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Abstract. A very efficient technique that reduces fading 
and channel interference influence is selection diversity 
based on the signal to interference ratio (SIR). In this pa-
per, system performances of selection combiner (SC) over 
correlated Nakagami-m channels with constant correlation 
model are analyzed. Closed-form expressions are obtained 
for the output SIR probability density function (PDF) and 
cumulative distribution function (CDF) which is main 
contribution of this paper. Outage probability and the 
average error probability for coherent, noncoherent 
modulation are derived. Numerical results presented in 
this paper point out the effects of fading severity and cor-
relation on the system performances. The main contribu-
tion of this analysis for multibranch signal combiner is that 
it has been done for general case of correlated co-channel 
interference (CCI). 
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1. Introduction 
Interest in wireless communications has increased re-

cently due to the rapid growth of mobile communications 
as well as the emergence of wireless Local Area Network 
(LAN) technologies. Multipath fading can seriously de-
grade system performances of wireless communications. In 
wireless communication systems various techniques for 
reducing fading effect and influence of cochannel interfer-
ence are used [1]. The goal of diversity techniques is to 
upgrade transmission reliability without increasing trans-
mission power and bandwidth and to increase channel 
capacity. Space diversity is an efficient method for amelio-
ration system’s quality of service (QoS) when multiple 

receiver antennas are used [2]. There are several principal 
types of combining techniques and division can be gener-
ally performed by their dependence on complexity restric-
tion put on the communication system and amount of 
channel state information available at the receiver. Selec-
tion combining (SC) is one of the least complicated com-
bining methods. In general, selection combining, assuming 
that noise power is equally distributed over branches, se-
lects the branch with the highest signal-to-noise ratio 
(SNR), which is the branch with the strongest signal [1-4]. 
In fading environments as in cellular systems where the 
level of the cochannel interference is sufficiently high as 
compared to the thermal noise, SC selects the branch with 
the highest signal-to-interference ratio (SIR-based selection 
diversity) [5] This type of SC can be measured in real time 
both in base stations and in mobile stations using specific 
SIR estimators as well as those for both analog and digital 
wireless systems (e.g., GSM, IS-54) [6], [7]. Most of the 
recently the published papers assume independent fading 
between the diversity branches and also between the co-
channel interferers [8]-[10]. 

However, independent fading assumes antenna ele-
ments to be placed sufficiently apart, which is not general 
case in practice due to insufficient spacing between anten-
nas. When diversity system is applied on small terminals 
with multiple antennas, correlation arises between branches 
[11]. 

It has been found experimentally, that the Nakagami-
m distribution offers a better fit for a wider range of fading 
conditions in wireless communications [12], [13]. Several 
correlation models have been proposed and used in the 
literature for evaluating performance of diversity systems. 
The constant correlation model corresponds to a scenario 
with closely placed diversity antennas and circular sym-
metric antenna arrays [14], [15]. The effect of correlated 
fading has been extensively analyzed on the performance 
metrics of wireless communication system. In papers  
[16]-[19] selection diversity over Weibull fading channels 
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has been analyzed. In recent works [20], [21] the joint PDF 
and CDF of the multivariate Nakagami-m and Rayleigh 
distributions, respectively, are developed for the case of 
exponential correlation. In paper [22] analysis of signal 
combining for Nakagami-m distributed with constant 
correlation model of fading has been given, but with the 
total independence between interferences received on any 
pair of inputs of the combiner. 

More general case is when the arbitrary correlation is 
present between the signals and interferences. Moreover, to 
the best author's knowledge, no analytical study of multi-
branch selection combining involving assumed constant 
correlated Nakagami-m fading for both desired signal and 
co-channel interference, with arbitrary correlation coeffi-
cients between fading signals and between interferences 
has been reported in the literature.  

2. Statistic of the SC Output SIR 
The performance of the multibranch SC can be car-

ried out by considering, as  in [11], [16], [23], the insuffi-
cient antenna spacing, both desired and interfering signal 
envelopes experience correlative multivariate Nakagami-m 
fading with joint distributions. 

We are considering constant correlation  
Nakagmi-m model of distribution. The power correlation  
coefficient ρd for desired signal is defined as  
cov(Ri

2, Rj
2)/(var(Ri

2)var(Rj
2))1/2 and power correlation 

coefficient ρc for interfering signal is defined as  
cov(ri

2, rj
2)/(var(ri

2)var(rj
2))1/2. 

We are assuming arbitrary correlation coefficients 
between fading signals and between interferences, because 
correlation coefficients depend on the arrival angles of the 
contribution with the broadside directions of antennas, 
which are in general case arbitrary [24]. 

The constant correlation model [25] can be obtained 
from by setting in correlation matrix Σi,j ≡ 1 for i = j and  
Σi,j ≡ ρ for i≠j, for both desired signal and interference. 
Now joint distributions of pdf for both desired and inter-
fering signal correlated envelopes for multi-branch signal 
combiner could be expressed by [22]: 
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where md ,mc > 0.5 are the fading severity parameters for 
the desired and interference signal, correspondingly. 

Ωdk= 2
kR and Ωik = 2

kr are the average signal desired and 

interference powers at i-th branch, respectively. Instanta-
neous values of SIR at the k-th diversity branch input can 
be defined as λk=Rk

2/rk
2 [26]. The selection combiner 

chooses and outputs the branch with the largest SIR, fol-
lowing λ =λout= max(λ1, λ2,…,λN). 

