
RADIOENGINEERING, VOL. 23, NO. 1, APRIL 2014 73

An FPGA Based Implementation of a CFAR Processor
Applied to a Pulse-Compression Radar System

Slobodan SIMIĆ1, Milenko ANDRIĆ 1, Bojan ZRNIĆ 2

1 Military Academy, University of Defense in Belgrade, Gen. Pavla Jurišića Šturma 33, 11000 Belgrade, Serbia
2 Dept. of Defense Technology, Ministry of Defense, Nemanjina 15, 11000 Belgrade, Serbia

simasimic01@gmail.com, asmilenko@beotel.net, bojan.zrnic@vs.rs

Abstract. A hardware architecture that implements
a CFAR processor including six variants of the CFAR
algorithm based on linear and nonlinear operations for
radar applications is presented. Since some implemented
CFAR algorithms require sorting the input samples, the
two sorting solutions are investigated. The first one is
iterative, and it is suitable when incoming data clock is
several times less than sorting clock. The second sorter is
very fast by exploiting a high degree of parallelism. The
architecture is on-line reconfigurable both in terms of
CFAR method and in terms of the number of reference and
guard cells. The architecture was developed for coherent
radar with pulse compression. Besides dealing with sur-
face clutter and multiple target situations, such radar de-
tector is often faced with high side-lobes at the compres-
sion filter output when strong target presents in his sight.
The results of implementing the architecture on a Field
Programmable Gate Array (FPGA) are presented and
discussed.

Keywords
CFAR, FPGA, pulse compression, radar, self-clutter.

1. Introduction
The quality of a radar system is quantified with a

variety of figures of merit, depending on the function being
considered. In analyzing detection performance, the
fundamental parameters are the probability of detection PD
and the probability of false alarm PFA. If other system
parameters are fixed, increasing PD always requires
accepting a higher PFA as well. Standard radar threshold
detection assumes that the interference level is known and
constant. On the other hand, this allows accurate setting of
a threshold that guarantees a desired PFA.

In practice, interference levels are often variable. In
order to obtain predictable and consistent performance, the
radar system designer would usually prefer a constant false
alarm rate (CFAR). To achieve this, the actual interference
power must be estimated from the data in real time, so that

the detector threshold can be adjusted to maintain the
specified PFA, [1] and [2]. CFAR detection is a set of tech-
niques designed to provide predictable detection and false
alarm behavior in realistic interference scenarios.

Several variants of the CFAR algorithm have been
proposed in the radar literature to deal with different
scenarios in radar applications. These different techniques
have been developed in order to increase target detection
probability PD under several environment conditions, espe-
cially to deal with two of them: regions of clutter transi-
tions and multiple target situations. Although the theoreti-
cal aspect of CFAR detection is advanced, in radar related
literature there are few reported practical hardware imple-
mentations of CFAR processors because the high compu-
tational requirements involved in applications such as radar
signal processing.

Thanks to the advent of dedicated hardware multipli-
ers in FPGAs, these devices now challenge general-pur-
pose programmable DSPs for signal processing tasks in
many DSP applications. FPGAs have grown from simple,
clear logic components to complex circuits. A whole mi-
crocomputer system on a chip, including microprocessors,
dedicated DSP hardware, memory, and speed input-output
components, can be realized by them. Hardware resources
that are available and the speed that can be achieved are
often much greater than the requirements of the typical
problems that are before them. For example, in [21]
authors refer that proposed architecture requires 84 milli-
seconds to process a radar data set of 4096 × 4096 samples,
which is 30× times faster than the required theoretical
processing time of 2.5 seconds needed for that application
parameters.

Simplifying the development is now a key issue.
Today FPGA companies not only sell the chips on which
the user’s designs being implemented, but can also provide
many of the fundamental building blocks needed to create
these designs. Bearing in mind this, we have modified
CFAR detector architecture proposed in [21]. The design is
implemented on low cost FPGA and applied to a laboratory
pulse compression radar system. In modification, the goal
was to introduce on-line reconfigurability both in terms of
CFAR method and in terms of the number of reference and
guard cells.

74 S. SIMIĆ, M. ANDRIĆ, B. ZRNIĆ, AN FPGA BASED IMPLEMENTATION OF A CFAR PROCESSOR APLIED TO …

The rest of the paper is organized as follows. In Sec-
tion 2, the related works are highlighted through general
CFAR theory review and CFAR hardware implementations
review. Section 3 describes in detail the proposed CFAR
processor design and implementation. The experimental
setup and application of implemented CFAR to a pulse-
compression radar system is discussed in Section 4. Sec-
tion 5 brings experimental results and discussion. Finally,
Section 6 presents concluding remarks with some sugges-
tions for further work.

2. Related Works

2.1 CFAR Theory Review

Fig. 1 shows a general block diagram of a generic
range CFAR processor. This processor consists of a refer-
ence window with 2n cells that surround the cell under test.
Each cell stores an input sample and such values are right
shifted when a new sample arrives. Some 2m guard cells
are incorporated in order to avoid interference problems in
the noise estimation. The spacing between reference cells
is equal to the radar range resolution (usually the pulse/
sub-pulse width). The reference cells are used to compute
the Z statistic and, depending on the technique, this opera-
tion can be linear or nonlinear. The Z statistic and a scaling
factor α are used to obtain the threshold. This scaling factor
depends on the estimation method applied and the false
alarm required according to the application. It is also re-
lated to the interference distribution in the radar environ-
ment. The resulting product αZ is used as the threshold
value that is compared with the cell under test (CUT), to
determine whether the CUT is declared a target.

...

