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Abstract. The imbalance between accuracy and computa-
tional cost is a defect in track association. In response to 
the defect, the track association problem is transformed 
into an on-line clustering problem with constraints, and 
a novel track association algorithm is proposed based on 
Leader-Follower online clustering. In the algorithm, we 
take a track as a Leader or a Follower based on its type 
and make Followers and Leaders clustered, which greatly 
reduces the track pairs associated. In addition, the asso-
ciation relationships between Leaders and Followers are 
acquired by introducing a function of association degree, 
which is characterized by small computational cost and no 
requirements on the distribution of sensor data. The fused 
Leader-Follower forms a new Leader, which combines 
Leader generation and track fusion. When sensor tracks 
are updated, their Leaders will be changed and the other 
Leaders will be retained, by which the associated results 
obtain a good stability.  
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1. Introduction 
In distributed multi-sensor track fusion systems, track 

association is a core technique. The association accuracy 
would directly impact on the performance of the whole 
fusion system.  

Over the last few years, a lot of significant works on 
the track association problem have been done. In particu-
lar, many researches focused on the problem in challenging 
scenarios, such as overlapping coverage scenarios [1], 
cluttered environments [2,3] and scenarios with temporar-
ily undetectable targets [4]. Besides, scholars put forward 
many solutions to the track association problem under 
different conditions. These conditions are much closer to 
the real world, and the track association problem under 

these conditions becomes more complex. For instances, 
Maurer attempted to quantify the effect on associating two 
independently developed track sets with various types of 
information [5]. Chen et al. examined several track associa-
tion methods with different assumptions on the target dis-
tribution [6]. Panakkal et al. demonstrated an effective data 
association scheme for closely moving targets [7]. Ouyang 
et al. derived a modified cost function for the passive sen-
sor data association [8]. Sigalov et al. applied the cross 
entropy method and its recent MinxEnt variant to the 
multi-scan version of the data association problem and 
obtained state-of-the-art performance in the presence of 
misdetections, false alarms and unknown number of targets 
[9]. Han et al. applied the optimal Bayes joint decision and 
estimation to the track association in the presence of sensor 
bias [10].  

In addition, Kaplan et al. investigated different ver-
sions of the likelihood that more than two tracks repre-
sented the same target, and compared the performance of 
all likelihood versions [11]. Papageorgiou et al. derived 
a closed-form expression for computing “pure” track asso-
ciation likelihoods and presented an alternative formulation 
of the track association problem, which facilitated system-
level track ambiguity management [12]. Sathyan et al. 
proposed two new assignment-based association algo-
rithms, which improved tracking performance, while 
requiring considerably less computations [13]. Roy et al. 
emphasized nearest neighborhood approach for track asso-
ciation, which was carried out after the target motion 
analysis solution stabilized [14]. These works all contribute 
to the research of the track association problem. 

In multi-sensor environments, if there is only one tar-
get in the surveillance region, then track fusion mainly 
concerns how to obtain precise track state estimations of 
the target quickly. And if there are multiple targets in the 
surveillance region, track association is one of the most 
important problems in track fusion. Especially in dense 
target environments, if all the local tracks from different 
sensors are association-judged in pairs, the system burden 
will be heavy. The track association in dense target envi-
ronments has become a very challenging and significant 
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task. To solve the problem, a novel track association algo-
rithm is presented based on Leader-Follower on-line 
clustering in this paper. 

2. Track Management 
Track association involves two kinds of tracks: sys-

tem tracks and local tracks. 

When the local track of target t from sensor i is 
updated: 

(1) If the database of local tracks is empty or doesn’t 
include the local tracks from sensor i , write sensor i  and 
its local tracks into the database of local tracks. 

(2) If the database of local tracks includes the local 
tracks from sensor i, but doesn’t include the local track of 
target t, which means that sensor i  has detected a new 
target. Write the local track into the database of local tracks 
under sensor i. 

(3) If the database of local tracks includes the local 
track of target t from sensor i, which means that the state 
estimations of the local track is updated. Write the updated 
state estimations to the end of the local track. 

