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Abstract. Inspired by the green communication trend of
next-generation wireless networks, we select energy-efficient
throughput as optimization metric for jointly optimizing
sensing time and working sensors in cooperative cognitive
radio networks. Specifically, an iterative algorithm is pro-
posed to obtain the optimal values for these two parame-
ters. Specifically, the proposed iterative algorithm is low
complexity when compares to the exhaustive search method,
and very easy to be implemented. Finally, simulation results
reveal that the proposed optimization improves the energy-
efficient throughput significantly when the sensing time and
working sensors are jointly optimized.
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1. Introduction
In the past ten years, we have witnessed a dramatic

growth in wireless communication due to the popularity of
smart phones and other mobile devices. Meeting this huge
demand for bandwidth is a challenge since most easily us-
able spectrum bands have been allocated. To address this
issue, cognitive radio (CR) [1]-[4], firstly coined by J. Mi-
tola, is widely viewed as a disruptive technology that can
radically improve both spectrum efficiency and utilization.

One of the great challenges of implementing spectrum
sensing is the hidden terminal problem, which occurs when
the cognitive radio is shadowed, in severe multipath fading
or inside buildings with high penetration loss, while a pri-
mary user (PU) is operating in the vicinity [5]. Therefore,
a non-cooperative spectrum sensing algorithm may not work
well in this case, and a cooperative spectrum sensing scheme
can solve the problem by sharing the spectrum sensing infor-
mation among secondary users (SU). Specifically, there are
several advantages offered by cooperative spectrum sensing
over the non-cooperative ones [6]-[7].

Although sensing accuracy can be improved through
the use of cooperative sensing, the need for additional time
for collection of local test statistics is inevitable, particu-
larly with a large number of SUs. The added time prevents
fast detection of the PU, which results in interference to the
PU during the reporting time [8]-[12]. Therefore, recent re-
search has focused on reducing the reporting time in cooper-
ative sensing. Zhao et al. developed a Bayesian formulation
for the quickest detecting mechanism based on a decision-
theoretic framework [8]. Zhang et al. proposed an efficient
cooperative sensing algorithm that minimizes the required
number of secondary users [9]. Li et al. proposed a ran-
dom broadcast scheme without any control or coordination
mechanism, in which the broadcast probability is iteratively
obtained to reduce detection delay [10]. Zou et al. presented
a cooperative sequential detection scheme that reduces the
sensing time by determining whether to stop making a mea-
surement for each time slot [11]. G. Noh et al. proposed
a scheme that controls the reporting order of the local test
statistics to reduce the reporting time [12]. Young-June Choi
et al. studied the overhead-throughput tradeoff in coopera-
tive cognitive radio networks, and maximized the throughput
under the detection probability constrain [13].

However, all the above-mentioned works select either
throughput or overhead as optimization metric. To the best
of our knowledge, exponentially increasing data traffic and
demand for ubiquitous access have triggered a dramatic ex-
pansion of network infrastructure, which comes at the cost of
rapidly increasing energy consumption and a considerable
carbon footprint of the mobile communications industry.
Therefore, increasing the energy-efficiency (EE) in cellular
networks has become an important and urgent task. As such,
we investigate the issue of how to achieve the maximum EE
throughput in cooperative cognitive radio networks from the
perspective of EE. Specifically, The sensing-sensors trade-
off problem under a cooperative sensing scenario is formu-
lated to find a pair of sensing time and number of sensors
that maximize the cognitive radio’s EE throughput subject
to sufficient protection that is provided to the PU.

The main contributions of this paper are twofold.
Firstly, different from the previous cooperative spectrum

1In this paper, we focused on the optimization of optimal number of working sensors. As such, how to select the sensors is not in scope of this paper.
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sensing (CSS), which adopt either throughput or overhead as
optimization metric, our CSS scheme uses EE as our metric.
Moreover, we select part of the secondary users to participate
in detecting the PU’s activity1, and a more practical frame
structure is considered. Secondly, we jointly optimize the
sensing time and number of working sensors subject to suffi-
cient protection of the PU. Moreover, we propose an iterative
algorithm with low complexity to solve it effectively.

The remainder of this paper is organized as follows.
Section II briefly describes the system model. Section III
proposes an iterative algorithm to derive the optimal sensing
time and number of working sensors. The numerical results
are presented and discussed in Section IV, and our conclu-
sion remarks are offered in Section V.

2. System Model

Fig. 1. System model.
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Fig. 2. Frame Structure.

