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Abstract. The detection performance of the generalized 
detector (GD) constructed based on the generalized ap-
proach to signal processing in noise is evaluated under 
homogeneous and non-homogeneous noise. The GD adap-
tive threshold is derived and defined applying an appropri-
ate noise power estimation using the sliding window tech-
nique. The direct close expressions for the GD average 
probability of detection and probability of false alarm are 
also derived. Typical constant false alarm rate (CFAR) 
detectors, namely, the cell averaging CFAR (CA-CFAR) 
detector, the ordered statistic CFAR (OS-CFAR) detector, 
the generalized censored mean level (GCML) detector, and 
the adaptive censored greatest-of CFAR (ACGO-CFAR) 
detector are compared with the GD by detection perfor-
mance under both homogeneous and non-homogeneous 
noise conditions, i.e. when the interfering targets are ab-
sent or present, respectively. Simulation results demon-
strate a superiority of GD in detection performance in 
comparison with the above mentioned CFAR detectors 
under both homogeneous and non-homogeneous noise 
conditions. 
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1. Introduction 
Employing any radar sensor system we are interested 

to solve the following problem: a presence or absence of 
the target return signal that is always embedded in noise or, 
in another words, a ”yes” or a “no” target. Additionally, we 
are interested to extract any information about the target 
parameters, for example, the target range, relative velocity, 
azimuth angle, elevation angle, and others. Quality of de-
tector performance is defined by the probability density 
function (pdf) of observed data samples [1, Chapter 6, 
pp. 312-319]. The decision making strategy leads us to 
a definition of detection threshold. As a rule, the detection 
threshold is defined based on the fixed probability of false 

alarm and estimated noise power or noise variance [2]. 
Ability to detect the target return signal is limited by pres-
ence of noise and interference or clutter that are the sto-
chastic processes by nature. In practice, the noise and inter-
ference power are variable. The constant false alarm rate 
(CFAR) detectors are designed in order to provide predict-
able detection and false alarm rate statistics in realistic 
scenario [1, Chapter 7, pp. 347-382].  

Noise power estimation techniques are widely used in 
signal processing systems, communication systems, cogni-
tive radio, speech recognition, radar sensor, remote sens-
ing, and others. Appropriate noise power estimation proce-
dure is needed to define the adaptive detection threshold 
and should provide a required balance between the small 
estimation error and effective tracking ability in the case of 
non-stationary noise [3]. The CFAR detectors are widely 
used by radar sensor systems in many applications. For in-
stance, the middle range and short range radar sensors are 
implemented in vehicle safety driving technologies [4]-[9]. 
In the case of CFAR detector implementation, the noise 
power can be estimated after processing the observed data 
stored in the specified number of reference cells using the 
sliding window technique. The required adaptive detection 
threshold is defined as a product between the estimated 
noise power and the scaling factor, see [10] and [11]. De-
tectors constructed based on this principle are differed by 
processing procedures of data stored in the reference cells 
of sliding window. Cell averaging CFAR (CA-CFAR) 
detector has an optimum detection performance in the case 
of homogeneous noise. CA-CFAR detector estimates the 
noise power by averaging a power of observed data stored 
in the reference cells of sliding window. The adaptive de-
tection threshold is defined after noise power estimation 
[10].  

In many practical cases, there is the non-homogene-
ous noise according to spatial and temporal variations in 
the noise power and closely spaced target return signals 
that may be a reason of the estimated noise power bias and, 
consequently, the detection threshold is varied [12], [13]. 
The ordered statistics CFAR (OS-CFAR) detector is im-
plemented in the case of non-homogeneous noise and mul-
tiple targets [11], [14]. OS-CFAR detector rearranges the 
reference cell data in ascending numerical order with the 
purpose to form a new data sequence where the kth order 
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statistic is selected as the noise power. Almost all detectors 
are employed under non-homogeneous noise conditions, 
for example, the generalized censored mean level (GCML) 
detector and the adaptive censored greatest-of CFAR 
(ACGO-CFAR) detector discussed in [15], [16], respec-
tively. The GCML detector discards the data associated 
with interfering targets in the reference cells of the sliding 
window (censoring process) before definition of the noise 
power and detection threshold. ACGO-CFAR detector 
reduces the clutter edge false alarm effects when the test 
cell is close to the boundary between two interference re-
gions. ACGO-CFAR detector defines the average noise 
power in the leading and lagging windows (the reference 
window is divided on two subwindows where the test cell 
is in the middle between them) separately after using the 
censoring process. The required estimated noise power is 
selected as the maximal averaged value. 

The generalized detector (GD) constructed based on 
the generalized approach to signal processing in noise [17] 
is a combination of the correlation detector that is optimal 
in the Neyman-Pearson (NP) criterion sense under detec-
tion of signals with known parameters, and the energy 
detector, which is optimal in the NP criterion sense under 
detection of signals with unknown parameters. This combi-
nation allows us to formulate a decision-making rule based 
on definition of the jointly sufficient statistics of the mean 
and variance of the likelihood function [18]. There is 
a need to note that a decision-making rule for the correla-
tion detector is made based on definition of the sufficient 
statistics of the likelihood function mean only, while for the 
energy detector a decision-making rule is made based on 
definition of the sufficient statistics of the likelihood func-
tion variance only. Using the generalized approach to sig-
nal processing in noise, we obtain additional information in 
the form of the jointly sufficient statistics of the likelihood 
function variance and mean in comparison with the corre-
lation and energy detectors, respectively. The GD imple-
mentation in radar sensor systems is discussed in [19]-[21] 
in the case of the linear frequency modulation continuous 
wave radar sensor system for short and middle range radar 
applications such as the closing vehicle detection and blind 
spot detection in automotive safety driving applications 
[22].  