(4) If the database of system tracks is empty, then 
write all local tracks in the database of local tracks into the 
database of system tracks. 

(5) If the local track is judged to be unassociated with 
any system track, write the local track into the database of 
system tracks. 

(6) If the local track is judged to be associated with 
a system track, then fuse the local track with the system 
track, and write the fusion track as a new system track into 
the database of system tracks, and delete the original sys-
tem track from the database of system tracks. 

As time goes on, the local tracks in the database of lo-
cal tracks become more and more, but some local tracks 
will no longer be updated. So it is necessary to remove 
these local tracks from the database of local tracks. If all 
the original local tracks of a system track are deleted, then 
remove the system track from the database of system 
tracks. 

3. Track Association and Clustering 
In distributed multi-sensor track fusion systems, each 

sensor independently processes its local measurements and 
forms local tracks. The fusion center fuses the local tracks 
of the same targets and forms system tracks. In fact, track 
association is to divide the local tracks from different sen-
sors into different groups, so that the local tracks in the 
same group originate from the same target. Clustering is to 
classify samples into several categories, so that the samples 

in the same category have similar attributes. Both methods 
can be used in information classification.  

Through the above analysis, we can understand the 
track association problem from a new perspective. The 
local tracks from different sensors can be viewed as sam-
ples to be clustered, and the goal is to classify these sam-
ples into several categories according to their attributes. In 
this way, the track association problem is transformed into 
a clustering problem. 

However, for a certain sensor, its local tracks sent to 
the fusion center are from different targets, so the local 
tracks from the same sensor cannot belong to a category. 
Besides, one local track from a sensor is associated with 
one local track from another sensor at the most, so the track 
association problem can be viewed as a clustering problem 
with constrains. The task of track association is to cluster 
the local tracks from different sensors under the 
constraints. 

For the track association problem, neither the number 
of targets is known, nor all the track data is got before 
clustering, which make some clustering algorithms have 
some defects in solving the track association problem, such 
as unstable cluster structure. If the arrival of new sample 
results in a large reconfiguration of the cluster structure, 
then it will make the problem-solving become more com-
plex. This is due to some clustering algorithms use global 
standards. The new sample will affect all the cluster centers 
no matter how far the sample is from the cluster centers. So 
the Leader-Follower online clustering is adopted in this 
paper. 

4. The Track Association Algorithm 
Based on Leader-Follower On-line 
Clustering  
The track association algorithm is based on Leader-

Follower on-line clustering, abbreviated as Leader-Fol-
lower algorithm in the paper. 

In the algorithm, each system track is viewed as 
a Leader, and each local track is viewed as a Follower. 
Each track is a discrete sequence evolving over time, thus 
the Leader-Follower on-line clustering will be carried out 
among the state estimations at each time step. 

In the Leader-Follower algorithm, the similarity be-
tween the features of Leader-Follow at time k is acquired 
by an entropy function, whose value range is from 0 to 1. 
The smaller the value is, the smaller the similarity is. Then 
"min" operation takes the minimum in the entropy values 
of all the features. Namely, we choose the feature with the 
smallest similarity to reflect the association degree of the 
Leader-Follow at time k. If the smallest similarity is larger 
than the threshold we set, then the similarities of all the 
features will be larger than the threshold and the Leader-
Follow can be recognized to be associated at time k. 
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4.1 Algorithm Description 

Step 1. Initialization 

Assume that the set of Leaders consists of n system 
tracks, which are denoted as: 

 },,,{ 21 lnlll xxxx   .  (1) 

The state estimate vector xli at time k is denoted as: 

 nikrkrkrkx ipiili ,,2,1))(,),(),(()( T
21      (2) 

where riq (1  q  p) is the feature of the track, p is the 
number of the features. 

Assume that the set of Followers from sensor s 
consist of m local tracks, which are denoted as: 

 },,,{ 21 smsss xxxx   .  (3) 

The state estimate vector xsj  at time k is denoted as: 

 mjkrkrkrkx jpjjsj ,,2,1))(,),(),(()( T
21   . (4) 

Step 2. Calculate the association degrees between 
Followers and Leaders at time k 

Define the function of association degree. 
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By (5), the association degree of a Leader-Follower at 
time k is got. 