Linear or Nonlinear Operation

Reference
Cell

Guard
Cell

Cell Under
Test

×

α

-

 + e(y)

Comparator

Threshold

x2n xn+1 xn x2 x1

Lagging Window Leading Window

Input
data

Z

Fig. 1. Generic CFAR processor.

For any radar measurement that is to be tested for the
presence of a target, one of two hypotheses can be assumed
to be true:

H0: The measurement is the result of interference only.
H1: The measurement (y) is the combined result of

interference (g) and echoes from the target (d).

This can be modeled by:

 H0: y = g,

 H1: y =d + g. (1)

Z statistic computed across the reference cells repre-
sents estimated interference power. The required threshold
is then estimated as a multiple of Z. The decision criterion
is represented by:

ZCUTH

ZCUTH
ye

,

,
)(

0

1 (2)

If the values of the CUT exceed the Z statistic, then
a target presence is declared, i.e. the CFAR processor
outputs 1 if a target is present, otherwise it outputs 0:

ZCUT

ZCUT
ye

,0

,1
)((3)

Fin and Johnson [3] developed a theory based on
arithmetic mean of the nearby resolution cells of CUT.
This is known as Cell Averaging CFAR (CA-CFAR). CA-
CFAR was shown to be not efficient in nonhomogenous
environment or in the presence of interfering targets [2].
Other related approaches calculate separate averages of the
cells to the left and right of the CUT and then use the
greatest or smallest of these two power levels to define the
local power level. These techniques are referred to as
greatest-of CA-CFAR (CA-GO CFAR) proposed in [4]
and smallest-of CFAR (CA-SO CFAR) proposed in [5].
All of these CFAR techniques require linear operations
such as getting the maximum, minimum, or average of
a set of values. However, GO-CFAR detection perform-
ance in multiple target situations is poor and SO-CFAR has
undesired effects when interfering targets are located in
both halves of the reference cells [2].

To improve the detection performance on these situa-
tions, order statistics techniques (OS-CFAR) were pro-
posed in [6] reporting better overall performance results. In
[7], two modified OS-CFAR processors that require less
processing time than the OS-CFAR processor were pro-
posed. The generalized order statistics processors (GOS-
CA-CFAR, GOS-GO-CFAR and GOS-SO-CFAR) are
proposed in [8]. These processors achieve better detection
performance in the presence or in the absence of interfer-
ence, so they are more robust than the processors proposed
in [6] and [7]. The censored cell-averaging CFAR (CCA-
CFAR) is used for case of multiple target situations and it
is the first trimmed mean CFAR (TM-CFAR) [9] where the
ordered range samples are trimmed only from the upper
end. All these techniques require nonlinear operations like
sorting a set of values and selecting one on a specific posi-
tion before performing a linear operation.

Therefore, the method for calculating the Z statistics
can be based on linear or non-linear operations on data
samples from the reference windows. The most common
linear processors are the CA-CFAR, GO-CFAR and SO-
CFAR. Basic operation in these processors is the arithmetic
mean calculating of the amplitude contained in the Y1 lag-
ging cells and Y2 leading cells from the CUT. Then, the CA
processor estimates the arithmetic mean, the GO and SO
take the major and minor values of Y1 and Y2, respectively.

RADIOENGINEERING, VOL. 23, NO. 1, APRIL 2014 75

The mathematical model of these three linear operations
for the Z statistic is given by (4):

).,min(

),,max(

,2/)(

21

21

21

YY

YY

YY

Z (4)

Common nonlinear processors are the OSCA-CFAR,
OSGO-CFAR and OSSO-CFAR; and their generalized
form called GOSCA-CFAR, GOSGO-CFAR and GOSSO-
CFAR processors. These order statistics processors rank
orders the reference window data samples and then select
the kth element of the ordered list. The GOSCA-CFAR,
GOSGO-CFAR and GOSSO-CFAR processors, perform
the selection of the k-th (Y(1)) and i-th (Y(2)) sorted value
from the lagging and leading cells, respectively. Then, the
Z statistic is calculated in a similar way to the linear
processors as shown in (5):

).,min(

),,max(

,2/)(

)2()1(

)2()1(

)2()1(

YY

YY

YY

Z (5)

A different approach to obtain CFAR, based on clut-
ter map, exploits the local homogeneity of radar environ-
ment, in which the detector output of each range resolution
cell is averaged over several scans in order to obtain
an estimate of the background level [10]. In recent years,
distributed detection systems based on multiple detectors
with data fusion have been widely considered [11–15].
This is due to number of advantages over the centralized
detection system employing a single sensor.

2.2 CFAR Hardware Implementations
Review

First implemented analog, CFAR detection is today
almost exclusively performed with digital signal processing
hardware and software. Through the 90s, real-time radar
DSP systems were built using discrete logic. Many systems
were built using custom devices designed to perform
a particular function. The use of those custom devices
allowed DSP systems to become very small with high per-
formance. However, they were difficult and expensive to
develop, often requiring several design iterations before the
device was fully operational. If such a system needs to be
modified, the custom devices need to be redesigned, incur-
ring significant expense. Systolic architectures for CFAR
processors based on custom VLSI chips are proposed in
[16–18]. These systems were very difficult to develop and
modify, but in order to achieve the required system per-
formance, it was the only option available.