In this paper, we employ two noise power estimation 
techniques based on the sliding window procedure of 
a specified number of reference cells. In the case of homo-
geneous noise, the noise power is estimated by averaging 
the observed data stored in the reference cells of sliding 
window. In the case of non-homogenous noise and multiple 
targets, the procedure of ordered statistics is applied to the 
observed data stored in the reference cells of sliding win-
dow with the purpose to estimate the noise power. This 
technique is also used by the OS-CFAR detector and 
demonstrates the better performance for the multitarget 
environment in comparison with the mean level CFAR 
detector family including the CA-CFAR, greatest of CFAR 
(GO-CFAR), and smallest of CFAR (SO-CFAR). Several 
CFAR detectors employed by radar sensor system under 
homogeneous and non-homogeneous are evaluated in [23].  

Comparative analysis of detection performances be-
tween GD and various CFAR detectors, namely, CA-
CFAR, OS-CFAR, GCML, and ACGO-CFAR under both 
homogeneous and non-homogeneous noise is made at the 
same initial conditions. The simulation results demonstrate 
a superiority of the GD in detection performance over the 
mentioned above CFAR detectors in the case of both ho-
mogeneous and non-homogeneous noise.  

The rest of this paper is organized as follows. A brief 
review of discussed CFAR detectors is introduced in Sec-
tion 2. The basic GD structure and definition of the adap-
tive detection threshold and the probability of detection for 
radar sensor systems are discussed in Section 3. Section 4 
presents the noise power estimation procedure based on the 
sliding window technique for GD. The simulation results 
are discussed in Section 5. Finally, the conclusion remarks 
are presented in Section 6. 

2. CFAR Detectors  
The fixed probability of false alarm PFA is a desirable 

requirement for radar sensor systems, especially, in the 
case of high duty cycle owing to the noise sensitivity rea-
son. There is a need to define the adaptive detection 
threshold based on the noise power estimation. For any 
CFAR detector, the noise power is estimated by processing 
the data stored in the reference cells of sliding window. We 
discuss briefly several CFAR detectors, namely, CA-
CFAR, OS-CFAR, GCML, and ACGO-CFAR detectors.  

2.1 CA-CFAR Detector 

The CA-CFAR detector has an optimum detection 
performance among the mean level CFAR detector family 
in the case of homogeneous noise when the neighboring 
reference cells of sliding window contain the noise data 
obeying the same pdf and having the same statistical pa-
rameters as the data stored in the test cell of sliding win-
dow [10]. CA-CFAR detector estimates the noise power by 
averaging the data in the reference cells of sliding window. 
The adaptive detection threshold is defined based on this 
procedure. Basic CA-CFAR detector functioning principle 
is shown in Fig. 1. The estimated noise power ZCA is de-
termined in the following from: 
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where Xj 
are the energy detector output samples stored by 

the reference cells, and N is the number of reference cells 
of sliding window. In this case, the probability of detection 
PD can be determined in the following form [10]: 
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where SNR  is the average signal-to-noise ratio and αCA is 
the scaling factor for CA-CFAR detector given as a func-
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tion of the reference cell number N and the probability of 
false alarm FAP  

 .1)[( /1   ]   N
FACA PN  (3) 

The adaptive CA-CFAR detection threshold can be 
presented in the following form [10]: 

 .  CACACA ZTHR   (4)
 

 
Fig. 1. Functioning principle of CA-CFAR detector.  

2.2 OS-CFAR Detector 

In practice, the non-homogeneous noise is caused by 
both spatial and temporal variations in the noise power and, 
additionally, by the closely spaced target return signals that 
is a reason of the estimated noise power bias and, conse-
quently, the detection threshold variations. As a rule, the 
OS-CFAR detector is employed under the non-homogene-
ous noise conditions [11]. In the multitarget case, the de-
tection performance of OS-CFAR detector is much better 
than the detection performance of the mean level CFAR 
detector family [3], including the CA-CFAR detector, 
greatest-of CFAR (GO-CFAR) detector, and smallest-of 
CFAR (SO-CFAR) detector. OS-CFAR detector rearranges 
the data samples {X1,…,XN} in the reference cells of sliding 
window to form a new sequence of data samples 
{X(1) ≤ X(2) ≤ … ≤ X(k) ≤…≤ X(N)} according to the increas-
ing order, where the X(k) element of the ordered data sam-
ples is called the kth order statistics assigned as the noise 
power (Fig. 2). This approach is based on the fact that the 
interfering signal power is usually higher than the noise 
power. The minimal loss in SNR for OS-CFAR detector is 
achieved when the order of statistic k is given as [11] 
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The OS-CFAR detector is able to reject the number of 
interfering targets equal to N – k. The probability of detec 

 
Fig. 2.  Functioning principle of OS-CFAR detector. 

tion PD for OS-CFAR detector is determined by the fol-
lowing form [11]: 
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The scaling factor αOS takes the following form [11]: 
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Finally, the adaptive OS-CFAR detection threshold 
can be determined in the following form: 
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2.3 GCML Detector 

GCML detector is also employed under the non-ho-
mogeneous noise [15]. The GCML detector (see Fig. 3) can 
cancel the interfering target data stored in the reference 
cells of sliding window prior to noise power definition 
using the censoring process. There is no need to know 
a priori the number of interfering targets as in the case of 
OS-CFAR detector. The sliding window is divided on two 
windows equal by length: the leading window 
{X1, X2,…,XM} when M = N/2, and the lagging window 
{XM + 1, XM +2,  …,X2M}. The reference cell data of these 
two windows are processed independently in parallel way 
by the censoring processes.  

