996 1.7996 

3  0.5013 0.5013 

3  2.0538 2.0538 

4  0.3776 0.3776 

4  2.1467 2.1467 

Tab. 2.  The optimal polarization parameters got by two 
methods (rad).  

 
 

P Previous method Proposed method 
1 47.139 43.702 
2 164.46 87.175 
3 354.16 130.52 
4 457.63 178.48 

Tab. 3.  The time cost by two methods (ms). 

Fig. 3 depicts a three-dimensional distribution of 
modulus value of ph  when the orientation angle p  and the 

ellipticity angle p  of polarization ellipse are valued within 

the range: [ / 2, / 2]p      and [ / 4, / 4]p     . 

Comparing Tab. 2 and Tab. 3 with Fig. 3, we can prove 
that the proposed algorithm is reliable.  

  
(A) P=1 

  
(B) P=2 

  
(C) P=3 

  
(D) P=4 

Fig. 3. The distribution of modulus value of h. 
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5.2 The Experiment Results and Discussions 
in a Special Circumstance 

In this section, we select K = 2Q; P = 4; M = 2; 3  ; 

[2i,-1i,0.5]Ts ; 1 [7 8i,8-2i]T a ; 2 12a a ; 3 13a a ;

4 14a a  in special circumstance. From Fig. 4 and Tab. 5 

we can see that the following experiment results get the 
same conclusion as Section 5.1 in detection performance 
analysis. However, from Tab. 6 we can see that the effi-
ciency of the proposed method is 9 times more than the 
efficiency of the previous method. The numerical simula-
tions are conducted to attest to the validity of the above 
theoretical analysis. 
 
 

Methods P 4 
Fitness 1 0.1556 
Fitness 2 0.6224 
Fitness 3 1.4004 
Fitness 4 2.4896 

Proposed method 

Sum 4.6880 
Previous method Fitness 4.6880 

Tab. 4.  The maximum fitness function values got by two 
methods in a special circumstance (×107). 
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Fig. 4. The fitness curves of two methods in special 

circumstance. 
 
 

 ,p p 
 

Previous method Proposed method 

1  0.5648 0.5648 

1  1.7805 1.7805 

2  0.5648 0.5648 

2  1.7805 1.7805 

3  0.5648 0.5648 

3  1.7805 1.7805 

4  0.5648 0.5648 

4  1.7805 1.7805 

Tab. 5.  The optimal polarization parameters got by two 
methods in a special circumstance (rad). 

 
 

Previous method Proposed method 
443.72 43.542 

Tab. 6.  The time cost by two methods in a special circum-
stance (ms). 

6. Conclusions 
In this paper, a new optimal polarization decomposi-

tion algorithm was developed for detection efficiency 
enhancement in the partially homogeneous environment. 
Firstly, the two detectors, i.e. MSD and ASD which have 
CFAR property were adopted to deal with detection prob-
lems in the partially homogeneous environment. Secondly, 
the fitness function with polarization parameters was equi-
valently decomposed to enhance detection efficiency in the 
proposed method, while it was maintaining high detection 
performance. The improvement was achieved by decom-
posing the fitness function with polarization parameters to 
make the multiplication number of fitness function from 
a square increasing to a linear increasing as the parameters 
increase. The theoretical analyses and the numerical simu-
lations were conducted to attest to the equivalence relation-
ship between the previous method and the proposed 
method in detection performance. More importantly, the 
proposed method was much more efficient than the previ-
ous method. 
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