Digital technology has advanced to the point where
several implementation alternatives exist that make the
processor more programmable and, hence, easier to design
and change. The introduction of the FPGA in the 80s her-
alded a revolution in the way real-time DSP systems were

designed. FPGAs are integrated circuits that consist of
a large array of configurable logic elements that are con-
nected by a programmable interconnect structure. FPGAs
can also incorporate thousands of multipliers that can be
clocked at rates up to a billion and half operations per
second, and memory blocks, microprocessors, and serial
communication links that can support multigigabit-per-
second data transfers. High-performance FPGAs store their
configuration in volatile memory, which loses its contents
when powered down, making the devices infinitely repro-
grammable. Architecture for three versions CFAR proces-
sors (CA, CA-GO, CA-SO) on FPGA is presented in [19].
This architecture implements the average computations
with two accumulating processing elements and a config-
urable threshold processing element. An example of OS-
CFAR implementation on FPGA, using Virtex II
V2MB100 development kit is presented in [20].

A versatile processing architecture that implements
six variants of the CFAR algorithm based on linear and
nonlinear operations for radar applications is presented in
[21]. In [22] an embedded architecture that combines the
hardware and software components in a single platform is
experienced using a field programmable gate array FPGA-
based PC-board. Software components and Altera’s Nios-II
processor accelerated by developed hardware co-proces-
sors are used to realize higher-order nonlinear operation
like automatic censoring of sorted data. A Real-time
implementation approach of a distributed CFAR detection
with noncoherent integration is proposed in [23].

Bearing in mind that modern radars usually work in
dynamic electromagnetic environment, CFAR detector
architecture should be adaptive as more as possible. In [21]
authors proposed a versatile architecture in terms of vari-
ants of the CFAR algorithm. So, changing CFAR method
on-line is possible, keeping number of reference and guard
cells constant. This was a base for an upgrade we done. We
modified this architecture making it on-line reconfigurable
both in terms of CFAR method and in terms of the number
of reference and guard cells. An example where it is im-
portant is ground surveillance radar with pulse compres-
sion [25]. Besides dealing with surface clutter and multiple
target situations, such radar detector is often faced with
high side-lobes at the compression filter output, so-called
'self-clutter', when strong target presents in his sight. It is
shown that changing CFAR processor architecture can be
crucial for making correct decision in this scenario.

3. Implementation of a CFAR
Processor

3.1 Sorting Block

Sorting data from reference window is critical opera-
tion, because of its non-linear nature. Hardware imple-
mentations using different kinds of sorting architectures

76 S. SIMIĆ, M. ANDRIĆ, B. ZRNIĆ, AN FPGA BASED IMPLEMENTATION OF A CFAR PROCESSOR APLIED TO …

have been presented in literature. In this design we investi-
gated two standard solutions. The first one is iterative, and
it is suitable when incoming data clock is several times less
than sorting clock. The second architecture is very fast by
exploiting a high degree of parallelism. System is designed
and implemented by Xilinx’s System Generator™ and
ISE™ v14.7.

The basic building block for both sorting architec-
tures is a compare-swap element (CSE) that compares two
input values and swaps the values at the output, if required.
A compare-swap element is depicted in Fig. 2. It can oper-
ate fully combinatory, Fig. 2(a), but it is common to add
the pipeline registers after each of outputs in order to re-
duce their critical path and latency, Fig. 2(b).

Fig. 3 shows the modified parallel architecture for
suffix sorting proposed in [24]. The proposed sorter has
parallel input load instead serial one suggested in [24].
This eliminates need for priority decoder and sorting cell
control logic in the CFAR processor proposed in [21].
Hardware design shown in Fig. 3 is actually an iterative
implementation of even-odd bubble sorting technique and
consists of n/2 CSEs run in parallel to build the even stage,
and the remaining (n/2–1) CSEs are used for the odd stage.
The input of the first stage is read directly from the lead-
ing/lagging windows registers. An underlying block is
fully combinatory CSE shown in Fig. 2(a).

For correct operation, sorting clock, clksort, must be
several times higher than incoming data clock, so the sort-
ing operation can be done in one data clock cycle clkdata.
Read/Sort block works at sorting clock, and when it is ‘0’
the read operation is performed in one clksort cycle. Consid-
ering that architecture has 2 stages of comparators working
fully combinatory, sorting operation is done in maximal
n/2 sorting clock cycles where n is number of sorting ele-
ments. Hence clkdata should be n/2+1 times smaller than
clksort.

It is possible to reduce critical path adding pipeline
registers after the first (even) stage. Nevertheless, in this
version sorting operation is lengthened to maximal n sort-
ing clock cycles. In this case clkdata should be n+1 times
smaller than clksort.

(a)

2

B

1

A

a

b
a < b

sel

d0

d1

sel

d0

d1

2

b

1

a

 (b)

2

B

1

A

a

b
a < b

d qz-1

d qz-1

sel

d0

d1

sel

d0

d1

2

b

1

a

Fig. 2. The compare-swap element:

(a) fully combinatory, (b) pipelined.

8

Out8

7

Out7

6

Out6

5

Out5

4

Out4

3

Out3

2

Out2

1

Out1

a

b

A

B

a

b

A

B

a

b

A

B

a

b

A

B

a

b

A

B

a

b

A

B

a

b

A

B

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

Sort_En

Read/Sort

sel

d0

d1

sel

d0

d1

sel

d0

d1

sel

d0

d1

sel

d0

d1

sel

d0

d1

sel

d0

d1

sel

d0

d1

8

In8

7

In7

6

In6

5

In5

4

In4

3

In3

2

In2

1

In1

Fig. 3. The iterative even-odd sorting block for 8 data.

This algorithm can be parallelized, by introducing
more CSEs, so that compare-swap operations from all the
iterations are performed in one clock cycle. Such architec-
tures are known as sorting networks. The sorting network
that corresponds to the previous scheme requires (n-1)×n/2
CSEs, so it is not practical for large n.