We consider a cognitive radio system that consists of
a fusion center and M secondary users (SUs). The SUs are
deployed to detect the activity of a primary user (PU) on
a given spectrum band, as shown in Fig. 1. Each working SU
receives the primary signal with an instant signal-to-noise ra-
tio (SNR) γi. Similar to [14], we assume that the distances
between any SUs are small compared to the primary trans-
mitter. Therefore, it is assumed that each channel gain is
Rayleigh-distributed with same variance and the average re-
ceived SNR is same at each sensor. Consider that each of
the SUs employ an energy detector and measure their re-
ceived powers during the sensing period. We assume that
primary signal is a complex-valued phase-shift keying sig-
nal. As such, the probability of detection and probability of
false alarm at each SU are approximated as

pd, j(τs) = Q

((
ε

σ2 − γ−1
)√

τs fs

2γ+1

)
, j = 1,2, ...,M,

(1)

and

p f , j(τs) = Q
((

ε

σ2
u
−1
)√

τs fs

)
, j = 1,2, ...,M (2)

where ε denotes the threshold parameter of the energy de-
tector at the SU, σ2

u represents the variance of additive white
Gaussian noise (AWGN), τs and fs denote the sensing time
and sampling frequency, respectively, Q(.) is the right-tail
probability of a normalized Gaussian distribution.

Frame structure used in this paper is illustrated in
Fig. 2. As it is clearly shown in Fig. 2, at the beginning,
the working sensors spend τs time to perform spectrum sens-
ing. After spectrum sensing, the working sensors report their
sensing results to the fusion center. Each sensor will con-
sume τr time overhead. The fusion center will merge a final
decision according to the ”OR” rule after collecting all the
sensing information.

In cooperative spectrum sensing, local sensing infor-
mation are reported to the fusion center and merged into one
final decision according to some fusion rule. In this paper,
we adopt the simple logic ”OR” rule. By performing the
”OR” rule, the probabilities of false alarm Q f and detection
Qd for cooperative sensing are then formulated as follows

Qd(k,τs) = 1−
k

∏
j=1

(
1− pd, j(τs)

)
= 1− (1− pd(τs))

k , (3)

and

Q f (k,τs) = 1−
k

∏
j=1

(1− p f , j(τs)) = 1− (1− p f (τs))
k (4)

where k is the number of the working sensors to report the
sensing results. This scheme shows that when k increases,
Qd will increase and as a consequence the accuracy of the PU
being detected also increases. However, the higher the value
of k, the higher the cooperative false alarm probability Q f
which in turn causes a higher chance that a spectrum oppor-
tunity will be missed. In addition, the more secondary sen-
sors participate in detecting the primary user’s activity, the
more time and energy are consumed for cooperative spec-
trum sensing, which is undesirable since the sensors have
limit power resource. Hence, in this paper, we jointly opti-
mize the sensing time and the number of working sensors to
maximize the EE throughput of cognitive system subject to
adequate protection to PU.

3. Problem Formulations
In this paper, we jointly optimize the sensing time and

number of working sensors to maximize the EE throughput
in the cooperative cognitive radio system. As such, we are
focused on EE throughput, which is defined as
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ρ =
Average Number o f Bits Transmitted

Average Energy Consumed
. (5)

Without loss of generality, the cognitive system achiev-
able throughput in one cycle is given by

C(k,τs) = (T − kτr− τs)R(1−Q f (k,τs)) (6)

where T denotes the length of one cycle, k represents the
number of working sensors, R denotes the transmitted rate
when the decision results of fusion center is that the PU is in
idle state2. For simplicity of analysis, τr and R are constants.
In the same way, the energy consumed in the one cycle can
be given by

E(k,τs) = Eskτs +Erkτr +Et(T − kτr− τs) (7)

where Es denotes the energy consumption per unit time in
sensing stage, Er and Et represent the energy consumption
per unit time in reporting stage and transmitting stage, re-
spectively. In reality, the Es is much smaller than that of Er
and Et . As such, the optimization problem can be formulated
as follows

max
k,τs

ρ(k,τs) =
C(k,τs)
E(k,τs)

=
(T−kτr−τs)(1−Q f (k,τs))R

Eskτs+Erkτr+Et (T−kτr−τs)
,

(8)

s.t. k = 1,2, ...,M, (9)

Qd(k,τs)≥ θ, (10)

0≤ τs ≤ T − kτr (11)

where θ is the predefined threshold for the detection proba-
bility which is the requirement of the PU.

Lemma 1: For a given sensing time and number of
working sensors, the optimal solution to (8) occurs with
equality constraint in (10).

