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Abstract. Using several spatially separated receivers, 
nowadays positioning techniques, which are implemented 
to determine the location of the transmitter, are often re-
quired for several important disciplines such as military, 
security, medical, and commercial applications. In this 
study, localization is carried out by particle swarm optimi-
zation using time difference of arrival. In order to increase 
the positioning accuracy, time difference of arrival aver-
aging based two new methods are proposed. Results are 
compared with classical algorithms and Cramer-Rao lower 
bound which is the theoretical limit of the estimation error. 
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1. Introduction 
Many changes and new requirements have been made 

in people’s lives to keep up with the technological im-
provements. One of the important requirements we en-
counter mostly is a necessity for localization like vehicle 
navigation systems or location based services. Source posi-
tion can be determined by using characteristic properties of 
the transmitter signal. Currently there are many localization 
techniques whose accuracy, complexity, and hardware 
requirements are quite diverse. Received signal strength 
(RSS) method which requires the signal strength and atten-
uation of the medium is one of them [1]–[4]. Another tech-
nique, which uses the direction of arrival, has been pub-
lished in several studies [5]–[7], where receivers need to be 
equipped with suitable antenna arrays. The time of arrival 
that utilizes the incident time of the received signal to lo-
calize the target is the most accurate and reliable method 
[8]–[10]. Using time differences at the receiver side 
an effective technique time difference of arrival (TDOA) is 
proposed [11]–[14]. This method is preferable for passive 
radar systems due to its nature which does not require any 
prior knowledge of the emitter signal and high localization 
accuracy. If any of either transmitter or receiver is mobile, 
in this case, the position of the source can be determined in 

frequency domain by using the frequency differences at the 
receiver side [15]–[17]. In order to increase the accuracy, 
different techniques can be combined and named as hybrid 
methods which have already taken their place in literature 
[18]–[20]. 

Using TDOA based algorithms, to localize the trans-
mitter, time differences need to be obtained. Several tech-
niques were proposed in literature for different cases, in 
particular, when the incident signals are emerged through 
line of sight, non-line of sight, and multipath medium  
[21]–[23]. After the time difference estimation processes, 
the target can be positioned using various algorithms such 
as nonlinear least square (NLS), maximum likelihood 
(ML), linear least square (LLS), or weighted linear least 
square (WLLS) [24]–[26]. Because of its invaluable prop-
erties such as simplicity, convergence speed, accuracy, and 
less immunity to local minima; particle swarm optimization 
(PSO), is an appropriate solution for different optimization 
problems [27]–[29]. In this manner, PSO is selected as 
an efficient estimator for source localization [30]–[33]. 

Time difference of arrival averaging (TDOAA) was 
presented by Ralph O. Schmidt for three receivers in 1972 
and generalized in 1996 [34], [35]. The method claims that 
the sum of the range differences in a closed loop must be 
zero in the absence of measurement noise. Applying the 
TDOAA technique on the estimated time differences, 
measurement noise decreases, therefore the positioning 
accuracy increases. TDOAA can also be used with differ-
ent algorithms to reduce the estimation error. In this con-
cept, RSS and TDOAA are combined and this combination 
offers an error correction method [36], [37]. In the case of 
known noise covariance, considering the receivers position, 
the system performance could be improved [38]. In our 
study, PSO was combined with TDOAA and a significant 
decrement in positioning error was obtained. Consequently, 
results are compared to the Cramer-Rao lower bound 
(CRLB) which provides the theoretical limit for the 
estimation error.   

The paper is structured as follows. In Section 2, how 
to localize the emitter using time differences and imple-
mentation of the TDOAA are explained. In Section 3, the 
theoretical error limit of any unbiased estimators is ana-
lyzed mathematically. TDOA based algorithms are pre-
sented in Section 4. In Section 5, the proposed methods are 
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introduced. Finally in Section 6, we give the results and 
show the performance improvements of TDOAA based 
techniques. The conclusions are summarized in Section 7. 

2. Source Localization using TDOA 
Considering a single transmitter based positioning 

system, we need to discuss some details with respect to the 
number of receivers. It is well known that at least two syn-
chronized receivers must be used in two dimensional posi-
tioning systems to obtain one TDOA and one hyperbolic 
line of position (LOP). For this scenario the emitter can be 
at any point on the defined LOP. In the case of three re-
ceives, the transmitter is generally located at a unique point 
obtaining three time differences and LOPs. However, to get 
rid of the possibility of two target points for one source, the 
number of receivers should be increased.  