Let Sk = Ωdk / Ωik be the average SIR’s at the k-th 
input branch of the multi-branch selection combiner. Joint 
probability density function of instantaneous values of SIR 
in n output branches λk, k = 1,…,N, as in [5], 
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Substituting (1) in (2), we obtain: 
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. (3) 

For this case joint cumulative distribution function 
can be written as [3]: 
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Substituting expression (3) in (4), and after 
integration joint cumulative distribution function becomes:  
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. (5) 

and 2F1(u1,u2;u3;x), being the Gaussian hypergeometric 
function [27, (9.100)]. 

Cumulative distribution function of output SIR could 
be derived from (5) by equating the arguments t1= t2= tn= t 
as in [11]:  
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The nested infinite sum in (6) converges for any 
granted value of the parameters ρd, ρc, S1, S2, S3, md and mc. 
Eq. (6) has been evaluated with n terms in each summation 
using the Mathematica Sum function. As is shown in 
Tab. 1, the number of the terms needs to be summed to 
achieve a desired accuracy, depend strongly on the corre-
lation coefficients 0  ρd < 1, 0  ρc < 1 [28]. The number 
of the terms increases as correlation coefficients increase. 
For the special case of md= 1 and mc = 1 we can evaluate 
expression for cdf for Rayleigh- desired signal and co-
channel interference. 

As it is shown in Tab. 1 for cases of ρd = 0.4, ρc = 0.3 
and ρd = 0.3, ρc = 0.4, convergence is slower and we need 
more terms when ρc > ρd. Also, expected results are ob-
tained for higher values of correlation coefficients. Con-
vergence becomes slow and we need much more terms 
when ρc and ρd are higher and closer to 1. Now, if for in-

stance, we consider triple branch selection combining di-
versity case and number of terms in six summations for 
10−7 accuracy, we observe that convergence is slower and 
we need totally more terms for higher number of diversity 
branches. 
 
 

md = 1 md = 1.2 
S1/t = 10 dB 

dual branch selection 
combining diversity case 

mc = 1 mc = 1.5 

ρd = 0.3 ρc = 0.2 24 21 
ρd = 0.3 ρc = 0.3 28 25 
ρd = 0.3 ρc = 0.4 37 35 
ρd = 0.4 ρc = 0.3 31 27 
ρd = 0.5 ρc = 0.5 51 47 
ρd = 0.6 ρc = 0.6 67 61 
ρd = 0.7 ρc = 0.7 82 77 

md = 1 md = 1.2 S1/t = 10 dB 
triple branch selection 

combining diversity case mc = 1 mc = 1.5 

ρd = 0.3 ρc = 0.2 11 11 
ρd = 0.3 ρc = 0.3 17 16 
ρd = 0.3 ρc = 0.4 23 22 
ρd = 0.4 ρc = 0.3 20 19 

Tab. 1. Terms need to be summed in (6) to achieve accuracy at 
the 7th significant digit. We consider dual and triple 
branch selection combining diversity case. 

Probability density function (PDF) of the output SIR 
can be obtained easily from previous expression: 
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. (7) 

3. Outage Probability and Average 
Error Probability 
Outage probability Pout is standard performance crite-

rion of communication systems operating over fading 
channels. This performance measure is also used to control 
the noise or cochannel interference level, helping the de-
signers of wireless communications system's to meet the 
QoS and grade of service (GoS) demands. Outage prob-
ability Pout  is defined as the probability that combined SNR 
falls below a given outage threshold γ, also known as 
a protection ratio. Protection ratio depends on modulation 
technique and expected QoS.  
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If the environment is interference limited, Pout  is de-
fined as the probability that the output SIR of used com-
biner falls below protection ratio: 

       



 FdttpPP Rout  
0

.  (8) 

Outage probability versus normalized parameter S1/γ for 
balanced and unbalanced ratio of SIR at the input of the 
branches and various values of correlation coefficient ρ is 
shown in Fig. 1. 

The average error probability at the SC output is 
derived for noncoherent and coherent binary signaling 
according to the following expressions: 

  



0 2

1
dtetpP gt

e 
 (9) 

where g denotes modulation constant, i.e., g = 1 for 
BDPSK and g = 1/2 for BFSK. Substituting (7) in (9) 
numerically obtained average error probability is shown in 
Fig. 2 for several values of correlation coefficient and 
balanced (unbalanced) SIRs. 

It is very interesting to observe that the outage prob-
ability behavior improves as the diversity order (number of 
branches) increases. 

Considering the average error probability at the SC 
output, we conclude that effects of some parameters on this 

system performances are similar to the effects on the sys-
tem outage probability. Generally, convergence is slower 
and we need more terms when ρc > ρd. Considering dual 
branch selection combining diversity case and number of 
terms in four summations for 10−5 accuracy for BDPSK 
modulation and the evaluation parameters (md=1.2, mc=1.5, 
S1= S2=S3=0 dB), we found that required number of terms 
is 31 for the case of  ρd= 0.4, ρc= 0.3 and 38 for the case 
ρd= 0.3, ρc= 0.4. Also from Fig. 2 we can see that BDPSK 
modulation scheme has better performances comparing to 
BFSK modulation scheme. 

4. Conclusion 
System performances of selection combining over 

correlated Nakagami-m channels with constant correlation 
model have been analyzed. Fading at the diversity branches 
that also affects interferers is correlated and Nakagami-m 
distributed with constant correlation model. The complete 
statistics for the SC output SIR is provided in the closed 
form, i.e., PDF, CDF, Outage probability. Capitalizing on 
these new formulae, average error probability was 
efficiently evaluated for some modulation schemes. 
Numerical results of these performance criteria are 
presented, in the function on correlation coefficient and 
fading severity. The main contribution of this analysis of 
multibranch signal combiner is that it has been done for 
general case of correlated cochanel interference.  
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Fig. 1. Outage probability versus S1/γ. 
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Fig. 2. Average BER versus S1 in noncoherent BDPSK and BFSK. 
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