Proof is given in Appendix A.

Lemma 2: Q f is a monotonously increasing function
of Qd .

Proof: As we know, Q function and inverse Q func-
tion are decreasing functions. According to results in [5],
we have

p f = Q(
√

2γ+1Q−1(pd)+
√

τs fsγ), (12)

pd = 1− k
√
(1−Qd), (13)

Q f = 1− (1− p f )
k. (14)

Therefore, Qd increasing will result in pd increasing,
and then p f will increase. As such, Q f will increase when
the Qd increases.

Lemma 3: Based on Lemma 1 and Lemma 2, ρ(k,τs)
is concave of τs for a given k. Therefore, there exists an opti-
mal sensing time to maximize the energy-efficient through-
put.

Proof: The first differential of ρ(k,τs) to τs is given as
(15) at the top of next page.

Therefore, the second differential is

∂2ρ(k,τs)
∂2τs

= A+B+C (16)

where

A =
2

∂Q f
∂τs

[kEs(T−kτr)+Erkτr ]

[kEsτs+Erkτr+Et (T−kτr−τs)]2
(17)

and

B =−
∂2Q f
∂2τs

(T−kτr−τs)

[kEsτs+Erkτr+Et (T−kτr−τs)]
(18)

and

C =
2(1−Q f )[Es(T−kτr)+Erkτr ][Es−Et ]

[kEsτs+Erkτr+Et (T−kτr−τs)]3
. (19)

According to the results in [15], we have

A < 0,B < 0,C < 0. (20)

Therefore, the ρ(k,τs) is concave of τs.

It is shown in (8) that there exists a tradeoff between
the sensing time and number of sensors for a given overhead.
Moreover, it is difficult to directly solving the two variables
optimization problem (8). As such, we decouple it into two
single-variable sub-optimization problem. Specifically, we
propose an iterative algorithm to solve it effectively.

First, we treat the sensing time to be a constant. As
such, the first sub-optimization problem which is decoupled
from the (8) reduces to

OP. 1 max
k

ρ(k) = C(k)
E(k) |τs=τ∗s

=
(T−kτr−τ∗s )(1−Q f (k,τ∗s ))R

Eskτ∗s+Erkτr+Et (T−kτr−τ∗s )
,

(21)

s.t. k = 1,2, ...,M. (22)

According to (21), it is very difficult to reach the close-
form solution for k. However, k is an integer and ranges from
the 1 to M. As such, it is not computationally expensive to
search for the optimal number of sensors k∗.

2In this work, we are interested in frequency bands that are underutilized. As such, the case when the fusion center fails to detect the primary user’s
presence is omitted.
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∂ρ(k,τs)

∂τs
=
−[(1−Q f )R+(T − kτr− τs)

∂Q f
∂τs

R]

Eskτs + kErτr +Et(T − kτr− τs)
−

(T − kτr− τs)R(1−Q f (k,τs))(kEs−Et)

[Eskτs + kErτr +Et(T − kτr− τs)]2
(15)

The second sub-optimization problem is that, for
a given k∗, we find the optimal sensing time τ∗s . As such,
the optimization problem reduces to

OP. 2 max
τs

ρ(τs) =
C(τs)
E(τs)
|k=k∗

=
(T−k∗τr−τs)(1−Q f (k∗,τs))R

Esk∗τs+Erk∗τr+Et (T−k∗τr−τs)
,

(23)

0≤ τs ≤ T − k∗τr. (24)

However, no closed-form solution for optimal sensing
time τ∗s is available for this sub-optimization problem. As
such, for any given k∗, we select the Newton’s method [16]
to search the ”optimal” sensing time τ∗s .

Based on the two decoupled sub-optimization prob-
lems, we propose an iterative algorithm to solve it, as de-
picted in Algorithm 1. As can be clearly seen from the Al-
gorithm 1, the objective function ρ(k,τs) is non-deceasing
at any iteration. As such, we can directly conclude that

ρ(τs( j),k( j))≤ ρ(τs( j),k( j+1))≤ ρ(τs( j+1),k( j+1)).
(25)

Algorithm 1: Find optimal sensing time τ∗s and number of
sensors k∗ that maximize ρ(τs,k)

Input: k(1), any value of k in between 1 and M
Initialization: j⇐ 1;
Repeat
Step 1: Given k( j), find the τ∗s using Newton’s method.
Step 2: τs( j+1)⇐ τ∗s .
Step 3: Given τs( j + 1), find k∗ that solves (21) by com-

puting ρ(k,τs) from 1 to M.
Step 4: k( j+1)⇐ k∗.
Step 5: j⇐ j+1.