Assuming four receivers positioning systems, as seen 
in Fig. 1, the number of time differences is calculated using 
(1), where N and M are the number of receivers and time 
differences respectively. Here, six time differences occur as 
12, 13, 14, 23, 24, and 34. If the propagation speed is 
known, these time differences can be calculated using (2) 
and (3). 

 , (1) 

 , (2) 

 ∆ ,					1 	 . (3) 

Here,  is the exact time difference of arrival, c is the prop-
agation speed, li is the distance between ith receiver and 
transmitter, (x, y) are the emitter coordinates and (xi, yi) are 
the coordinates of the ith receiver. As a result, the target 
can be positioned using N - 1 (independent/spherical set) or 
M (full set) time differences. In this study, we used the full 
set to increase the localization accuracy. 

 
Fig. 1. Four receivers positioning system. 

Applying the averaging method to the estimated time 
differences, the measurement error decreases and then the 
positioning accuracy increases. In this algorithm, time 
differences are assumed vectors as shown in Fig. 2. 

 
Fig. 2. TDOA vectors for four receivers positioning system 

There are some simple rules for the implementation of the 
technique which are given in (4)–(6).  

 ∆ 0, (4) 

 ∆ ∆ , (5) 

 ∆ ∆ ∆ . (6) 

Here i, j, and, k are receiver indexes. The mathematical 
expression of the method can be summarized as given 
below. 

∆ ∆ ∑ ∆ ∆ ∆, , 1  , (7) 

 ∆ ∆ . (8) 

Here, ∆ shows the estimated time difference, ∆ denotes the 
averaged TDOA, and n is the estimation error. Assuming 
four receivers, (7) and (8) can be turned into matrix form to 
obtain the averaged time differences as given in (9) and 
(10).  
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where C is M×M coefficient matrix which is obtained in 
[39] using a simple graph traversal algorithm. 

3. Cramer-Rao Lower Bound 
The CRLB is a lower bound on the variance of any 

unbiased estimator. For the time differences based locali-
zation techniques, CRLB is defined in [40] as given in (11). 

  (11) 

where  is the inverse of the Fisher information matrix, Gt 
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is the Taylor coefficient matrix, Q is the TDOA covariance 
matrix, (.)T and (.)-1 indicates the matrix transpose and 
inverse respectively. Considering two dimensional plane 
and N receivers, Gt can be calculated as given in (12) and 
(13). 

 
⋮

				

				

⋮
				

 (12) 

If the noise power spectral densities are similar at receivers, 
the coefficients of the TDOA covariance matrix may be 
assigned to 1.0 and 0.5 for diagonal terms and others 
respectively [40]. 

 
1.0 … 0.5
⋮ ⋱ ⋮
0.5 … 1.0

 (13) 

In (13)  is the variance of the TDOA noise.  is calcu-
lated using equations (11)–(13) and then the sum of the 
diagonal terms gives the CRLB. 

4. TDOA Based Source Localization 
Techniques 
TDOA based positioning algorithms can be divided 

into two groups, as nonlinear and linear. Nonlinear 
methods, such as NLS and ML localize the emitter directly 
by using the equations between the target and the receivers. 
Although the accuracy of these techniques are quite high, 
convergence to the global minimum cannot be guaranteed 
since the optimization cost functions are multimodal. On 
the other hand, considering the linear algorithms such as 
LLS and WLLS, the transmitter position is determined by 
linearizing the nonlinear equation. Therefore, their optimi-
zation cost functions are unimodal and obtaining the global 
solution is always guaranteed [41]. However, their accu-
racy is lower than the nonlinear methods due to the lineari-
zation effect. In this section the TDOA based positioning 
techniques are going to be summarized.  

NLS algorithm is a simple solution if the noise char-
acteristic is unknown. In NLS method, the least square 
based cost function is minimized and the emitter position is 
obtained using (14)–(18) [41]. 