The censoring algorithm ranks the reference cell data 
of these two windows in ascending numerical order like 
{X(1) ≤  …≤ X(M)} and {X(M + 1) ≤ X(M + 2) ≤ …≤ X(2M)}., re-
spectively. The algorithm assigns the lowest order X(1)  as 
the noise power reading and defines the threshold 


)1(XTHR    )1(1X , where n , in a general case, is the 

scaling factor chosen to achieve the required probability of 
false censoring PFC, and 1,..,1  Mn . The probability of 
false censoring PFC can be determined in the following 
form [15]:  
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The threshold 
)1(XTHR
 
is compared with the reading 

X(2) . If the reading X(2) is greater than the threshold 

)1(XTHR , the data },...,,{ 32 MXXX are considered as the 

result of energy detector processing of the interfering target 
signals. If the following condition 

)1()2( XTHRX 
 
is satis-

fied we can make a decision that X(2) is the noise sample 
without interference. After that the censoring algorithm 
forms the sum of two lower ordered samples 

)1()2,1( XX  )2(X , defines the threshold 
)2,1(XTHR  and 

compares the threshold 
)2,1(XTHR  with the reading )3(X . 

The censoring process is stopped if a decision “a yes” sig-
nal is made. More discussion about GCML detector can be 
found in [15]. 
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Fig. 3.  Functioning principle of GCML detector. 

 
Fig. 4.  Functioning principle of ACGO-CFAR detector. 

 

2.4 ACGO-CFAR Detector 

The ACGO-CFAR detector can be considered as 
a modified version of the GCML detector in order to re-
duce the clutter edge false alarm, when the test cell is close 
to the boundary between two interference regions. The 
statistics in the leading and lagging windows will not be the 
same [16]. The ACGO-CFAR detector suppresses the 
clutter edge false alarm by definition of the average noise 
power in the leading and lagging windows individually and 
selects the highest averaged noise power value to consider 
it as the required estimated noise power. The functioning 
principle of ACGO-CFAR detector is presented in Fig. 4. 
We assume that n1 samples are censored from the leading 
window cells and n2 samples are censored from the lagging 
window cells. The remaining samples from the leading 
window m1= M – n1 and from the lagging window  
m2 = M – n2, where M = N/2, are used to estimate the noise 
power as follows [16]: 
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The estimated noise power is set to be the maximum of U 
and W [16]: 

 .  ),max( WUZ ACGO    (11)
 

3. GD Main Functioning Principles. 
Definition of Detection Threshold  

3.1 GD Functioning Principles and Structure 

Simple GD flowchart is represented in Fig. 5. For this 
block diagram we use the following notations: MSG is the 
model signal generator (the local oscillator), AF is the 
additional filter (the linear system), and PF is the prelimi-
nary filter (the linear system). A detailed discussion of the 
AF and PF can be found in [17], [18, Chapter 3]. 

Consider briefly the main statements regarding the AF 
and PF. There are two linear systems at the GD front end 
that can be considered, for example, as the bandpass filters, 
namely, the PF with the impulse response hPF(τ) and the 
AF with the impulse response hAF(τ). For simplicity of 
analysis, we think that AF and PF have the same ampli-
tude-frequency responses by shape and bandwidths by 
value. Moreover, a resonant frequency or central frequency 
of the AF is detuned relative to a resonant frequency or 
central frequency of the PF on such a value that the target 
return signal cannot pass through the AF, i.e. on a value 
exceeding the target return signal bandwidth. Thus, the 
target return signal plus noise can be appeared at the PF 
output and only the reference noise is appeared at the AF 
output. 
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Fig. 5. Principal flowchart of GD. 

It is well known [17], if a value of detuning between 
the AF and PF resonant or central frequencies is more than 
4 to 5 times the target return signal bandwidth f, the pro-
cesses forming at the AF and PF outputs can be considered 
as independent and uncorrelated. In practice, the coefficient 
of correlation is not more than 0.05 that was confirmed 
experimentally in [24], [25]. In the case of a “no” target 
return signal in the input stochastic process, the statistical 
parameters at the AF and PF outputs will be the same, 
because the same noise is coming in at the AF and PF in-
puts, and we may think that the AF and PF do not change 
the statistical parameters of input process since they are the 
linear GD front end systems. By this reason, the AF can be 
considered as a generator of reference noise sample with a 
priori information a “no” target return signal.  

There is a need to make some comments regarding the 
noise forming at the PF and AF outputs. If the additive 
white Gaussian noise (AWGN) w(t) with zero mean and 
two-sided power spectral density 05.0 N comes in at the AF 

and PF inputs (the GD linear system front end), the noise 
forming at the AF and PF outputs is the narrowband 
Gaussian process with zero mean and variance determined 
as [18, Chapter 3] 
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where, in the case if, for example, AF or PF is the RLC 
oscillatory circuit, the AF or PF bandwidth FΔ  and reso-

nance frequency 0  are defined in the following manner 
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the linear systems.   

In a general case, the narrowband Gaussian noise 
forming at the PF and AF outputs take the following 
form[17]: 
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The main functioning condition of GD is an equality over 
the whole range of parameters between the model signal 
forming at the GD MSG output (the searching signal) and 
the detected target return signal coming in at the GD input 
linear system (the PF) output. How we can satisfy this 
condition in practice is discussed in detail in [17], [18, 
Chapter 7]. More detailed discussion about a choice of PF 
and AF and their impulse responses is given in [26, Chap-
ter 5], [27, Chapter 2]. 