Until τs( j) == τs( j−1) and k( j) == k( j+1).
Output: τs( j); k( j)

4. Numerical Results
To get insight into the effectiveness of the proposed

sensing methods and validate some related theorems, ex-
tensive computer simulations have been conducted in this
section. We select maximum throughput scheme in [7] [13]
as the referenced scheme. The default parameters used in
the evaluations are set as follows: the length of time slot is
180 ms, the reporting time per each sensor is 1 ms, the sam-
pling frequency of the received signal is assumed to 1 MHz,
the energy consumption per unit time of sensing is Es = 1,
similarly, Et = 10, Er = 10.

First, in order to investigate how the sensing time and
number of working sensors work in cooperative sensing, we

simulate the adaptive sensing time and number of working
sensors. From the Fig. 3, we can clearly see that there exist
an optimal sensing time or number of working sensors, sub-
ject to adequate protection to the primary network. As such,
jointly optimizing the sensing time and number of working
sensors is very critical for cognitive system. Moreover, the
energy-efficient (EE) throughput is a unimodal function in
the range of 1≤ k ≤M and 0≤ τs ≤ T − k ∗ τr.

Second, in Fig. 4, we compare the maximum EE
throughput scheme to maximum throughput scheme. Op-
timal sensing time and optimal number of working sensors
are used in each scheme. As clearly shown by Fig. 4, the
proposed scheme can improve the EE of the cognitive sys-
tem greatly subject to the protection requirement of primary
network. Moreover, the increasing protection requirement
of PU will deteriorate the EE performance of cognitive radio
networks. Specifically, the proposed Algorithm can achieve
the well performance with low complexity compared with
exhaustive searching method.
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Fig. 3. Energy-efficient performance of cognitive system with
adjustable sensing time or number of working sensors.
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Fig. 4. Energy-efficient performance of two schemes with dif-
ferent detection probability when the sensing time and
number of sensors are jointly optimized.

To evaluate the performance of optimal sensing time
and number of working sensors, we use the same simula-
tion. From Fig. 5, we can clearly see that the proposed
scheme is prone to spend more time on sensing and less time
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on reporting. This is different from the maximum through-
put scheme. Specifically, the higher the protection require-
ment is, the more overhead is needed. This can be interpreted
as follows: the protection requirement of PU increases, the
more overhead is needed to improve the detection probabil-
ity.
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Fig. 5. Optimal sensing time performance with adjustable detec-
tion probability.

Remarks: According to the Algorithm 1, it may con-
verge to a local maximum point. However, this local point
is actually the global optimal point which has been found
from the simulations. This can be interpreted as follows: Ac-
cording to the proposed iterative algorithm, we can conclude
that, at the converged points τ∗s and k∗, ρ(τ∗s ,k

∗) is the largest
across the τs dimension, and ρ(τ∗s ,k

∗) is the largest across the
k dimension. Specifically, the optimal point can be achieved
for any initial value k(1). As such, the proposed algorithm is
not related to initial value k(1) and always converges to the
maximum point. Moreover, the proposed iterative algorithm
is low complexity when compared to the exhaustive search
method, and very easy to be implemented.

5. Conclusion
In this paper, the optimal cooperative spectrum sensing

settings to maximize the system EE throughput, which is one
of great practical interest than other sensing objectives, have
been proposed. Subject to adequate protection to PU, there is
a tradeoff between the sensing time and number of working
sensors. As such, we have proposed an iterative algorithm
to maximize the EE throughput. The results of the proposed
iterative algorithm have been verified to be optimal by com-
paring them to exhaustive search results. We find that signif-
icant improvement in the EE throughput of cognitive radio
system has been achieved when both the parameters for the
sensing time and number of working sensors are jointly op-
timized.
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Appendix A
Proof: For a given sensing time and number of work-

ing sensors, based on the (1) and (2), we select a thresh-
old ε0 which satisfies pd(ε0,τs,k) = p̃d . We may also select
a threshold ε1 < ε0. As such, we have

pd(ε1,τs,k)> pd(ε0,τs,k) = p̃d , (26)

p f (ε1,τs,k)> p f (ε0,τs,k). (27)

Therefore, we have
Q f (ε1,τs,k)> Q f (ε0,τs,k). (28)

According to (8) and (28), we have
ρ(ε1,τs,k)< ρ(ε0,τs,k). (29)

As such, the optimal solution to (8) is achieved with
equality constraint in (10).
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