 	 , (14) 

 2
∑ ∆

∑ ∆
, (15) 

 , (16) 

 , (17) 

 . (18) 

Here b indicates the iteration index,  is the estimated coor-
dinate vector of the target, µ is the step size,  is the 
cost function,  shows the gradient operator,  shows the 
distance between the estimated position of the source and 
the first receiver, and  shows the distance between esti-
mated position and ith receiver. In (14) the iterative proce-
dure of the steepest descent technique is given where  
indicates the estimated coordinates. In order to make the 
NLS method converged, the appropriate initialization 
values ( , 0) are needed. These values can be ob-
tained by the LLS algorithm.  

Assuming the noise distribution is known, ML 
method finds the transmitter location by maximizing the 
probability density function of the TDOA measurements 
[41]. If the TDOA noise is the zero-mean Gaussian 
distributed, then the target location can be determined 
using (19)–(23). 

 	 , (19) 

 	, (20) 

 	 , (21) 

 
∆

⋮
∆

	 (22) 

 

2 …
⋮ ⋱ ⋮

… 2
 (23) 

Here  is the cost function, e is the estimation error 
vector, and Q-1 is the inverse of the convergence matrix of 
the TDOA noise. When the stopping criterion is satisfied, 
the  gives the source coordinates. Like the NLS tech-
nique, the ML algorithm also needs the appropriate initiali-
zation values that can be obtained by the LLS method.  

In the LLS algorithm, the nonlinear equations formed 
according to the transmitter-receiver geometries, are trans-
lated into the linear equations. Then the emitter position is 
executed using only one step using (24)–(29). [41]. It 
should be noted that the estimated target coordinates using 
LLS can be assigned as the appropriate initialization values 
for NLS ( ), ML ( ), and WLLS (R1) techniques.   
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 	 , (27) 

 	 , (28) 

 	 . (29) 

In these equations, LLS is the solution vector, b is the 
square error vector, and R1 is the distance between the 
source and the first receiver.  

The WLLS method is a weighted version of the LLS 
algorithm, and can reach more accurate position estimates 
than LLS. However, in order to obtain the weight compu-
tation, the knowledge of the mean and convergence values 
of the linear equations errors are needed. Again, in this 
technique, the target location is estimated in one step using 
(30)–(33) [41]. 

 	 , (30) 

 

	
4diag ∆ ,⋯ , ∆

diag ∆ ,⋯ , ∆

 (31) 

 	 , (32) 

 	 . (33) 

Here, WLLS gives the solution vector and W is the 
weighting matrix. It is important to know that, to calculate 
the W matrix,   distance must be estimated using the 

LLS algorithm. 

5. Proposed Methods 
PSO is a robust stochastic optimization algorithm that 

is inspired by the behavior of birds flocking or fish 
schooling [42]. Being fast, less parameter necessity, and 
low probability of local minimum convergence property 
are some of the advantages of the technique. PSO com-
posed of particles which are individually the solution of the 
problem. Every particle has its own location and velocity 
vectors. The vector size depends on the number of the 
parameter of the problem. These vectors show the instanta-
neous position and velocity. 

 
																				 	

 (34) 

 . (35) 

The particle velocity is calculated as given in (34) 
where v is the velocity vector, x is the position vector and a 
is the particle index. The number of the iteration can be 
either predefined or dynamically changed according to the 
defined fitness function’s convergence. rand1 and rand2 are 
uniformly distributed random floating point numbers, 
which vary between zero to one and give the ability of 
moving to the particle around the problem space. While 
pbest is the best position vector for a particle that has been 
achieved so far, gbest is the best position vector for the 

whole swarm. c1 and c2 are learning factors selected be-
tween zero and four, generally two. If the c1/c2 rate in-
creases, the particle movement is determined by its own 
experience rather than swarm’s experience and vice versa. 
The next position is calculated as given in (35). When the 
stopping criterion is satisfied the gbest becomes the solu-
tion of the problem.  

Due to its unique capabilities in optimization, PSO is 
found as an attractive algorithm for positioning problems 
[30]–[33]. While an emitter location is determined by PSO, 
firstly, the particles are distributed arbitrary or in a specific 
order to the search space. Then the cost function is defined 
in regard to the localization technique. Consequently, gbest 
restores the estimated source position at the end of the 
iterations. In our work the fitness function is given in (39), 
at a two-dimensional plane. The intervals between distrib-
uted particles are kept the same.  