Step 3. Association judgment 

By (6), assign a Follower to the clustering which its 
nearest Leader represents: 

 ))((maxarg' kai ij
i

 , lni ,,2,1   .  (6) 

One Follower can be associated with one Leader at 
the most. And target location is a critical attribute in the 
association judgment. So if 'i  is not unique, the Leader 
with minimum distance from the Follower will be selected 
to cluster. 

If the above clustering is done once, the Na increases 
1. Judge K))(a(max kij

i
. If it is true, Qa increases 1. 

Otherwise, Qa remains unchanged. If Na equals N, Qa  is 
compared with Q. If Qa ≥ Q, then the Leader-Follower is 
associated. Otherwise, the Leader-Follower is 
unassociated. The association judgments are done between 
the Followers from sensor s and each Leader at time k. 

Here, K is a constant, which represents the threshold 
of association degree. Qa is the association quality of a 
Leader-Follower, which is a non-negative integer and its 
initial value is 0. If the association degree is larger than K, 

then Qa will increase 1, which indicates that the Leader-
Follower is associated at the time step. Otherwise Qa re-
mains unchanged, which indicates that the Follower is 
unassociated with any Leader at the time step. Na is the 
association step, which is a non-negative integer and its 
initial value is 0. When the association judgment is done 
once, its value increases 1. N is a constant, which repre-
sents the threshold of the association step. If Na > N, the 
association judgment is not done any more and Qa is com-
pared with Q. Q is a constant, which represents the thresh-
old of the association quality.  

Step 4. Ambiguity processing  

One Follower from a sensor can be associated with 
one Leader at the most. So if a Follower is judged to be 
associated with multiple Leaders, the ambiguity processing 
is needed. Choose the Leader-Follower with the maximum 
association quality as the associated track pair. If the maxi-
mum is not unique, choose the Leader-Follower with the 
minimum average distance as the associated track pair. 
After ambiguity processing, each Follower is associated 
with one Leader at the most. The ambiguity processing of 
Leaders can also be done by the above procedure. 

After track association, the associated Leader-
Follower will be fused.  

The global state estimation at k is: 
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The global error covariance at k is: 

 )())()()(()( 1 kPkPkPkPkP jjii
   (8) 

where xi(k) is the local state estimation and Pi(k) is the 
local error covariance of the track from sensor i at time k. 

In addition, if a Leader-Follower is judged to be asso-
ciated, a counter should be started. After a certain time, the 
Leader-Follower is separated, and the association judgment 
is done again. The aim is to prevent error associations from 
long-standing in the system.  

4.2 Theoretical Analysis 

In the surveillance region, suppose M sensors observe 
T targets. If there are no missing measurements, M×T local 
tracks will be got. After a correct track association, M×T  
local tracks are divided into T categories, each category 
consist of M local tracks from different sensors. 

If the local tracks from different sensors are supposed 
to be points and the association operations are viewed as 
edges, then the topology of the association in pairs among 
the local tracks from different sensors is shown in Fig. 1 
and the topology of the association using Leader-Follower 
algorithm is shown in Fig. 2. The node in the two figures 
represents the local track or the system track, and the local 
tracks are from different sensors. 
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Fig. 1.  Association in pairs among local tracks. 

 
Fig. 2.  Association using Leader-Follower algorithm. 

If the local tracks from different sensors are 
associated in pairs, then the association times Tll are: 

 222

2

)1(
T

MM
TCT Mll 


 .  (9) 

If the Leader-Follower algorithm is adopted, then the 
association times TLF are:  

 2)1( TMTLF  .  (10) 

Comparing the above two results, we can see if the 
number of sensors M is more than 2, then TLF < Tll. It 
means the Leader-Follower algorithm requires less associa-
tion times. And its superiority becomes more obvious as 
the number of sensors increases. In applications, a multi-
sensor system includes multiple sensors, i.e. M > 2, so the 
Leader-Follower algorithm can significantly reduce the 
association times. 

