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Abstract. The multipath effect creates a highly correlated
interference; subsequently, small aperture array antennas
equipped in mobile devices are required to effectively can-
cel this coherent interference. Spatial smoothing MMSE is
a typical coherent interference cancellation algorithm; how-
ever, this method further reduces the small aperture size
as well as the number of coherent interferences to cancel
out. This paper proposes a new method to reject coher-
ent interferences without a reduction in the antenna aper-
ture size. We show the superiority of the proposed algorithm
through a comparison of cancellation performance with ex-
isting adaptive beamforming algorithms.
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1. Introduction
Mobile communication technology has developed ex-

tensively due to its popularity [1]-[4]. This popularity has
increased the usage of personal communication devises that
require a small aperture antenna (array antenna with small
numbers of elements)[5],[6]. Space-time coding (a success-
ful mobile communication technology) provides multiple-
input multiple-output (MIMO) systems to increase chan-
nel capacity and spectral efficiency without additional band-
width and power consumption [7],[8]. There is significant
interest in array antennas that represent a promising scheme
to improve the Signal to Interference Ratio (SIR) through
the cancellation of interference signals in the received sig-
nal. Schemes to combined MIMO-smart antenna systems
have been proposed. An overview of this technique is pre-
sented in [9]. In [10], it is shown that the scheme of MIMO
wireless systems that incorporate a beamforming method
before a space-time decoder can effectively mitigate CCI
and preserve the space-time structure. [10] and [11] pro-
posed an adaptive antenna array method to suppress the CCI
in the trellis STC OFDM system. In addition, it has been
shown that beamforming technology incorporated into the

IEEE802.11ac standard can improve system performance,
where the IEEE 802.11ac is a newly released WLAN stan-
dard [12], [13].

In general mobile communication environments, the
received signal frequently develops from multipath environ-
ments. In such an environment, one component in the re-
ceived signal becomes a scaled and delayed replica of the
other; subsequently, multipath propagation creates a coher-
ent interference [14], [15]. Therefore, the correlation be-
tween the two signals significantly increases if one is coher-
ent to the other.

Many methods have been developed to cancel interfer-
ence signals in received signals [16]. Most of the developed
methods assume an uncorrelated interference; in addition,
the beamforming output SIR severely deteriorates if these
methods are applied to a received signal with a coherent in-
terference. Evans et al. proposed a spatial smoothing algo-
rithm (a representative method) to cancel the coherent inter-
ferences [17]; in addition, Kailath et al. analyzed the theo-
retical performance of the spatial smoothing algorithm [18].

The spatial smoothing method subdivides the whole ar-
ray into overlapping subarrays that reduce the effective array
elements (i.e. reducing the aperture size). An array antenna
can cancel out up to N-1 interference signals, where N is
the number of elements in the array. Spatial smoothing re-
duces the number of interferences to be canceled in the array
antenna. This disadvantage becomes a serious problem in
a small aperture array; however, it is minimal in a large aper-
ture array.

Lo et al. produced unique research results in nonlin-
ear beamforming based on linear beamforming [19]. The
expected merits of the nonlinear beamforming are:

1. It is effective to estimate signals in different types of
noise backgrounds, such as Gaussian, non-Gaussian, or
colored noise.

2. It is robust to resolve multiple coherent signals.

3. It is capable of resolving signals separated by less than
an antenna beamwidth.

4. It has very low sidelobes.
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Item 3 of the summaries indicates that the nonlinear
beamforming resolves multiple coherent signals by creating
proper beams for every coherent signal, respectively. These
results were for a fixed beamformer (not an adaptive beam-
former) and there were no results for the interference can-
cellation [19]; however, it did indicate how to reject coher-
ent interference signals. Recently, support vector machine
(SVM) based nonlinear beamforming algorithms have been
studied with results that indicate the interference rejection in
the steering mismatch [20]-[23].