 ,					 1… , (36) 

 ,  (37) 

1… ,					 1…  , 

 ∆ , 1… , 1 , (38) 

 ∑ ∑ ∆ ∆ ,			 1…  . (39) 

In (36)–(39), Np is the number of the particle, xa and ya are 
the coordinate of the ath particle, lai is the distance between 
ath particle and ith receiver, aij is the time difference be-
tween ith and jth receivers depending on the position of the 
ath particle,	∆  is the estimated time difference between ith 
and jth receivers, f(xa) is the fitness function of the ath 
particle, and |.| indicates absolute value. 

In this study, PSO was combined with TDOAA and 
a significant reduction in positioning error is observed. As 
it is shown in Fig. 3, the averaging is applied on the esti-
mated time differences (∆) and therefore the averaged time 
differences (∆) are obtained. Then, the target is located by 
PSO using these time differences. Two new methods are 

∆

∆

avravr yx ˆ,ˆ hybhyb yx ˆ,ˆ
 

Fig. 3. Block diagram of the proposed algorithms. 

proposed here: The first one uses only averaged time dif-
ferences and is called as particle swarm optimization aver-
aged (PSOA). Differently in the second algorithm both 
estimated and averaged time differences are used and the 
algorithm is called as particle swarm optimization hybrid 
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(PSOH). In Fig. 3, ( ,  indicate the target position 
which is localized by PSOA. Similarly ,  show 
the emitter coordinates determined by PSOH. 

Assuming N receivers based system, there are M 
estimated and M averaged time differences. Therefore, 
from the perspective of computational complexity, PSOA 
is approximately the same as PSO. On the other hand, the 
PSOH technique covers both estimated and averaged time 
differences. For this reason, its computational complexity 
is higher than PSO and PSOA. 

6. Simulations and Results 
In this section, the proposed PSOA and PSOH 

methods are compared with PSO, classical techniques, and 
CRLB. Both arbitrary and circular distributed receivers 
have been taken into account. It is observed that the PSO 
based algorithms are exceeding the theoretical limit. 

6.1 Localization with Arbitrary Array 

In order to determine the source location, in this part, 
receivers are placed arbitrarily and the simulation parame-
ters are kept same with [40] to make a reliable comparison. 
The emitter coordinates are (x = 8, y = 22) and sensor posi-
tions are (0, 0; -5, 8; 4, 6; -2, 4; 7, 3; -7, 5; 2, 5; -4, 2; 3, 3; 
1, 8). The variance of the TDOA estimation error is set to 
0.001/c2 and mean square error (MSE) is averaged over 
100000 independent runs using (40). CRLB is obtained as 
given in (11)–(13). 

 . (40) 

Here E{.} indicates the expectation operator. In order to 
obtain the estimated time differences, correlated Gaussian 
noise with covariance matrix given by Q is added to the 
exact TDOAs [40]. The number of particles is selected as 
36. The maximum iteration number is determined as 1000, 
learning factors c1 and c2 are set to two, and the search 
space is limited to  –150 ≤ x ≤ 150, –150 ≤ y ≤ 150 for 
PSO. The step size (µ) is selected as 0.0001 and 0.0009  
for NLS and ML respectively. The maximum iteration 
number is 250 for both methods. While the estimated target 
position ( ) obtained by LLS algorithm is used as the ini-
tializing value ( ) for NLS and ML techniques, the (R1) is 
assigned as the initial value of the distance for the first 
receiver of the WLLS algorithm. After all particles are 
placed in the same interval within the search space as given 
in (41), (42), PSO, PSOA, PSOH, and classical methods 
start running under the same TDOA measurements. At the 
end of the simulation, the obtained results are given in 
Tab. 1. 

 50 %6 125,				 0…35, (41) 

 50 	/	6 125,			 0…35 (42) 

where (%) and (/) show the integer remainder and division 
respectively. 

Considering Tab. 1, the MSE of the PSO based algo-
rithms (PSO, PSOA, PSOH) is lower than the classical 
methods (NLS, ML, LLS, WLLS) [41] and CRLB [40]. 
The reason of this result is to utilize the independent set for 
CRLB and classical techniques, while PSO and variants 
use the full set. Because of the increased number of time 
differences, PSO’s knowledge about the source also 
increases. From the simulation results, it is also clearly 
seen that the proposed PSOA and PSOH algorithms reach 
approximately 15% and 17% lower MSE respectively com-
paring to the PSO.  
 