Assume Si is the sample of input stochastic process, ai 
is the target return signal, wi is the additive white Gaussian 
noise with zero mean and variance n

2, Ki ,,1  . The 
simplest signal detection problem can be presented in the 
following form: 
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where K is the sample size; 1H  is the hypothesis a “yes” 

signal; and 0H  is the alternative hypothesis. If the prob-

ability of false alarm PFA is fixed, we can apply the 
Neyman-Pear-son criterion, for which the probability of 
detection PD is maximal for any signal-to-noise ratio 
(SNR).  

In practice, in order to maintain permanently a physi-
cal sense of signal detection, we should distinguish the tar-
get return signal ai and its model ai

mod

 forming at the GD 
MSG output. In radar sensor systems, the model signal 
ai

mod

 is considered as the searching signal generated by the 
GD MSG. The model signal can be presented in the fol-
lowing form: 

 ,    mod
ii aa    (15) 

where   is the coefficient of proportionality. 

Implementation of the generalized approach to signal 
processing in noise assumes modifications concerning the 
initial premises of classical and modern signal detection 
theories [17], [18, Chapter 3]. In accordance with the gen-
eralized approach to signal processing in noise, the signal 
detection algorithm can be presented in the following form: 
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where Yi is the sample of observed stochastic process at the 
PF output, i is the sample of observed noise at the AF out-
put, and THRGD is the GD threshold. The first term in (16) 
corresponds to the correlation detector with twice the gain 
and is considered as the sufficient statistics of the likeli-
hood function mean. The second term in (16) corresponds 
to the energy detector and is considered as the sufficient 
statistics of the likelihood function variance [17], [18, 
Chapter 3].The third term in (16) presents the reference 
noise power generated according to the main functioning 
principles of the generalized approach to signal processing 
in noise. Equation (16) represents the decision-making rule 
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under the implementation of the generalized approach to 
signal processing in noise for any signal processing system. 

For practical purposes, we can use the GD flowchart 
presented in Fig. 6, in which the threshold apparatus 
(THRA) device defines the GD threshold, and the signal 
model generator switching apparatus (SGSA) is used to 
switch on the MSG to define the unknown parameters of 
the detected target return signal. The switch K1 takes the 
position “1” to define the GD threshold THRGD and takes 
the position “2” after the GD threshold definition and the 
target return signal detection has been carried out. The 
switch K2 is used to put the THRA device in and out of 
service. 

 
Fig. 7. The signals at the AF and PF outputs. 

In the case of a “yes” target return signal (the hypo-
thesis 1H ), when iii aY  , where i is the sample of the 

observed narrowband noise at the PF output, the left side in 
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represents 

the background noise at the GD output.   

The background noise is a difference between the nar-
rowband noise power forming at the PF and AF outputs. In 
the opposite case, i.e. a “no” target return signal (the hy-
pothesis 0H ), when iiY  , the left side in (16) is the back-
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only if the condition 

m
ia  ia  is satisfied. Thus, the target return signal ia  and 

the narrowband noise i  can be appeared at the PF output 

and the narrowband noise i  is appeared at the AF output 

only (see Fig. 7). In (16), the second term corresponds to 
the energy detector incorporated in the GD and coupled 
with the PF.  

3.2 GD Detection Threshold 

We assume that the noise forming at the PF and AF 
outputs is the narrowband process with the Rayleigh am-
plitude envelope and the phase uniformly distributed within 
the limits of the interval )2,0[  . In this case, the GD back-

ground noise pdf takes the following form [18]:   
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As we can see from (17), the pdf of the background noise 
forming at the GD output under the hypothesis 0H is de-

fined by the exponential type distribution when the time 
interval ],0[ T is infinitesimal )0( T  [18, Chapter 3]. 

Based on (17), the probability of false alarm PFA can be 
presented in the following form: 

 

.  
2

exp )(
20 










 



n

GD

THR
Z

GD
FA

THR
dzzpP

GD

GD 
H

 
 (18) 

According to (18), the GD threshold can be deter-
mined in terms of PFA using the following equation: 

 . )(ln2 2 GD
FAnGD PTHR    (19) 

If the scaling factor  

 

Fig. 6. Practical GD flowchart. 
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is applied, the modified adaptive GD threshold takes the 
following form: 

 . 2
GDnGDTHR    (21) 

Taking (20) into consideration, the probability of false 
alarm PFA can be presented in the following form: 

   .  5.0exp GD
GD
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The last equation allows us to determine the probability of 

false alarm GD
FAP  for a given scaling factor GD  or to deter-

mine the required scaling factor GD  for the fixed proba-

bility of false alarm GD
FAP . 