This paper proposes a nonlinear beamformer to can-
cel coherent interference signals using an Extreme Learning
Machine (ELM). ELM is a newly developed single-hidden-
layer feed forward network (SLFN). ELM applies random
generated nodes in the hidden layer that may be independent
of the training data [24]. The hidden layer of single layer
network need not be tuned; consequently, it is popular for
its fast training speed [24]-[26]. ELM also uses various non-
linear activation functions. These features show that ELM
can be a nonlinear beamformer that can be trained as a lin-
ear beamformer. In addition, ELM can be applied to various
types of beamformers because ELM can be implemented for
both batch type and sequential type [24]-[28].

For the performance evaluation, we simulate four dif-
ferent scenarios. 1) All interferences are uncorrelated. 2) An
interference signal is correlated with a desired signal by the
multipath effect. 3) Interferences are time-varying as well
as correlated. 4) Receiver moves under interference signal
environments. In the simulation, we compare the proposed
algorithm with the conventional Minimum Mean Square Er-
ror (MMSE), spatial smoothing MMSE for coherent interfer-
ence cancellation and Radial Basis Function (RBF) network.
From the simulation results, we confirm that the proposed
algorithm can cancel interference in a small aperture array
antenna without a reduction of the effective array elements
(unlike the spatial smoothing method) and with less compu-
tational complexity.

2. Review of the Extreme Learning
Machine (ELM) Algorithm

Fig. 1. ELM structure.

In this section, we review the ELM in [24] and [27].
Fig. 1 shows the typical structure of ELM. Given a series of
arbitrary training samples (x(i),t(i) ), i = 1,2, . . . ,N, where
x(i)∈ Rp and t(i)∈ R1, the actual outputs of a single-hidden-
layer feedforward network (SLFN) with activation function
gc(x) for these N training data is given by [24],[27]:

Ñ

∑
k=1

βkgc(wk ·xi +bk) = ti, i = 1, · · · ,N (1)

where column vector wk ∈ Rp is the input weight vector con-
necting the input layer neurons to the k-th hidden neuron,
βk ∈ R1 is the output weight vector connecting the k-th hid-
den neuron and the output neuron, and bk ∈ R1 is the bias of
the k-th hidden neuron. wk· xi denotes the inner product of
the column vectors wk and xi. The above N equations can be
written compactly as:

Hβ = T. (2)

In practical applications the number Ñ of the hidden
neurons is usually much less than the number N of training
samples and Hβ=T, where:

H(w1, · · · ,wÑ ,x1, · · · ,xÑ ,b1, · · · ,bÑ)

=

 gc(w1 ·x1 +b1) · · · gc(wÑ ·x1 +bÑ)
...

. . .
...

gc(w1 ·xN +b1) · · · gc(wÑ ·xN +bÑ)

 , (3)

β =

 β1
...
βÑ

 and T =

 t1
...
tN

 . (4)

Matrix H is called the hidden layer output matrix. For the
fixed input weights wi and the hidden layer biases bi, we can
obtain the least squares solution β̂ of the linear system Hβ=T
with the minimum norm of the output weights β̂ (which usu-
ally tend to have a good generalization performance) from
the results as analyzed by Huang et al. [24]. The resulting β̂

is given by:
β̂ = H+T (5)

where H+ is the Moore–Penrose generalized inverse of ma-
trix H. The three steps in the ELM algorithm can be summa-
rized as follows:

ELM Algorithm: Given a training set N = {(x(i) , t(i))|
x(i) ∈ Rp, t(i) ∈ R1, i = 1, . . . ,N}, activation function gc(x),
and hidden neuron number Ñ:

1. Randomly choose the input weight wk and the bias bk,
k = 1, ..., Ñ.

2. Calculate the hidden layer output matrix H.

3. Calculate the output weight β̂ using (5).

The ELM algorithm is a batch type algorithm. Se-
quential ELM algorithms also have been developed [27]-
[30]. Therefore, we can easily select a proper algorithm
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type dependent on the application. For example, in the time-
invariant cases, the batched type ELM algorithm was se-
lected and a sequential ELM algorithm can be selected in
time-varying cases. In addition, [27] described the distri-
bution for random generation in step (1) as follows: Given
any small positive value ε > 0 and activation function g(x):
R→ R which is infinitely differentiable in any interval, there
exists L ≤ N such that for N arbitrary distinct input vectors
{xi|xi ∈ Rn, i = 1, · · · ,L}, for any {(ai,bi)}L

i=1 randomly gen-
erated according to any continuous probability distribution∥∥HN×ÑβL×1−DN×1

∥∥< ε with probability one [27].