Common architectures include more efficient
Batcher’s even-odd networks. Fig. 4 illustrates an even-
odd network for eight input operands. The network could
operate fully combinatory, but it is common to use pipe-
lined CSEs depicted in Fig. 2(b) in order to reduce their
critical path and latency thus resulting in a better through-
put. Then a set of n samples can be sorted in
log2n×(log2n+1)/2 clock cycles (3×4/2=6 in the shown
example). The hardware cost of such a sorting network is
(log2n)2×n/2+1 CSEs. Extra pipeline registers in Fig. 4 are
inserted in order to equalize latency across the data lines
providing a continuous stream sorting.

RADIOENGINEERING, VOL. 23, NO. 1, APRIL 2014 77

Fig. 4. Batcher’s even-odd sorting network.

3.2 CFAR Processor Architecture

The proposed CFAR processor architecture has two
shift registers for leading and lagging window each con-
sisting of n reference cells and m guard cells, parallel sort-
ing arrays for reference cells, and one shift register for the
CUT, which is at the middle of these registers.

Leading and lagging windows are the key elements of
the architecture for the realization of ability of on-line
changing n and m. An example is shown in Fig. 5, where
a user selectable 4–8–16-cells lagging window with up to 4
user selectable guard cells is presented. For linear CFAR
techniques, number of reference cells is set changing
Lag_end position by the control input sel_Nref and the
multiplexer signed as MuxNrefLin in Fig. 5. Values of 0, 1
and 2 of sel_Nref set Lag_end at the output of the 4th, 8th
and 16th data register. For nonlinear CFAR techniques,
number of reference cells is set inserting zeros in some
registers which produces zeros at the outputs unused in
sorting. When the control input sel_Nref has value of 0,
comparator Comp1 has value of 1 and multiplexer Mux1
produces zeros at the output inducing zeros in all registers
after 4th. These zeros have no effect on sorting operation,
so that only the first 4 are relevant. When the control input
sel_Nref has value of 1, comparator Comp1 has value of 0
and multiplexer Mux1 passes data from previous register at
the output. Now comparator Comp2 has value of 1 and
multiplexer Mux2 produces zeros at the output inducing
zeros in all registers after 8th. Four registers are added at
the end of reference cells registers in order to provide
guard cells. Number of guard cells is set changing Lag_out
position by the control input sel_Ng and the multiplexer
signed as MuxNg in Fig. 5.

Also, the proposed CFAR processor architecture,
Fig. 6, has two n-input–1-output multiplexers that perform
the rank operation for the lagging and leading sorting
arrays. Given that the reference cells values are ordered,
the k-th and i-th value can be selected by the control
signals sel_k and sel_i respectively. The result of this
selection is the Y(1) and Y(2) values needed in the nonlinear
operations shown in (5).

For the linear operations presented in (4), it is re-
quired to add all values stored in the reference cells regis-
ters of the leading/lagging windows for computing the
average. In order to perform this operation, it is not neces-
sary to add all values each time that one value from the
reference cells registers is inserted and deleted. Once
a value is inserted and other one deleted, the preceding
result can be used to compute the next result without add-
ing all values. Only by adding and subtracting the newest
and oldest values respectively, the next result is obtained.
This whole operation can be performed by an accumulator,
which computes the average of Y1 and Y2 values on each
window. Accumulators are signed as PE_leading and
PE_lagging. The PE accumulator consists of an adder,
which receives the incoming value, a subtracter, which
selects the oldest value stored in the reference cells of
leading/lagging window, a register to store the accumulated
value. A left shifter that performs the division needed to
compute the average value is added later, in the next block,
Fig. 6. Because of the left shifter, the number of reference
cells must be a power of two. This does not restrict the
usability of this architecture as the number of reference
cells used in practical applications is usually a power of
two [1].

18
Lag_out

17
Lag_end

16
Out16

15
Out15

14
Out14

13
Out13

12
Out12

11
Out11

10
Out10

9
Out9

8
Out8

7
Out7

6
Out6

5
Out5

4
Out4

3
Out3

2
Out2

1
Out1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1d qz-1d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

d qz-1

se
l

d
0

d
1

d
2

MuxNrefLin

se
l

d
0

d
1

d
2

d
3

d
4

MuxNg

se
l

d
0

d
1

Mux2

se
l

d
0

d
1

Mux1

1 0

0

0

a

b
a b

Comp2

a b
a

 b Comp1

3
sel_Nref

2
sel_Ng

1
Data

Fig. 5. The lagging window.