N 
Mean Square Error 

CRLB PSO PSOA PSOH NLS ML LLS WLLS 

  4 0.688 0.705 0.657 0.610 1.574 1.639 1.566 1.566 
  5 0.145 0.113 0.103 0.099 0.161 0.169 0.160 0.159 
  6 0.133 0.115 0.085 0.092 0.152 0.154 0.152 0.137 
  7 0.114 0.071 0.049 0.050 0.125 0.124 0.126 0.114 
  8 0.105 0.057 0.047 0.045 0.122 0.121 0.122 0.109 
  9 0.103 0.050 0.046 0.044 0.119 0.118 0.120 0.106 
10 0.094 0.056 0.052 0.051 0.119 0.107 0.121 0.096 

Tab. 1. Comparison of MSE for the PSO based techniques, 
classical methods, and theoretical limit; arbitrary array. 

6.2 Localization with Circular Array 

In the second part of this section, receivers are located 
circularly to estimate the target position. Here, the trans-
mitter location is (x = 61, y = -34) and the first receiver 
position is (x1 = 10, y1 = 0). Other receivers are located at 
equal intervals on a circle of radius 10. TDOA noise power 
is set to 0.0001/c2 and MSE is obtained from the average of 
100000 independent trails. Using the same parameters with 
the previous simulation, new results are given in Tab. 2. 

Comparing the previous results, we can easily realize 
the similarity. The performances of the PSO based tech-
niques are still higher than the classical algorithms and 
CRLB. Moreover, PSOA and PSOH reach 23% and 22% 
lower MSE comparing to PSO method.  
 

N 
Mean Square Error 

CRLB PSO PSOA PSOH NLS ML LLS WLLS 

  4 1.670 1.044 0.697 0.705 1.776 1.772 1.776 1.776 
  5 0.971 0.398 0.287 0.289 0.993 0.990 0.994 0.978 
  6 0.666 0.342 0.255 0.265 0.719 0.715 0.719 0.671 
  7 0.544 0.315 0.241 0.251 0.609 0.603 0.610 0.541 
  8 0.472 0.259 0.215 0.216 0.544 0.537 0.545 0.470 
  9 0.419 0.230 0.192 0.191 0.496 0.488 0.497 0.419 
10 0.377 0.208 0.176 0.174 0.459 0.449 0.460 0.376 

Tab. 2. Comparison of MSE for the PSO based algorithms, 
classical techniques, and theoretical limit; circular 
array. 

Finally, the number of time differences used by the 
PSO based algorithms, classical techniques, and the theo-
retical lower bound are given in Tab. 3. It is known that the 
more TDOAs are included in the method, the more com-
putational complexity but better positioning accuracy can 
be obtained. It is clear that the accuracy of the proposed 
algorithms is better than the classical methods. However, 
since the proposed techniques are based on the PSO, their 
computational complexities are higher than the classical 
methods [43].   
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N 
Mean Square Error 

CRLB PSO PSOA PSOH NLS ML LLS WLLS 

  4 3 6 6 12 3 3 3 3 
  5 4 10 10 20 4 4 4 4 
  6 5 15 15 30 5 5 5 5 
  7 6 21 21 42 6 6 6 6 
  8 7 28 28 56 7 7 7 7 
  9 8 36 36 72 8 8 8 8 
10 9 45 45 90 9 9 9 9 

Tab. 3. Comparison of number of TDOAs for the PSO based 
methods, classical algorithms, and theoretical limit. 

7. Conclusions 
In this study, a significant increase on the positioning 

accuracy is achieved by using PSO and TDOAA together. 
As an alternative to PSO on determining the emitter loca-
tion, the techniques PSOA that uses only averaged time 
differences and PSOH that uses both estimated and aver-
aged time differences are proposed. Their performances are 
compared with classical methods and the theoretical limit. 
Presented simulation results show that the positioning 
accuracy of PSO based algorithms is better than the classi-
cal estimators. MSE of the PSOA and PSOH algorithms are 
lower than 20% of the PSO. From the point of view of 
computational complexity, PSOA is approximately the 
same as PSO. Furthermore, the MSE of the proposed 
methods are lower than CRLB. 
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