3. Signal Model
Considering a uniform linear array of N sensors with

element spacing of one half the carrier frequency wave-
length, the beamforming snapshot x(n) consists of a desired
signal from direction θs, q undesired (interference) signals
from directions {θ1, θ2,· · ·,θq} and additive white noise, that
is

x(n) = ss(n)a(θs)+
q

∑
k=1

sk(n)a(θk)+n(n)

= xs(n)+ xi(n) (6)

where sk(n) = pke j(ω0n+θk) and ss(n) = pse j(ω0n+θ0) are the
k-th random interference waveforms and the signal wave-
form respectively; in addition, the steering vectors a(θ) can
be modeled as plane waves.

a(θ) = [exp( jl1ξ),exp( jl2ξ), · · · ,exp( jlNξ)]T (7)

where, ξ = (2π/λ)sinθ, λ is the wavelength, li is the coor-
dinate of the i-th sensor, and T denotes the transpose. We
can divide the snapshot into the desired signal xs(t) and the
undesired interference signal xi(t). The complex adaptive
beamformer output with the weight vector w(n)at time n can
then be expressed as

y(n) = w(n)Hx(n) (8)

where (·)Hstands for Hermitian transpose.

If the impinging signals are coherent (i.e., the relative
phases are fixed) then we have

x(n) = ss(n)a(θs)+
q

∑
k=1

sk(n)a(θk)+n(n)

=

(
a(θs)+

q

∑
k=1

γka(θk)

)
ss(n)+n(n) (9)

where the {γi} are the fixed complex constants, γi =(
pi
/

ps

)
e j(θi−θs), i = 1 · · ·q.

4. ELM (Extreme Learning Machine)
based Coherent Interference Can-
celler
We must first digest two conventional linear adaptive

array algorithms before introducing the proposed algorithm.
Section 4.1 summarizes the minimum mean square error
(MMSE) beamformer that minimizes the mean square er-
ror between the beamformer output and a given desired re-
sponse. Section 4.2 summarizes the spatial smoothing algo-
rithm. This algorithm is a typical linear adaptive algorithm
to cancel out coherent interferences. Section 4.3 describes
the proposed algorithm. ELM was applied to the beamform-
ing algorithm.

4.1 MMSE Beamforming

Fig. 2. MMSE beamforming.

The complex weights for each element of the array can
be minimized for the Mean Square Error (MSE) of the dif-
ference between the array output and the reference signal.
The obtained weights are not necessarily those that maxi-
mize the beam pattern in the direction of the desired user.
This adaptive beamforming is an approximation of optimum
beamforming.

The performance criteria minimizes the Mean Square
Error between the received and the transmitted signals;
therefore, the cost function to be minimized is given as
[16],[31]

J = E
(
|d(n)− y(n)|2

)
(10)

where E[.] denotes the ensemble average. Substituting for
the output of the beamformer as y(n) = wHx(n) and taking
of the gradient of the cost function and setting it to zero, we
get:

∇J =−2rxd +2Rxxw = 0 (11)

where Rxx = E
(
x(n)xH(n)

)
is the M × M correlation ma-

trix of the input signal x(n). In adiition, rxd = E (x(n)d∗(n))
is the cross-correlation vector between the sensor inputs and
the desired signal d(n). Solving (11) gives the expression for
the optimum weights for MMSE as [16],[31]

w = R−1
xx rxd . (12)
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4.2 Spatial Smoothing Method
The conventional MMSE in Section 4.1 fails in a co-

herent interference environment when the signals from un-
desired directions are strongly correlated. A spatial smooth-
ing (averaging) technique may be applied to improve the co-
variance matrix estimate [17],[18]. For this technique, the
original antenna array is subdivided into overlapping subar-
rays with a reduced aperture and the spatial covariance ma-
trix estimate is obtained by averaging the spatial subarray
covariance matrices.

Fig. 3. Spatial smoothing for coherent environment.