3.3 GD Detection Performance 

Now consider the hypothesis 1H  when the fluctuating 

target return signal is presented. The pdf of the background 
noise at the GD output given in (17) obeys the exponential 
type law. Based on (17), the pdf of the decision statistics 
forming at the GD output under the hypothesis 1H  can be 

presented in the following form: 
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where s
2

 is the variance of the fluctuating target return 
signal modeled as Swerling 2 model. The probability of 
detection PD

GD

 can be presented in the following form: 
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Introducing the signal-to-noise ratio SNR = s
2/n

2, we can 
rewrite the probability of detection PD as 
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After some mathematical transformations and calculation 
of the integral in (25), the probability of detection PD

GD

 
takes the following form: 
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Taking into consideration the detection threshold THRGD 
given in (19), the probability of detection PD

GD

 can be 
rewritten as 
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4. GD Noise Power Estimation 
Techniques 
The GD threshold is continuously updated based on 

the noise variance variations at the GD AF output under 
non-homogeneous noise conditions at the GD input (the 
adaptive GD threshold). Thus, there is a need to apply the 
noise power estimation technique in order to define the 
adaptive GD threshold. If the noise at the GD input is 
Gaussian, the narrowband noise forming at the GD AF and 
PF outputs is Gaussian too with the same variance n

2, 
because AF and PF are the linear systems. Owing to the 
fact that the frequency content of interfering signals is 
within the limits of GD PF bandwidth, the noise power 
estimation is not affected by these interfering signals be-
cause the noise reference samples forming at the AF GD 
output are used under employment of the required estima-
tion procedure. In the case when the frequency content of 
interference caused, for example, by jammer or any other 
sources, is within the limits of GD AF bandwidth, the 
background noise power estimation procedure will be 
affected. 

Two narrowband noise power estimation procedures 
are applied based on the sliding window technique. The 
first narrowband noise power estimation procedure is based 
on averaging the data stored in the reference cells of sliding 
window (Fig. 8a). The second narrowband noise power 
estimation procedure is carried out by ordered statistic 
processing as in the case of OS-CAFR detector (Fig. 8b). 

 
Fig. 8. GD noise power estimation techniques: a) cell 

averaging technique, b) ordered statistic technique.  

4.1 Cell Averaging Technique 

The estimation of the narrowband noise power is per-
formed under assumption of independent and identically 
distributed (i.i.d) narrowband noise data stored in the refer-
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ence cells of the sliding window. The estimated narrow-
band noise power in the course of reference cell data aver-
aging procedure can be presented by processing the noise 
sample N ,,1   forming at the GD AF output: 
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 (28) 

Taking (19) into consideration, the adaptive GD detection 
threshold after narrowband noise power estimation can be 
determined as 

 . )ln(ˆ2 2 GD
FAnGD PTHR     (29) 

The definition of the GD average probability of de-

tection GD
DP  helps us to find a relationship between the GD 

detection performance and the number of reference cells in 
the sliding window N. The GD average probability of de-

tection GD
DP  can be presented in the following form: 
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where pCA(THRGD) is the GD threshold pdf in the case of 
cell-averaged noise power estimation technique that can be 
defined in the following form based on the procedure 
discussed in [1] 
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Based on (30) and (31), the average probability of detection 
GD
DP is determined as 
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Using the tabulated integral [28] 
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we can find that the average probability of detection GD
DP  

is determined in the following form:  
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The theoretical detection performance of the GD, CA-
CFAR, and OS-CFAR detectors is presented in Fig. 9 
based on (2), (6), and (34) at PFA = 10-3

 and PFA = 10-4. 
Comparison shows the GD superiority over the CA-CFAR 
and OS-CFAR detectors. For example, at PFA = 10-4, the 
GD runs up approximately 2 dB SNR gain in comparison 
with CA-CFAR detector and 2.5 dB SNR gain in compari-
son with OS-CFAR detector at the probability of detection 
PD equal to 0.6. The theoretical detection performance of 
the GCML detector is almost identical with the CA-CFAR 
detector under homogeneous noise conditions.  

Any detector will be considered as a CFAR detector if 
the averaged value of the probability of false alarm is inde-
pendent of the actual value of noise power. In the case of 
GD, the average value of GD

FAP  is defined as 
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Taking (33) into consideration, we obtain from (35): 
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Fig. 9. Theoretical average detection performance for GD, CA-CFAR, and OS-CFAR detectors: a) 0001.0FAP , b) 001.0FAP . 
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As we can see from (36), the average GD probability of 

false alarm GD
FAP  does not depend on the actual noise power 

n
2. Thus, the GD keeps the CFAR property.  

In practice, the observed GD probability of false 
alarm GD

FAob
P is not exactly the desired value. Let GD

FAdes
P

 
be 

the desired GD probability of false alarm when the esti-

mated noise power is equal to 2ˆ n . In this case, the GD 

threshold is given as )ln(ˆ2 2 GD
FAnGD des

PRHT 


. Taking (18) 

into consideration, we can determine the observed GD 
probability of false alarm GD

FAob
P

 
using the following form: 
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Based on (37) we can find that the desired and observed 
probabilities of false alarm will be the same if the real and 
estimated noise powers are the same.  

A relatively simple estimate that can approximate the 
effect of interfering target which has frequency content 
matched with the AF bandwidth can be derived. Let us 
consider a single interfering target with power Ii that is 
existed only in one reference cell of the sliding window. 
The interference-to-noise ratio (INR) or the SNR of this 
interferer is INR = Ii/n

2. The expected value of the new 
GD threshold given by  
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can be presented in the following form: 
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The GD scaling factor in the case when the cell averaging 
noise power estimation technique is used can be easily de-
fined based on (36) as 
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As follows from (39), the expected value of the new 
threshold is a multiple of the estimated noise power with 
a new multiplier (scaling factor) given by 
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The new GD threshold with the existence of the inter-
fering target will decreases both the probability of detection 
and the probability of false alarm. Using (34), (39), and 
(41) we can find the expression for the new average proba-
bility of detection: 
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We can see from (42) as 0INR  (no interfering target) 
or N  when the interfering target influence becomes 

very small or negligible, GD
D

GD
D PP 

~
. 