5. Experiments and Remarks 

5.1 Initial Setup 

In order to facilitate problem discussion, suppose all 
the state estimations sent to the fusion center are in the 
same coordinate system, all the sensors sample synchro-
nously, and the delay time of data transmission is 0.  

In the simulation, four sensors are designed to ob-
serve the targets at the same time. The targets run at a vari-
able speed in three-dimensional space. In order to validate 
the algorithm performance, the algorithm is simulated 100 
times with Monte Carlo method. The value range of K is 
approximately acquired by the normal approximation 
method. Then the value of K is fine-tuned by the simula-
tion experiments, and is determined as 0.92 at last. And 
take N = 12 and Q = 10. 

Three cases are set in the simulation. Case 1 is the 
sparse target environment in which 30 targets enter the 
surveillance space. Case 2 is the medium density target 
environment in which 60 targets enter the surveillance 
space. And Case 3 is the dense target environment in which 
120 targets enter the surveillance space. Fig. 3, Fig. 4 and 
Fig. 5 show the tracks with the target number 30, 60 and 
120 respectively. 
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Fig. 3.  30 target tracks. 
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Fig. 4.  60 target tracks. 
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Fig. 5.  120 target tracks. 

5.2 Experimental Results and Analysis 

The algorithm performance is evaluated in terms of 
the following indexes: the probability of correct association 
(Pca), the probability of missing association (Pma), the 
probability of correct separation (Pcs) , the probability of 
error association(Pea) and the association time. 

In order to define Pca, Pma, Pcs, and Pea, we take the 
following assumptions. In the process of a track associa-
tion, sensor 1 has A tracks and sensor 2 has B tracks, then 
there are A*B association track pairs. In them, Nc associa-
tion track pairs from the same targets. After association, N1 
pairs are correctly judged to be associated, N2 pairs are 
wrongly judged to be unassociated, and Nc = N1 + N2. Ns 
association track pairs from the different targets. After 
association, N3 pairs are correctly judged to be unassoci-
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ated, N4 pairs are wrongly judged to be associated, and 
Ns = N3 + N4. Nf association track pairs consist of an invalid 
track at least. After association, N5 pairs are correctly 
judged to be unassociated, N6 pairs are wrongly judged to 
be associated, and Nf = N5 + N6. A*B = Nc + Ns + Nf. Then 
Pca, Pma, Pcs, and Pea are defined as follow. 

Pca is the probability that the association track pairs 
from the same tracks is correctly judged to be associated, 
which is defined as: 

cca NNP /1                              (11) 

Pma is the probability that the association track pairs 
from the same tracks is wrongly judged to be unassociated, 
which is defined as: 

 cma NNP /2 .   (12) 

Pcs is the probability that the association track pairs 
from the different tracks is correctly judged to be unassoci-
ated, which is defined as: 

 )/()( 52 fscs NNNNP  .    (13) 

Pea is the probability that the association track pairs 
from the different tracks is wrongly judged to be associ-
ated, which is defined as: 

 )/()( 64 fsea NNNNP  .   (14) 

Tab. 1, Tab. 2 and Tab. 3 show the comparisons on 
the average Pca, Pma, Pcs, and Pea of 100 times simulation 
for associating all targets by WTA, FCM and Leader-Fol-
lower in Case 1, Case 2 and Case 3.  
 

Algorithm Pca  Pma  Pcs  Pea  
WTA 0.8831 0.1169 0.8239 0.1761 

FCM 0.9232 0.0768 0.9425 0.0575 

Leader-Follower 0.9201 0.0799 0.9366 0.0634 

Tab. 1.  The performance comparisons in Case 1. 
 

Algorithm Pca  Pma  Pcs  Pea  
WTA 0.7250 0.2750 0.7115 0.2885 

FCM 0.8436 0.1564 0.8573 0.1427 

Leader-Follower 0.8589 0.1411 0.9056 0.0944 

Tab. 2.  The performance comparisons in Case 2. 
 