Mathematically the spatial smoothing process can be
represented as

Rx =
1

N−M+1

N−M+1

∑
i=1

Rx (n)i (13)

where Rx (n)i = xi(n)xi(i)H is the subarray spatial covari-
ance matrix, M number of elements in a subarray and xi(n)=
[xi(n),xi+1(n), ...,xi+M−1(n)]T is the signal vector received
by the i-th subarray.

rxd =
1

N−M+1

N−M+1

∑
i=1

rxd (n)i, (14)

where rxd(n)i = xi(n)d∗(n).

4.3 Proposed ELM based Beamforming
Fig. 4 shows that ELM can be applied to the interfer-

ence canceller. The concept is quite similar to the MMSE
beamforming in Fig. 2. In Section 2, we reviewed that train-
ing an ELM is only to find the weight parameter β̂ since the
input weights and the hidden layer bias were randomly cho-
sen in the first step of learning. It satisfies∣∣∣Hβ̂−D

∣∣∣= min
β

|Hβ−D| (15)

where | · | is the Euclidean norm. D = [d(1), · · · ,d(N)]T , and
AT is the transposition of matrix A. Equation (10) is equiva-
lent to minimize the cost function as follows:

J =
N

∑
n=1

(d(n)− y(n))2 =
N

∑
j=1

(
d( j)−

Ñ

∑
i=1

βig(wi ·x j +bi)

)2

.

(16)

The above equation can be written in the vector form as

J = (Hβ−D)T (Hβ−D) . (17)

Section 2 showed that the least square estimate of β to mini-
mize the cost function in (17) can be written as

β̂ =
(
HT H

)−1 HT D. (18)

As we mentioned in Section 2, the parameter β̂ in (18) can
also be derived sequentially using the sequential ELM algo-
rithms in [27]-[30].

Fig. 4. Proposed ELM based interference canceller.

5. Simulation Results
In this section, computer simulations demonstrated the

performance of the proposed beamformer. The received sig-
nals in all simulation examples were generated based on the
model described in Section 2. We assume a uniform lin-
ear array with 4 elements with half-wavelength spacing. We
used 8 hidden neurons and the activation function used in
this simulation was a fully complex-valued activation func-
tion, the sech() response characteristic was similar to the
Gaussian characteristics [32],[33]. The activation function
used is provided in (19).

fi(x) = sech
(
vT

i (x− ci)
)

(19)

where vi, the complex-valued scaling factor of the i-th neu-
ron and ci, the center of the i-th neuron. For the cancella-
tion performance comparison, we compared MMSE, spatial
smoothing based MMSE and RBF (Radial Basis Function)
with the proposed algorithm. Each sub-array had 3 array el-
ements in the spatial smoothing based MMSE.

In this simulation, we considered a data frame of 1 ms
duration, structured with training period and payload period
(see Fig. 5). The symbol rate is 1.28 Msymbol/sec. We as-
sume the sampling rate is the same as the symbol rate. The
training period consisted of 128 symbols. We set the train-
ing signal cos0.4πn, where 0.4π is normalized frequency
as 2π f/ fs and fs means sampling frequency. We set the
payload symbols with randomly generated QPSK signals.
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Fig. 5. Data frame structure in this simulation.

In 1 msec intervals, beamformer is trained for 0.1 msec
(128 symbols). After training, the trained beamformer is
used to receive the following payload symbols. The gener-
ated QPSK is ±1± j. Fig. 6 shows the reference constella-
tion diagram. We can evaluate the quality of the retrieved
signal based on the constellation diagram in Fig. 6. All
the simulations are carried out in the MATLAB 6.5 environ-
ment running on an ordinary PC with 3.2 GHz AMD CPU.
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In−Phase

Fig. 6. Constellation of the generated QPSK signal.

5.1 Determine the Number of Hidden Neurons
For the activation function, the centers ci are randomly

selected from the range [-1 1]. It is usually used in ELM
based research [25],[24],[26],[27]. It is reasonable in the re-
ceiving beamformer because the received signal exists in the
limited range due to the preamplifier in the receiver. The
complex-valued scaling factor is also selected for the uni-
form distribution. The following simulations that determine
the number of hidden neurons selects the range. In addi-
tion, we should predetermine the number of hidden neurons
by simulations because there is no analytical solution for the
optimal number of hidden neurons in ELM [24].