Figure 10 presents a comparison between CA-CFAR 
detector and GD in terms of the probability of detection as 
a function of the INR when there is one interfering target at 
N = 20, 40; PFA = 10-4; and 10SNR dB. In the GD case, 
the frequency content of the interfering target is matched 
with the AF bandwidth. As expected, the detection perfor-
mance of both detectors deteriorates if the INR increases. In 
Fig. 10, we can see that the GD still has better performance 
in comparison with CA-CFAR. For example, at 
INR = 10 dB, SNR = 10 dB, and N = 20, we obtain 

PD
CA= 0.3 and PD

GD= 0.38, respectively. 

4.2 Ordered Statistic Technique 

In the case of the ordered statistic, the stored data in 
reference cells are rearranged according to increasing nu-
merical order and the kth ordered statistic is chosen as the 
estimated noise power as shown in Fig. 8b. Thus, the esti-
mation of the narrowband noise power takes the following 
form: 
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The average probability of false alarm in the case if 
the GD employs the ordered statistic noise power estima-
tion technique can be derived using the following form:  
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where 2
n

GDnorm
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THR
THR


  is the normalized GD threshold, 

and )( norm
GDOS THRp is the normalized GD threshold pdf in 

the case of ordered statistic noise power estimation tech-
nique, which can be presented in the following form [29]: 
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Fig. 10.  The approximate probability of detection for GD and CA-CAFR detector as a function of INR. 
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As follows from (44) and (45), the average probability of 
false alarm can be determined in the following form: 
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in (46), we 

obtain: 
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Using the tabulated integral [28, 3.312.1]: 
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where a, b, and c are the constants and (.,.)B is the beta 

function, we obtain the following form: 
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In (48) we use the following notations 
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The beta function in (49) is expressed using the gamma 
function )( . In the case when GD, N, and k are the 

integers and using )!1()(  nn , (49) can be rewritten as  
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The average GD probability of false alarm GD
FAP  is 

presented in Fig. 11 as a function of the threshold scaling 
factor GD when GD employs the ordered statistic noise 
power estimation technique applying the k = 0.75N basis. 
As we can see from Fig. 11, the GD has a behavior de-
pending on the number of cells N and, as consequence, on 
the value of k. Figure 11 can be used to determine the GD 
threshold scaling factor to estimate the specific average 

probability of false alarm GD
FAP  for a given sliding window 

configuration. 
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Fig. 11.  The GD probability of false alarm as a function of threshold scaling factor in the case of ordered statistic noise power estimation 

technique. 

 

5. Simulation Results 

5.1 Conditions of Simulation 

In practice, the probability of detection PD is deter-
mined as the ratio between the number Ko of the detector 
output process overshoots with respect to the detection 
threshold and the total number of observations K [30]: 
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Comparison of detection performances between the 
GD and CFAR detectors based on simulation results is 
made under the same initial conditions. The probability of 
false alarm PFA is equal to 10-4. The number of reference 
cells of the sliding window is N = 20 and no guide cells. 
The number of observations is 1000K . The probability 
of false censoring PFC in the case of GCML and ACGO-
CFAR detectors is equal to 10-3. The selected reference cell 
in the case of OS-CFAR detector is 15, i.e. k = 15. The 
interfering signals are modeled by the Swerling 2 model of 
fluctuations [31]. 

5.2 Discussion of Results 

5.2.1. Frequency Content of Interfering Signals is 
within the Limits of GD PF Bandwidth 

In the first scenario (see Fig. 12), there are the subject 
target and few interfering targets. We assume that the fre-
quency content of interfering signals is within the limits of 
GD PF bandwidth, which in its turn is matched with the 
target return signal bandwidth. 

Figure 13 demonstrates a comparison between the 
GD, CA-CFAR detector, and OS-CFAR detector by detec-

tion performance for the following cases:   

 there are no interfering targets; 

 there is one interfering target;  

 there are two interfering targets.  

The GD noise power estimation is based on averaging the 
data in the reference cells of sliding window, as well as for 
the CA-CFAR detector.  

 
Fig. 12.  Scenario 1: the basic radar sensor system is equipped 

by GD. 

As follows from Fig. 13, the GD demonstrates superi-
ority in detection performance for wide range of SNR and 
for all considered cases. For example, when there is no 
interference and the probability of detection PD is equal to 
0.6, a superiority of GD in SNR in comparison with, for 
example, the CA-CFAR detector is for about 2 dB and 
2.5 dB in comparison with OS-CFAR detector. For one 
interfering target when the probability of detection PD is 
0.6, the SNR gain in favor of GD is approximately 7 dB 
comparing with the CA-CFAR detector and 2.5 dB com-
paring with the OS-CFAR detector. For two interfering 
targets, the SNR gain in favor of GD is 3 dB comparing 
with the OS-CFAR detector at the probability of detection 
PD equal to 0.6. In the case of two interfering targets, the 
CA-CFAR detector performance degradation is severe. The 
GD presents a great robustness against the interference if 
the frequency content of interfering signals is matched with 
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the PF bandwidth, because such interference does not ef-
fect on the GD background noise power estimation and, 
consequently, on the definition of the adaptive GD detec-
tion threshold THRGD.  

If there are no interfering targets, the CA-CFAR de-
tection performance is better in comparison with OS-CFAR 
detection performance. If one or two interfering targets are 
presented, the OS-CFAR detector performance becomes 
much better in comparison with the CA-CFAR detector 
performance. As the number N of reference cells of the 
sliding window is increased, the estimated GD background 
noise power should be converged to the true value. Thus, 
the big size of sliding window is usually preferable. In the 
case of CA-CFAR detector under non-homogenous noise 
caused by interfering targets, the small number N of refer-
ence cells of sliding window allows us to reduce the effects 
of interfering signals. On the other hand, the CFAR detec-
tion losses are decreased when the number of reference 
cells of sliding window is increased [3]. For small sliding 
window size, i.e. N < 20, the CFAR detection losses can be 
for about 3 dB at the probability of false alarm PFA equal to 
10-4

 when the probability of detection PD is 0.9 [3]. The 
condition N < 10 is not acceptable in practice owing to high 
CFAR detection losses [3]. By this reason we carry out the 
simulation at N = 20. 