78 S. SIMIĆ, M. ANDRIĆ, B. ZRNIĆ, AN FPGA BASED IMPLEMENTATION OF A CFAR PROCESSOR APLIED TO …

PE_laggingW PE_leadingW

5
Y2

4
Y1

3
Y(2)

2
Y(1)

1
CUT

D
a

ta

se
l_

N
g

se
l_

N
re

f

L
e

a
d

_
b

e
g

in

O
u

t1

O
u

t2

O
u

t3

O
u

t4

O
u

t5

O
u

t6

O
u

t7

O
u

t8

O
u

t9

O
u

t1
0

O
u

t1
1

O
u

t1
2

O
u

t1
3

O
u

t1
4

O
u

t1
5

O
u

t1
6

L
e

a
d

_
e

n
d

LeadingWindow

O
u

t1

O
u

t2

O
u

t3

O
u

t4

O
u

t5

O
u

t6

O
u

t7

O
u

t8

O
u

t9

O
u

t1
0

O
u

t1
1

O
u

t1
2

O
u

t1
3

O
u

t1
4

O
u

t1
5

O
u

t1
6 LeadingSort

D
a

ta

se
l_

N
g

se
l_

N
re

f

O
u

t1

O
u

t2

O
u

t3

O
u

t4

O
u

t5

O
u

t6

O
u

t7

O
u

t8

O
u

t9

O
u

t1
0

O
u

t1
1

O
u

t1
2

O
u

t1
3

O
u

t1
4

O
u

t1
5

O
u

t1
6

L
a

g
_

e
n

d

L
a

g
_

o
u

tLaggingWindow

O
u

t1

O
u

t2

O
u

t3

O
u

t4

O
u

t5

O
u

t6

O
u

t7

O
u

t8

O
u

t9

O
u

t1
0

O
u

t1
1

O
u

t1
2

O
u

t1
3

O
u

t1
4

O
u

t1
5

O
u

t1
6LaggingSort

se
l

d
0

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

d
9

d
1

0

d
1

1

d
1

2

d
1

3

d
1

4

d
1

5

se
l

d
0

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

d
9

d
1

0

d
1

1

d
1

2

d
1

3

d
1

4

d
1

5

d qz-1

Cell
Under
Test

a b
a

 -
 b

z-1

a b
a

 +
 b

a b
a

 -
 b

z-1

a b
a

 +
 b

5
N_ref

4
sel_i

3
sel_k

2
N_guard

1
Data

Fig. 6. CFAR processor hardware architecture.

 In

sel_k
 In

sel_i

 In

sel_OS_CA

 In

sel_Nref

 In

sel_Nguard

 In

sel_CA_SO_GO

 In

sel_Alpha

 Out

Th

sel

d0

d1

Y(1)

Y(2)

sel

Z

OS

a

b
a b

Mult

 Out

Decision

In
1

O
ut

1

O
ut

2 DDC

In
1

In
2

O
ut

1 Compressor

a

b
a > b

Comparator

 Out

CUT

Data

N_guard

sel_k

sel_i

N_ref

CUT

Y(1)

Y(2)

Y1

Y2

CFAR

Y1

Y2

sel

selNref

Z

CA

 In

ADC

System
Generator

Fig. 7. CFAR processor applied to a pulse compression radar system.

RADIOENGINEERING, VOL. 23, NO. 1, APRIL 2014 79

Sorting method
Ref. cells

amount (2n)
Slices count
(max. 3,758)

Speed [MHz]
(max. 350)

Process. time
[clock cycles]

Throughput
[MSps]

Efficiency
[Mbps/Slice]

8 165 189.7 3 63.2 6.08

16 276 182.9 5 36.6 2.08

Iterative,

fully comb. CSEs

32 514 181.6 9 20.2 0.64

8 168 343 5 68.6 6.56

16 281 326.1 9 36.2 2.08

Iterative,

pipelined CSEs

32 527 315.7 17 18.6 0.56

8 144 317.4 1 317.4 35.30

16 355 299.6 1 299.6 13.44

Even-odd

sorting network

32 983 283 1 283 4.64

Tab. 1. Resources utilization for a Xilinx’s Spartan-6 XC6SLX25 FPGA device.

4. Application to a Pulse-Compression
Radar System
The achievable combinations of PD and PFA are de-

termined by signal and interference statistic, especially the
signal-to-interference ratio. When multiple targets are
present in the radar scope, additional considerations of
resolution and side lobes arise in evaluating detection per-
formance. For example, if two targets cannot be resolved
by radar, they will be registered as a single object. If side
lobes are high, the echo from one strongly reflecting target
may mask the echo from a nearby but weaker target, so that
again only one target is registered when two are present.
Resolution and side lobes in range are determined by the
radar waveform. In ground surveillance pulse-Doppler
radar systems, range-Doppler processing is usually applied.
It means that detection is accomplished in several Doppler
channels. In Doppler channels close to zero, ground clutter
is a dominant part of interference. In higher Doppler chan-
nels, thermal noise and self-clutter are prevailing.

The proposed radar processor architecture has digital
down converter (DDC), compression filter and CFAR
processor, Fig. 7. First two blocks are described in [26] and
[27]. The architecture was modeled using the VHDL and
Xilinx’s System Generator™. The behavioral VHDL de-
scription of this design is placed and routed on a Spartan 6
device by the ISE™ 14.7 tool. Currently, the whole project
is on XC6SLX25 device. Beside the main part described in
the previous section which calculates Y1, Y2, Y(1) and Y(2),
CFAR processor has parts for CFAR method selection, Z
statistic computing and threshold computing multiplying Z
and α. Architecture is on-line reconfigurable by control
inputs sel_Nguard, sel_k, sel_i, sel_Nref, sel_CA_OS,
sel_CA_SO_GO and sel_Alpha. The default configuration
of the CFAR processor uses 16-bit for data, 32 reference
cells and 8 guard cells and k-th and i-th rank-order sample
equals 12 (3/4 of leading/lagging register length). The
value used for scaling factor was α = 2.

5. Results and Discussion
Proposed architectures are compared in terms of

hardware resources, throughput and efficiency. The
throughput is defined as a number of processed samples
(CUTs) per second, whereby samples are 16 bits wide. The
throughput was calculated using (6), whereas the efficiency
with (7).

cycles Clock time Clock

Sample
Throughput

1 , (6)

slicesofNumber

Throughput
Efficiency . (7)

The first proposed architecture (with iterative even-
odd sorter) produces an output result on each data clock
cycle after the latency period. The latency period is pro-
portional to the number of reference cells, and the number
of the guard cells around the CUT. The latency arises at the
start of processing since the pipeline or shift register must
be full in order to output a result. System clock must be
n/2+1 (fully combinatory version) apropos n+1 (pipelined
version) times higher than incoming data clock, so the
sorting operation can be done in n/2+1 apropos n+1clock
cycle.