For the simulation, we have a training signal cos0.4πn
arriving at 0◦ and one interfering signal which correlated to
the training signal 0.9cos(0.4πn+ 0.005π) arriving at -60◦.
In this simulation, we set different ranges, such as 10, 1, 0.1
and 0.01, of the uniform distribution for the complex-valued
scaling factor. Fig. 7 shows SINR improvement comparison
with the different hidden number of neurons and the different
range of the scaling factor: (a) case of range of the scaling
factor 10 (b) case of range of the scaling factor 1 (c) case of
range of the scaling factor 0.1 (d) case of range of the scaling
factor 0.01.

We use the SINR improvement for the performance
evaluation. The SINR improvement means the difference
between the output SINR and the input SINR. Therefore,
a larger SINR results in a superior interference cancellation.
Fig. 7 shows the results of the SINR improvement depending
on the different uniform distribution ranges for the scaling
factor generation; in addition, Fig. 7 shows the confidence

interval for each number of hidden neurons. The SINR im-
provement performance increases as the range of uniform
distribution decreases; however, performance results of less
than 0.1 are almost the same. In this simulation, we select
6 hidden numbers and generate the scaling factor in the uni-
form distribution, [-0.01, 0.01].
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(a) Case of range of the scaling factor 10
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(b) Case of range of the scaling factor 1
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(c) Case of range of the scaling factor 0.1
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(d) Case of range of the scaling factor 0.01

Fig. 7. SINR improvement comparison with the different hidden
number of neurons and the different range of the scaling
factor.

5.2 Non Correlated Interference Case
In this case, we have a reference signal arriving at 0◦

and two interfering signals arriving at -60◦ and -30◦. Each
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signal has the same length with the reference signal. The in-
terferences are generated by a white Gaussian noise genera-
tor for the non-correlated interference. All signal to interfer-
ence ratios (SIRs) are set to 0 dB, respectively (see Fig. 8).
Fig. 8 shows that all beamforming methods cancel out the
interference successfully. The constellation results in Fig. 9
show that all methods retrieve symbols in the payload part
successfully. In addition, we add another non-correlated in-
terference arriving at 50◦. The interference is also generated
by a white Gaussian noise generator. The SIR sets to 0 dB.
Fig. 10 shows the cancellation result. In Fig. 10, the spatial
smoothing method fails in cancellation because the effective
aperture size is reduced to 3 by smoothing so that 3 antenna
elements can cancel up to 2 interferences. However, the pro-
posed algorithm (as well as the conventional MMSE algo-
rithm) still rejects the interference.
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(a) MMSE method
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(b) Spatial smoothing method
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(c) RBF based method
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(d) Proposed ELM based method

Fig. 8. Interference canceling results for 2 non-correlated inter-
ferences case.

The constellation results in Fig. 11 also show that all
methods (except for the spatial smoothing method) retrieve
symbols in the payload part successfully. Fig. 8 and Fig. 10
show that RBF can cancel the interference effectively. RBF
needs more computation complexity for training because
RBF should train centers, scaling factors of activation func-
tions and weighting coefficients between hidden neurons and
output; however, the proposed ELM based algorithm trains
only weighting coefficients between the hidden neurons and
output. Tab. 1 and Tab. 2 summarize the SINR improve-
ment results and the computation complexities for training.
In order to compare the complexity of each algorithm, we
use one of MATLAB commands, flops, to return the cumu-
lative number of floating-point operations and the results are
contained in the tables.
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(d) Proposed ELM based method

Fig. 9. Constellation results for 2 non-correlated interferences
case.
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(a) MMSE method
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(b) Spatial smoothing method
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(c) RBF based method
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(d) Proposed ELM based method

Fig. 10. Interference canceling results for 3 non-correlated in-
terferences case.

Algorithm SINR improve-
ment [dB]

Training Com-
plexity [flops1)]

The proposed al-
gorithm

104.9 347322.22

RBF 106.9 12737201.23
MMSE 135.2 12168.30
MMSE with
spatial smooth-
ing

110.9 16224.40

1) Flops has been measured in MATLAB using
flops command.