Figure 14 demonstrates a comparison of detection 
performance between four detectors, namely, GD, OS-
CFAR, GCML, and ACGO-CFAR detectors for three 
cases: there is no interference, one interfering target, and 
two interfering targets. The GD presents the better detec-
tion performance among these detectors. If there is no 
interfering target, and when the probability of detection PD 

is equal to 0.6, the SNR gain in favor of GD is approxi-
mately 2 dB, 2 dB, and 3 dB comparing with the GCML, 
OS-CFAR, and ACGO-CFAR detectors, respectively. The 
detection performances of the OS-CFAR and GCML de-
tectors are very close to each other with slightly vantage to 
GCML one. The ACGO-CFAR detection performance is 
the worst case among these detectors.   

In the case of one interfering target, all detectors 
demonstrate the robustness against interference with small 
degradation in the detection performance. We do not in-
clude the CA-CFAR detector owing to severe deterioration 
of the detection performance when there are the interfering 
signals. As follows from Fig. 14, the GD superiority in 
SNR is evident. For example, when the probability of de-
tection PD equals to 0.6, the SNR gain in favor of GD is 
approximately 2 dB, 2 dB, and 3 dB comparing with the 
GCML, OS-CFAR, and ACGO-CFAR detectors, respec-
tively. In the case of two interfering targets, at the proba-
bility of detection PD equal to 0.6, the CG achieves for 
about 4 dB SNR gain in comparison with the ACGO-
CFAR detector, 2.5 dB SNR gain comparing with the 
GCML detector, and 3 dB SNR gain comparing with OS-
CFAR detector. 

Figure 15 demonstrates the GD, OS-CFAR, GCML, 
and ACGO-CFAR detection performance when there are 
five and six interfering targets. All detectors show consid-
erable degradation in the detection performance. For five 
interfering targets case, at the probability of detection PD 
equal to 0.6, the GD achieves 2 dB SNR gain with respect 
to the GCML and OS-CFAR detectors and approximately 
4 dB SNR gain comparing with the ACGO-CFAR detector. 
For the case of six interfering targets, at the probability of 
detection PD equal to 0.6 the GD has superiority in SNR 
gain for about 2 dB comparing with the GCML detector 
For the case of six interfering targets, at the probability of 
detection PD equal to 0.6 the GD has a superiority in SNR 
gain for about 2 dB comparing with the GCML detector 
and 3.5 dB comparing with ACGO-CFAR detector. Addi-
tionally, we see that the OS-CFAR detection performance 
degrades sharply in the case of six interfering targets. OS-
CFAR detector demonstrates a good detection performance 
when the number of interfering targets is not more than five 
since N = 20 and k = 15 (N – k = 5). 

Thus, five interfering targets is a critical case for OS-
CFAR detector under condition N = 20 and additional 
interfering target causes a severe degradation in detection 

 
Fig. 13.  GD, CA-CFAR, and OS-CFAR detection performance: a) no interference, b) one interfering target and two interfering targets. 
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Fig. 14.  GD, OS-CFAR, GCML, and ACGO-CFAR detection performance: a) no interference, b) one interfering target, c) two interfering 

targets. 

 
Fig. 15.  GD, OS-CFAR, GCML, and ACGO-CFAR detection performance: five interfering targets, and six interfering targets. 

 

performance. This problem for OS-CFAR detector can be 
solved by increasing the number N of the reference cells of 
sliding window, for example, N > 20. Furthermore, the 
GD, GCML, and ACGO-CFAR detectors have a reliable 
detection performance regardless of the number of inter-
fering targets and any prior knowledge about this number. 

In general, the GD presents the better detection per-
formance in comparison with the mentioned CFAR detec-
tors and suffers from small detection performance degra-
dation under interfering signals action. In the course of 
simulation, the number of reference cells N is fixed that 
allows us to deliver a fair comparison between the detec-
tors and show a difference in the detection performance 
under the same initial conditions. 

5.2.2. Frequency Content of Interfering Signals is both 
within the Limits of GD PF Bandwidth and GD AF 
Bandwidth 

We consider a special scenario assuming that addi-
tionally to the basic radar sensor system there is another 
radar sensor system with different operation frequency and 
bandwidth. According to this scenario, the frequency con-
tent of interfering signals reflected from the targets after 
being transmitted by another radar sensor system with 
operation parameters differing from the parameters of the 
basic radar sensor system may be within the limits of the 
GD AF bandwidth and cannot pass through the GD PF. In 
this case, these interfering signals effect on the noise power 
estimation procedure and, consequently, on the GD detec-
tion performance. This scenario is illustrated in Fig. 16. 
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Fig. 16.  Scenario 2: there is another radar sensor system with 

different operation frequency and bandwidth. 