Algorithm Pca  Pma  Pcs  Pea  
WTA 0.4869 0.5131 0.3234 0.6766 

FCM 0.7894 0.2106 0.8367 0.1633 

Leader-Follower 0.8036 0.1964 0.8850 0.1150 

Tab. 3.  The performance comparisons in Case 3. 

Tab. 4 shows the average time for associating all 
targets by WTA, FCM and Leader-Follower in Case 1, 
Case 2 and Case 3.  

We mainly focus on the algorithm performance in the 
dense target environment. The comparisons on the average 

Pca, Pma, Pcs, and Pea of 100 times simulation for associating 
all targets by WTA, FCM and Leader-Follower in Case 3 
are shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9 respectively.  
 

The average association time(s) 
Algorithm 

Case1 Case2 Case3 

WTA 1.3627 4.3183 14.5161 

FCM 7.6775 25.9536 100.1188 

Leader-Follower 4.2946 14.7320 55.7374 

Tab. 4.  The comparisons on association time. 
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Fig. 6.  The comparisons on Pca  in Case 3. 
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Fig. 7.  The comparisons on Pma  in Case 3. 
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Fig. 8.  The comparisons on Pcs  in Case 3. 
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Fig. 9.  The comparisons on Pea  in Case 3. 

Fig. 6 is the comparisons on the average Pca of 100 
times simulation for associating all targets by WTA, FCM 
and Leader-Follower in Case 3. In Fig. 6, the curve repre-
senting WTA is on the bottom, the curve representing 
FCM is in the middle, and the curve representing Leader-
Follower is at the top, which shows the average Pca of 
WTA is lowest, that of FCM is medium, and that of 
Leader-Follower is highest.  

Fig. 7 is the comparisons on the average Pma of 100 
times simulation for associating all targets by WTA, FCM 
and Leader-Follower in Case 3. In Fig. 7, the curve repre-
senting WTA is at the top, the curve representing FCM is 
in the middle, and the curve representing Leader-Follower 
is on the bottom, which shows the average Pma of WTA is 
highest, that of FCM is medium, and that of Leader-Fol-
lower is lowest.  

Fig. 8 is the comparisons on the average Pcs of 100 
times simulation for associating all targets by WTA, FCM 
and Leader-Follower in Case 3. In Fig. 8, the curve repre-
senting WTA is on the bottom, the curve representing 
FCM is in the middle, and the curve representing Leader-
Follower is at the top, which shows the average Pcs of 
WTA is lowest, that of FCM is medium, and that of 
Leader-Follower is highest.  

Fig. 9 is the comparisons on the average Pea of 100 
times simulation for associating all targets by WTA, FCM 
and Leader-Follower in Case 3. In Fig. 9, the curve repre-
senting WTA is at the top, the curve representing FCM is 
in the middle, and the curve representing Leader-Follower 
is on the bottom, which shows the average Pea of WTA is 
highest, that of FCM is medium, and that of Leader-Fol-
lower is lowest.  

From the simulation results, we find that in the dense 
target environment, the speed of WTA is fastest, but its 
association accuracy gradually declines as the time step 
increases. FCM has a higher association accuracy than 
WTA, but it pays out a heavy computational cost. WTA 
and FCM both have the serious imbalance between accu-
racy and computational cost. Compared with WTA and 
FCM, Leader-Follower algorithm acquires the highest 
association accuracy with an acceptable computational 
cost. 

6. Conclusion  
In the paper, the track association problem is trans-

formed into the on-line clustering problem with constraints, 
and the track association algorithm based on Leader-Fol-
lower online clustering is given. By doing association 
judgment between Leaders and Followers, the association 
times are reduced. Furthermore, by fusing the associated 
Leader-Follower to acquire a new Leader, fusion process 
and Leader generation is combined, which improved the 
efficiency of the fusion system. Simulation results show 
that in dense target environments, the algorithm balances 
the conflict between association accuracy and association 
speed.   
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