Tab. 1. SINR improvement results and computation complexity
for 2 non-correlated interferences case.
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Fig. 11. Constellation results for 3 non-correlated interferences
case.

Algorithm SINR improve-
ment [dB]

Training Com-
plexity [flops]

The proposed al-
gorithm

104.1 348524.03

RBF 105.0 13026836.72
MMSE 135.3 8412.65
MMSE with
spatial smooth-
ing

NA -

NA: The method fails to cancel interferences.

Tab. 2. SINR improvement results and computation complexity
for 3 non-correlated interferences case.
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(a) MMSE method
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(b) Spatial smoothing method
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(c) RBF based method
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(d) Proposed ELM based method

Fig. 12. Interference canceling results for one correlated inter-
ference and one un-correlated interference case.

5.3 Multi-Path Training Signal Case
In this experiment, we simulated the multipath effect

in the training signal. Through this experiment, we simu-
lated the correlated interference effect. For this case, we
have a reference signal arriving at 0◦ of which training
part is cos(0.4πn)and two interfering signals, one of which
correlated with the training signal in the reference signal,
0.9cos(0.4πn+0.005π), arriving at -60◦. The other interfer-
ence is a non-correlated one. The arrival angle is 30◦ and its
SIR is set to 0 dB. Fig. 12 shows that all beamforming meth-
ods except for MMSE method cancel out the interference
successfully. The constellation results in Fig. 14 show that
all methods except for the MMSE method retrieve symbols
in the payload part successfully.
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Fig. 13. Constellation results for one correlated interference and
one un-correlated interference case.

In addition, we add another non-correlated interference
arriving at 50◦. The interference is also generated by a white
Gaussian noise generator. The SIR is set to 0 dB. Fig. 15
shows that only the proposed method cancels out the inter-
ference successfully. That means the proposed algorithm can
utilize full array aperture unlike spatial smoothing method.

In addition, we add another non-correlated interference
arriving at 50◦. The interference is also generated by a white
Gaussian noise generator. The SIR is set to 0 dB. Fig. 15
shows that only the proposed method and RBF cancel out
the interference successfully. We can confirm this by the
constellation results in Fig. 16, which also show that the pro-
posed method and RBF cancel retrieve symbols in the pay-
load part successfully. The results in RBF was expected in
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(d) Proposed ELM based method

Fig. 14. Constellation results for one correlated interference and
one un-correlated interference case.

Algorithm SINR improve-
ment [dB]

Training Com-
plexity [flops]

The proposed al-
gorithm

74.1 349725.84

RBF 74.5 12862189.16
MMSE NA -
MMSE with
spatial smooth-
ing

108.6 11567.39

NA: The method fails to cancel interferences.

Tab. 3. SINR improvement results and computation complexity
for one correlated interference and one un-correlated in-
terference case.

[19]; however, RBF requires more computation complexity
in Tab. 3 and Tab. 4. Tab. 3 and Tab. 4 summarize the SINR
improvement results and the required training complexity.
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(b) Spatial smoothing method
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(c) RBF based method
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(d) Proposed ELM based method

Fig. 15. Interference canceling results for one correlated inter-
ference and two un-correlated interferences case.

Algorithm SINR improve-
ment [dB]

Training Com-
plexity [flops]

The proposed al-
gorithm

75.4 358438.94

RBF 75.5 12960286.65
MMSE NA -
MMSE with
spatial smooth-
ing

NA -

NA: The method fails to cancel interferences.

Tab. 4. SINR improvement results and computation complexity
for one correlated interference and two un-correlated in-
terferences case.

The results in this section confirm that the proposed algo-
rithm is the most suitable as a correlated interference can-
celler for a small aperture array antenna.
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(d) Proposed ELM based method

Fig. 16. Constellation results for one correlated interference and
two un-correlated interferences case.