Figure 17 demonstrates the detection performance of 
the GD, CA-CFAR, and OS-CFAR detectors when the GD 
noise power estimation procedure is based on averaging the 
data stored in the reference cells of sliding window. The 
following cases for GD are presented in Fig. 17. In the first 
case there are one interfering signal the frequency content 
of which is within the limits of GD PF bandwidth and an-
other interfering signal the frequency content of which is 
within the limits of GD AF bandwidth. In the second case, 
there are two interfering signals with the frequency content 
within the limits of GD PF bandwidth and two interfering 
signals with the frequency content within the limits of GD 
AF bandwidth. All the interfering signals with frequency 
content within the limits of GD AF are generated by an-
other additional radar sensor system. These interfering 
signals come in at the input of the basic radar sensor sys-
tem equipped by GD after reflection from the interfering 
targets In this case, the GD detection performance is dete-
riorated. For example, at the probability of detection PD 

equal to 0.6, the SNR gain is about 3 dB in favor of OS-
CFAR in comparison with GD. If there are two interfering 
targets, we observe a considerable deterioration in the GD 
detection performance. 

In order to eliminate the GD detection performance 
degradation against the interfering signals, the frequency 
content of which is within the limits of the GD AF band-

width, we can use the noise power estimation procedure 
similar to the OS-CFAR detector one (Fig. 8b). 

Comparison of detection performance between GD 
and OS-CFAR detector for both cases, namely, a “no” and 
a “yes” interfering targets is presented in Fig. 18 when the 
estimation procedure of the GD noise power is similar to 
the technique used in the case of the OS-CFAR detector 
(Fig. 8b). When there are the interfering targets, the GD 
detection performance is evaluated under the same scenario 
as in Fig. 16 for two cases:  

 The first case: there are one interfering signal, the 
frequency content of which is within the limits of GD 
PF bandwidth, and another interfering signal, the 
frequency content of which is within the limits of GD 
AF bandwidth;  

 The second case: there are two interfering signals 
with the frequency content within the limits of GD PF 
bandwidth and two interfering signals with the 
frequency content within the limits of GD AF 
bandwidth.  

The GD demonstrates the better detection perfor-
mance in both cases. For example, when the probability of 
detection PD is 0.6, the SNR gain in favor of the GD is 
approximately 2 dB and 2.5 dB for one and two interfering 
targets, respectively, in comparison with the OS-CFAR 
detector. 

6. Conclusions  
To define the adaptive detection threshold under 

implementation of GD in radar sensor systems we apply 
two background noise power estimation procedures based 
on the sliding window technique, namely, averaging and 
ordered statistic processing procedures of data in the refer-
ence cells of the sliding window.  

 
Fig. 17.  CA-CFAR, OS-CFAR, and GD detection performance: the frequency content of interfering signals is within the limits of PF and AF 

bandwidths. The GD background noise power estimation is based on averaging the data in the reference cells of sliding window. 
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Fig. 18.  Comparison of OS-CFAR and GD detection performance: the frequency content of interfering signals is within the limits of PF and AF 

bandwidths. The GD noise power estimation procedure is similar to the OS-CFAR detector one. 

 
The GD demonstrates the better detection perfor-

mance in comparison with the mentioned CFAR detectors 
and achieves a great robustness against the interfering 
targets. We compare the detection performance of GD and 
several CFAR detectors, namely, CA-CFAR detector, OS-
CFAR detector, GCML detector, and ACGO-CFAR de-
tector. When there is no interfering target and the probabil-
ity of detection PD is equal to 0.6, the GD demonstrates the 
SNR gain of 2 dB, 2.5 dB, 2 dB, and 3 dB in comparison 
with CA-CFAR, OS-CFAR, GCML, and ACGO-CFAR 
detectors, respectively. If there is one interfering target and 
the probability of detection PD is 0.6, the GD runs up the 
SNR gain equal to 2.5 dB, 2 dB, and 3 dB in comparison 
with the OS-CFAR, GCML, and ACGO-CFAR detectors, 
respectively.  

If there are two interfering targets and the probability 
of detection PD equals to 0.6, the SNR gains in favor of the 
GD are 3 dB, 4 dB, and 2.5 dB comparing with OS-CFAR, 
ACGO-CFAR, and GCML detectors, respectively. In the 
case of five interfering targets at the probability of detec-
tion PD equal to 0.6, the GD achieves the SNR gain equal 
to 2 dB, 2 dB, and 4 dB in comparison with OS-CFAR, 
GCML, and ACGO-CFAR detectors, respectively. For six 
interfering targets, the SNR gain in favor of the GD is 
approximately 2 dB comparing with the GCML detector 
and 3.5 dB SNR gain in comparison with the ACGO-
CFAR detector. The OS-CFAR detection performance 
degrades sharply in the case of six interfering targets owing 
to that the number of interfering targets is more than N – k.  

The ordered statistic noise power estimation proce-
dure (Fig. 8b) is employed by GD when the frequency 
content of the interfering signals reflected from the targets 
after being transmitted by another radar sensor system with 
different operation frequency and bandwidth in comparison 
with the basic radar sensor system is within the limits of 
the GD AF bandwidth. At the probability of detection PD 

equal to 0.6, comparing with OS-CFAR detector, we see 
that the GD achieves the SNR gain equal to 2 dB and 
2.5 dB for one interfering signal the frequency content of 
which is within the limits of GD PF bandwidth and one 
interfering signal the frequency content of which is within 
the limits of GD AF bandwidth, and for two interfering 
signals the frequency content of which is within the limits 
of GD PF bandwidth and two interfering signals the fre-
quency content of which is within the limits of GD AF 
bandwidth, respectively.   

The problem dealing with the interfering signals, the 
frequency content of which is within the limits of the GD 
AF bandwidth, leads us to the future research based on 
employment of interference cancellation approach, for 
example, beamforming and antenna array with or without 
direction of arrival estimation with the purpose to eliminate 
the interference effect on the GD detection performance. 
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