The second proposed architecture (with even-odd
sorting network) produces an output result on each system
clock cycle after the latency period. Once the data stream
starts, after 2n+2m+1+Nsort clock cycles, the CFAR archi-
tecture produces a valid output each clock cycle. So data
processing time in this case equals one clock cycle.

The architecture was synthesized for a Xilinx’s
XC6SLX25 Spartan 6 FPGA device using different num-
ber of reference cells. Tab. 1 summarizes the results in
terms of FPGA hardware resources utilization including
four guard cells at each side of the CUT and excluding
DDC and compressor. All these three configurations use
16-bit to represent input data.

80 S. SIMIĆ, M. ANDRIĆ, B. ZRNIĆ, AN FPGA BASED IMPLEMENTATION OF A CFAR PROCESSOR APLIED TO …

With a greater configuration of the CFAR detector of
16-bits of data, 32 reference cells and 8 guard cells, the
first architecture, with non-pipelined CSEs stages in sort-
ing windows, achieved a throughput of 20.2 MSps, with
a clock frequency of 181.6 MHz, 514 used slices and 9
clock cycles resulting in efficiency of 0.64 Mbps/Slice on
XC6SLX25 device. Adding pipeline registers between
even and odd CSE stages in the second architecture re-
duced critical path resulting in speed increasing to
315.7 MHz. Nevertheless, in this version sorting operation
is lengthened to 17 sorting clock cycles, so there is no
significant changes in achieved throughput (18.6 MSps)
and efficiency (0.56 MSps/Slice). The third architecture,
with full parallel sorting networks, produces results in each
clock cycle, so achieved throughput is an order of magni-
tude increased (283 MSps). On the other hand, architecture
is implemented using 983 slices resulting in efficiency of
4.64 Mbps/Slice.

Hence, the first two versions are suitable when in-
coming data clock is several times less than sorting clock
because of lower space occupancy. In this case it is of
order 20 MSps (at 2n = 32) which is sufficient if signal
bandwidth is smaller than 20 MHz, i.e. radar range resolu-
tion is not less than 7.5 m. In the state of the art HRR ra-
dars (High Resolution Range) where the radar range reso-
lution is below 1 m, signal bandwidth is order of hundreds
MHz, throughput is order of hundreds MSps, so the third
CFAR architecture is the only option. Implemented on this
low cost platform, this hardware design achieves through-
put of 283 MSamples/s (at 2n = 32) which is sufficient if
signal bandwidth is smaller than 283 MHz, i.e. radar range
resolution is not less than 0.53 m.

To validate the results of the proposed CFAR proces-
sor, the experimentally generated data were passed through
the pulse compressor and six selected variants of the CFAR
algorithm. Input data, i.e. uncompressed radar video signal,
were obtained from a waveform generator. It is a typical
choice using long pulses in radars which has small trans-
mitting power, e.g. ground surveillance portable radars
[25]. In order to achieve resolution of order tens to hundred
meters, bandwidth of order MHz is used. In this case we
use chirp signal with duration T = 100 μs and bandwidth
B = 1 MHz. Signal is sampled at frequency of 1 MHz, so
TB = 100 samples per pulse are obtained and compressor
has 100 complex coefficients. CFAR input data, i.e. range
profiles were obtained from the output of the radar com-
pressor. The results from the output of the CFAR processor
(default configuration) are sent to DAC and shown on
digital scope. Fig. 8 shows the resulting threshold calcu-
lated by the linear (Fig. 8(a)) and nonlinear (Fig. 8(b))
CFAR detectors implemented in hardware using as input
the radar receiver range profile when single target is pre-
sent. It is a typical situation in pulse compression radars in
higher Doppler channels when a strong target is in radar
scope. Sharp main lobe at zero time represents this target.
Side-lobes at the output of radar compression filter, often
named as ‘self clutter’, are dominant part of interference.
Side-lobes near the main and side-lobes at the edge (far

side-lobes) are emphasized, so they can be considered as
regions of clutter transitions. At first glance, there are not
significant differences among the thresholds in the middle
side-lobes region. In the near side-lobes region, linear
techniques, CA and CA-GO, overvalue self-clutter, while
both smallest-of techniques, CA-SO and OS-SO, under-
value it. In the far side-lobes region, all techniques under-
value the greatest side-lobe occurring false alarms. Con-
clude OS-CA CFAR exerts the best agreement in shape
with self clutter. As problem with far side-lobes exists in
all these CFAR processors, some kind of side-lobes shap-
ing should be applied in the receiver. Mismatching the
receiver is commonly technique [27].

To compare the results of the implemented CFAR
processor to the theoretical, the six selected variants of the
CFAR algorithm were modeled in software using
MATLAB® and compared to the measured data at the
output of the proposed hardware design. The results are
similar for all processors. There are small differences be-
tween the thresholds calculated in software and hardware
caused primarily by ADC and DAC. As an example, the
comparison between real and theoretical thresholds when
OS-CA CFAR is applied is shown in Fig. 9. Measured and
simulated data manifest high similarity in shape. Differ-
ence is made by presence of noise in measured data. It can
be caused by filter imperfection in DAC board. A modified
configuration of CFAR with 2n = 8 reference cells and
2m = 0 guard cells is used. It is clear that this configuration
valuate far side-lobes quite better than default one, so there
is no false alarms.

Fig. 10 clarifies the way we obtain Fig. 8 and Fig. 9.
There is the radar receiver range profile and threshold
calculated by CFAR processor on the oscilloscope screen.
Control pins from Fig. 6 are changed choosing CFARs one
by one. Obtained data from the scope are stored on per-
sonal computer and reproduced by MATLAB®.