5.4 Time-Varying Inferences Case
This experiment simulated the time-varying interfer-

ence effect. We have a reference signal arriving at 0◦ and
three interfering signals are non-correlated with the refer-
ence signal. In the first case, we consider three uncorrelated
interferences: two fixed interferences arriving at -60◦ and
30◦ as well as a time-varying interference of which the arriv-
ing angle is 50◦ and then abruptly changes from 50◦ to 60◦ at
65th time step. We set to update the array weight at every 32
time steps in order to handle the time-varying interferences.
This update was similar to the conventional Sample Matrix
Inversion (SMI) based adaptive beamformer [16]. Fig. 17
shows that all the algorithms except for the spatial smooth-
ing algorithm cancel out the interference successfully. The
reason why the spatial smoothing algorithm fails is that the
effective element number is reduced from 4 to 3 by spatial
smoothing. An array with 3 elements can resolve only two
interferences.

In the second case, we make one interference ar-
riving at -60◦ correlated with the reference signal as

0.9cos(0.4πn+ 0.005π). The other arriving angle scenario
is identical to the first case. Fig. 18 shows that only the pro-
posed method cancels out the interference successfully.

5.5 Moving Receiver Case
This experiment simulated the moving receiver case.

In this case we assumed a receiver moving in 60 km/h
(≈ 16.7 m/sec). The signal specifications for the reference
and three interferences are identical to the experiment in Sec-
tion 5.3; in addition, we set the positions of each signals as
in Fig. 19. In the training period, we also update the array
weight at every 32 time steps as in Section 5.3. After the
training, the beamformer is fixed during the payload interval
as in Fig. 5. In order to show the moving effect, we compared
the SINR improvements at the payload start point with those
at the payload end point. We can confirm that the moving
effect can be handled by the time interval between the train-
ing and the next training. Table 5 summarizes the SINR im-
provement changes. Table 5 also shows that there is small
change in SINR improvement even in the moving receiver
case. This result comes from the data structure in Fig. 5, in
which the training period is 1 msec. SINR improvement re-
sults for the moving receiver can change depending on the
training period.

Algorithm SINR improve-
ment at the start
of payload

SINR improve-
ment at the end
of payload

The proposed al-
gorithm

60.55 dB 54.04 dB

RBF 60.83 dB 54.29 dB
MMSE NA NA
MMSE with
spatial smooth-
ing

NA NA

NA: The method fails to cancel interferences.

Tab. 5. SINR improvement variation results for moving receiver
case.

6. Conclusion
This paper presented an ELM based coherent interfer-

ence cancellation algorithm for a small aperture array an-
tenna. We compared the proposed algorithm with a con-
ventional MMSE algorithm, a spatial smoothing algorithm
(famous for its coherent interference canceling ability) and
RBF (typical nonlinear beamforming algorithm) for an
SINR improvement comparison. The comparison showed
a good advantage for the proposed algorithm. The advan-
tage of the proposed method is that it uses a full aperture size
in the antenna versus the spatial smoothing algorithm that
uses only a reduced aperture size. The proposed algorithm
maximizes the number of coherent interferences to cancel
out, while the spatial smoothing algorithm reduces the num-
ber. In addition, the proposed algorithm requires substan-
tially less computation complexity than RBF. This feature
holds significant promise for a small aperture array antenna
in a modern mobile communication device.
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(a) MMSE method before angle change
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(b) MMSE method after angle change
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(c) Spatial smoothing method before angle
change
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(d) Spatial smoothing method after angle
change
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(e) RBF based method before angle change

−90 −60 −30 0 30 60 90
−70

−60

−50

−40

−30

−20

−10

0

Angle [Deg]

B
ea

m
 R

es
po

ns
e 

[d
B

]

(f) RBF based method after angle change
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(g) Proposed ELM based method before angle
change
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(h) Proposed ELM based method after angle
change

Fig. 17. Time-varying interference canceling results for three non-correlated interferences case.
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(a) MMSE method before angle change
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(b) MMSE method after angle change
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(c) Spatial smoothing method before angle
change
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(d) Spatial smoothing method after angle
change
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(e) RBF based method before angle change
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(f) RBF based method after angle change
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(g) Proposed ELM based method before angle
change
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(h) Proposed ELM based method after angle
change

Fig. 18. Time-varying interference canceling results for two un-correlated interferences and one correlated interference case.
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Fig. 19. Receiver and interferences scenario for moving receiver
case.
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