6. Conclusion
A hardware design that implements a CFAR proces-

sor using higher-level blocks and system-level hardware
design tools, actually Xilinx’s System Generator™ for
Matlab Simulink™, is presented. The availability of such
varied libraries of functions and the blank canvas of the
FPGA brings great power to even the smallest design team.
They no longer have to rely on internal experts in certain
areas, allowing them to concentrate on the overall design.

Hence, thanks to the upgrade of low cost FPGA tech-
nology and hardware design tools, we designed one gener-
alized CFAR processor for various types of CFAR
methods instead of several specialized ones.

The system has been implemented on a Spartan6
FPGA by Xilinx achieving real-time execution times and
minimum levels of error between the ideal results and the
real ones obtained from the hardware implementation. The
hardware resources utilization and speed has been analyzed

RADIOENGINEERING, VOL. 23, NO. 1, APRIL 2014 81

-100 -50 0 50 100
0

0.5

1

1.5

2

2.5

time, s

am
pl

itu
de

,
V

data

CA-CA
CA-SO

CA-GO

(a)

-100 -50 0 50 100
0

0.5

1

1.5

2

2.5

time, s

am
pl

itu
de

,
V

data

OS-CA
OS-SO

OS-GO

(b)

Fig. 8. Radar receiver range profile and thresholds calculated by the (a) linear and (b) nonlinear CFAR detector implemented in hardware.

-100 -50 0 50 100
0

0.2

0.4

0.6

0.8

1

time, s

am
pl

itu
de

,
V

sim. OS-CA

sim. data

meas. OS-CA

meas. data

Fig. 9. Measured and simulated data when OS-CA CFAR with 2n = 8 reference cells and 2m = 0 guard cells is applied.

82 S. SIMIĆ, M. ANDRIĆ, B. ZRNIĆ, AN FPGA BASED IMPLEMENTATION OF A CFAR PROCESSOR APLIED TO …

Fig. 10. Radar receiver range profile and threshold on the

oscilloscope screen.

modifying the number of the used reference cells. The
results show that this module can be successfully used in
the development of high performance multi-mode radar/
sonar systems as a part of radar signal processor in chip.

The design exploration is performed for the CA and
OS CFAR techniques to satisfy high-resolution target de-
tection, with range resolution of 0.53 m when 32 reference
cells and 8 guard cells are used. Proposed hardware design
has the advantages of being simple and fast with a low
development cost. Also, the performance of the prototype
hardware setup proved the concept of the design within
a reasonable design time.

References

[1] SKOLNIK, M. I. Introduction to Radar Systems. 3rd ed. New
York: McGraw-Hill, 2001.

[2] GANDHI, P. P., KASSAM, S. A. Analysis of CFAR processors in
nonhomogeneous background. IEEE Transactions on Aerospace
and Electronic Systems, 1988, vol. 24, no. 4, p. 608 - 621.

[3] FINN, H. M., JOHNSON, R. S. Adaptive detection mode with
threshold control as a function of spatially sampled clutter-level
estimates. RCA Review, 1968, vol. 29, p. 414 - 464.

[4] HANSEN, G. V., SAWYERS, J. H. Detectability loss due to
greatest-of selection in a cell averaging CFAR. IEEE Transactions
on Aerospace and Electronic Systems, 1980, vol. 16, no. 1,
p. 115 - 118.

[5] WEISS, M. Analysis of some modified cell-averaging CFAR
processors in multiple-target situations. IEEE Transactions on
Aerospace and Electronic Systems, 1982, vol. 18, no. 1, p. 102 to
114.

[6] ROHLING, H. Radar CFAR thresholding in clutter and multiple
target situations. IEEE Transactions on Aerospace and Electronic
Systems, 1983, vol. 19, no. 4, p. 608 - 621.

[7] ELIAS-FUSTE, A. R, GARCÍA, G. M., REYES-DAVO, E.
Analysis of some modified order statistic CFAR: OSGO and
OSSO CFAR. IEEE Transactions on Aerospace and Electronic
Systems, 1990, vol. 26, no.1, p. 197 - 202.

[8] YOU, H. Performance of some generalised modified order
statistics CFAR detectors with automatic censoring technique in
multiple target situations. IEE Proceedings - Radar, Sonar and
Navigation, 1994, vol. 141, no. 4, p. 205 - 212.

[9] RICKARD, J. T., DILLARD, G. M. Adaptive detection algorithms
for multiple target situations. IEEE Transactions on Aerospace
and Electronic Systems, 1977, vol. 13, no. 4, p. 338 - 343.

[10] NITZBERG, S. Clutter map CFAR analysis. IEEE Transactions on
Aerospace and Electronic Systems, 1986, vol. 22, no. 4, p. 419 to
421.

[11] ELIAS-FUSTE, A. R., BROQUETAS-IBARS, A., ANTEQUERA,
J. P., YUSTE, J. C. M. CFAR data fusion center with
inhomogeneous receivers. IEEE Transactions on Aerospace and
Electronic Systems, 1992, vol. 28, no. 1, p. 276 - 285.

[12] UNER, M. K., VARSHNEY, P. K. Distributed CFAR detection in
homogeneous and nonhomogeneous backgrounds. IEEE
Transactions on Aerospace and Electronic Systems, 1996, vol. 32,
no. 1, p. 84 - 97.

[13] BARKAT, M., VARSHNEY, P. K. Decentralized CFAR signal
detection. IEEE Transactions on Aerospace and Electronic
Systems, 1989, vol. 25, no. 2, p. 141 - 149.

[14] MEZIANI, H. A., SOLTANI, F. Decentralized fuzzy CFAR
detectors in homogenous Pearson clutter background. Signal
Processing, 2011, vol. 91, no. 11, p. 2530–2540.

[15] IVKOVIĆ, D., ANDRIĆ, M., ZRNIĆ, B. A new model of CFAR
detector. Frequenz (accepted for publication Oct. 24, 2013.)
[Online] Cited 2014-01-31. DOI: 10.1515/freq-2013-0087

[16] HWANG, J. N., RITCHEY, J. A. Systolic architectures for radar
CFAR detectors. IEEE Transactions on Signal Processing, 1991,
vol. 39, no.10, p. 2286 - 2295.

[17] HAN, D. S. VLSI architectures for CFAR based on order statistic.
Signal Processing, 1997, vol. 62, no. 1, p. 73 - 86.

[18] BEHAR, V. P., KABAKCHIEV, C. A., DOUKOVSKA, L. A.
Adaptive CFAR PI processor for radar target detection in pulse
jamming. Journal of VLSI Signal Processing, 2000, vol. 26, no. 3,
p. 383 - 396.

[19] TORRES, C., CUMPLIDO, R., LOPEZ, S. Design and implemen-
tation of a CFAR processor for target detection, In Proceedings of
the 14th International Conference on Field Programmable Logic,
FPL04. Lectures Notes on Computer Science, 2004, vol. 3203,
p. 943 – 947.

[20] MAGAZ, B., BENCHEIKH, M. L. An efficient FPGA
implementation of the OS-CFAR processor. In Proceedings of the
9nd International Radar Symposium. Wroclaw (Poland), 2008,
p. 1 - 4.

[21] PEREZ-ANDRADE, R., CUMPLIDO, R., FEREGRINO-URIBE,
C., DEL-CAMPO, F. M. A versatile hardware architecture for a
constant false alarm rate processor based on a linear insertion
sorter. Digital Signal Processing, 2010, vol. 20, no. 6, p. 1733 to
1747.

[22] DJEMAL, R., BELWAFI, K., KAANICHE, W., ALSHEBEILI,
S.A. A novel hardware/software embedded system based on
automatic censored detection for radar systems. International
Journal of Electronics and Communications (AEÜ), 2013, vol. 67,
no. 4, p. 301 - 312.

[23] BENSEDDIK, H. E., HAMADOUCHE, M., KHOUAS, A. FPGA-
based real-time implementation of distributed system CA-CFAR
and clutter MAP-CFAR with noncoherent integration for radar
detection. In Proceedings of the 2nd International Symposium on
Modeling and Implementation of Complex Systems. Constantine
(Algeria), 2012, p. 61 - 67.

[24] MARTINEZ, J., CUMPLIDO, R., FEREGRINO, C. An FPGA-
based parallel sorting architecture for the Burrows Wheeler
transform. In Proceedings of the 2005 International Conference on
Reconfigurable Computing and FPGAs, ReConFig 2005. Puebla
City (Mexico), Sept. 2005. DOI: 10.1109/RECONFIG.2005.9

RADIOENGINEERING, VOL. 23, NO. 1, APRIL 2014 83

[25] SIMIĆ, S., ZEJAK, A. J., GOLUBIČIĆ, Z. Range sidelobe reduc-
tion in the portable battlefield surveillance radar. In Proc. of the
10th Internat. Conf. on Telecommunications in Modern Satellite,
Cable and Broadcasting Services. Niš (Serbia), 2011, p. 571–574.

[26] GOLUBIČIĆ, Z., SIMIĆ, S., ZEJAK, A. J. Design and FPGA
implementation of digital pulse compression for band-pass radar
signals. Journal of Electrical Engineering, 2013, vol. 64, no. 3,
p. 191–195.

[27] SIMIĆ, S., ZEJAK, A. J., GOLUBIČIĆ, Z. Hardware implementa-
tion of DIRLS mismatched compressor applied to a pulse-Doppler
radar system. Microprocessors and Microsystems, 2013, vol. 37,
no. 4-5, p. 381–393.

About Authors …
Slobodan SIMIĆ was born in 1976. He received his B.Sc.
in Electrical Engineering from the Military Technical
Academy of Belgrade (Sep. 2000), M.Sc. degree from the
Faculty of Electrical Engineering, University of Belgrade
(2006), Ph.D. degree from the Faculty of Technical Sci-
ences, University of Novi Sad (2013). He is a Teaching
Assistant at the Department of Electronic Systems, Military
Academy, University of Defense in Belgrade. His research
interests include digital signal processing and digital de-
sign. He published over 40 papers in national and interna-
tional conferences proceedings and journals.

Milenko ANDRIĆ was born in Pljevlja in 1972, Monte-
negro. He received the B.Sc. degree in Electronics Engi-
neering from the Military Technical Academy, Serbia in
1995. He received M.Sc. and Ph.D. in Electrical Engi-
neering in 2001 and 2006, respectively. Currently, he is an
associate professor at the Department of Military Elec-
tronics Engineering and he also works as a scientific
researcher at the Electronic Systems Laboratory, Military
Academy in Belgrade. His main research interests are in
the fields of stochastically process in telecommunication
and radar engineering, pattern recognition, methods for
signals analysis and digital signal processing. He has pub-
lished more than 50 papers in national and international
conferences and journals.

Bojan ZRNIĆ graduated in 1992 on the Military Techni-
cal Academy in Belgrade with B.Sc. degree in Electrical
Engineering. He received M.Sc. and Ph.D. in Electrical
Engineering in 1998 and 2001, respectively. Currently, he
is a Head of the Defense Technology Department in Ser-
bian MOD. He is also visiting professor at the Serbian
Military Academy on the radar and EW subjects. His
research work includes radar signals and systems. He
published over 70 papers in national and international con-
ferences proceedings and journals.

