A Track Association Algorithm
Based on Leader-Follower On-line Clustering
in Dense Target Environments

Li XU1, Shuilin JIN2, Guisheng YIN1

1College of Computer Science and Technology, Harbin Engineering University, 150001 Harbin, China
2Dept. of Mathematics, Harbin Institute of Technology, 150001 Harbin, China
xuli@hrbeu.edu.cn, jinsl@hit.edu.cn, yinguisheng@hrbeu.edu.cn

Abstract. The imbalance between accuracy and computational cost is a defect in track association. In response to the defect, the track association problem is transformed into an on-line clustering problem with constraints, and a novel track association algorithm is proposed based on Leader-Follower online clustering. In the algorithm, we take a track as a Leader or a Follower based on its type and make Followers and Leaders clustered, which greatly reduces the track pairs associated. In addition, the association relationships between Leaders and Followers are acquired by introducing a function of association degree, which is characterized by small computational cost and no requirements on the distribution of sensor data. The fused Leader-Follower forms a new Leader, which combines Leader generation and track fusion. When sensor tracks are updated, their Leaders will be changed and the other Leaders will be retained, by which the associated results obtain a good stability.

Keywords
Track association, Leader-Follower on-line clustering, multi-sensor, multi-target.

1. Introduction

In distributed multi-sensor track fusion systems, track association is a core technique. The association accuracy would directly impact on the performance of the whole fusion system.

Over the last few years, a lot of significant works on the track association problem have been done. In particular, many researches focused on the problem in challenging scenarios, such as overlapping coverage scenarios \cite{1}, cluttered environments \cite{2,3} and scenarios with temporarily undetectable targets \cite{4}. Besides, scholars put forward many solutions to the track association problem under different conditions. These conditions are much closer to the real world, and the track association problem under these conditions becomes more complex. For instances, Maurer attempted to quantify the effect on associating two independently developed track sets with various types of information \cite{5}. Chen et al. examined several track association methods with different assumptions on the target distribution \cite{6}. Panakkal et al. demonstrated an effective data association scheme for closely moving targets \cite{7}. Ouyang et al. derived a modified cost function for the passive sensor data association \cite{8}. Sigalov et al. applied the cross entropy method and its recent MinxEnt variant to the multi-scan version of the data association problem and obtained state-of-the-art performance in the presence of misdetections, false alarms and unknown number of targets \cite{9}. Han et al. applied the optimal Bayes joint decision and estimation to the track association in the presence of sensor bias \cite{10}.

In addition, Kaplan et al. investigated different versions of the likelihood that more than two tracks represented the same target, and compared the performance of all likelihood versions \cite{11}. Papageorgiou et al. derived a closed-form expression for computing “pure” track association likelihoods and presented an alternative formulation of the track association problem, which facilitated system-level track ambiguity management \cite{12}. Sathyan et al. proposed two new assignment-based association algorithms, which improved tracking performance, while requiring considerably less computations \cite{13}. Roy et al. emphasized nearest neighborhood approach for track association, which was carried out after the target motion analysis solution stabilized \cite{14}. These works all contribute to the research of the track association problem.

In multi-sensor environments, if there is only one target in the surveillance region, then track fusion mainly concerns how to obtain precise track state estimations of the target quickly. And if there are multiple targets in the surveillance region, track association is one of the most important problems in track fusion. Especially in dense target environments, if all the local tracks from different sensors are association-judged in pairs, the system burden will be heavy. The track association in dense target environments has become a very challenging and significant
task. To solve the problem, a novel track association algorithm is presented based on Leader-Follower on-line clustering in this paper.

2. Track Management

Track association involves two kinds of tracks: system tracks and local tracks.

When the local track of target t from sensor i is updated:

1. If the database of local tracks is empty or doesn’t include the local tracks from sensor i, write sensor i and its local tracks into the database of local tracks.

2. If the database of local tracks includes the local tracks from sensor i, but doesn’t include the local track of target t, which means that sensor i has detected a new target. Write the local track into the database of local tracks under sensor i.

3. If the database of local tracks includes the local track of target t from sensor i, which means that the state estimations of the local track is updated. Write the updated state estimations to the end of the local track.

4. If the database of system tracks is empty, then write all local tracks in the database of local tracks into the database of system tracks.

5. If the local track is judged to be unassociated with any system track, write the local track into the database of system tracks.

6. If the local track is judged to be associated with a system track, then fuse the local track with the system track, and write the fusion track as a new system track into the database of system tracks, and delete the original system track from the database of system tracks.

As time goes on, the local tracks in the database of local tracks become more and more, but some local tracks will no longer be updated. So it is necessary to remove these local tracks from the database of local tracks. If all the original local tracks of a system track are deleted, then remove the system track from the database of system tracks.

3. Track Association and Clustering

In distributed multi-sensor track fusion systems, each sensor independently processes its local measurements and forms local tracks. The fusion center fuses the local tracks of the same targets and forms system tracks. In fact, track association is to divide the local tracks from different sensors into different groups, so that the local tracks in the same group originate from the same target. Clustering is to classify samples into several categories, so that the samples in the same category have similar attributes. Both methods can be used in information classification.

Through the above analysis, we can understand the track association problem from a new perspective. The local tracks from different sensors can be viewed as samples to be clustered, and the goal is to classify these samples into several categories according to their attributes. In this way, the track association problem is transformed into a clustering problem.

However, for a certain sensor, its local tracks sent to the fusion center are from different targets, so the local tracks from the same sensor cannot belong to a category. Besides, one local track from a sensor is associated with one local track from another sensor at the most, so the track association problem can be viewed as a clustering problem with constraints. The task of track association is to cluster the local tracks from different sensors under the constraints.

For the track association problem, neither the number of targets is known, nor all the track data is got before clustering, which make some clustering algorithms have some defects in solving the track association problem, such as unstable cluster structure. If the arrival of new sample results in a large reconfiguration of the cluster structure, then it will make the problem-solving become more complex. This is due to some clustering algorithms use global standards. The new sample will affect all the cluster centers no matter how far the sample is from the cluster centers. So the Leader-Follower online clustering is adopted in this paper.

4. The Track Association Algorithm Based on Leader-Follower On-line Clustering

The track association algorithm is based on Leader-Follower on-line clustering, abbreviated as Leader-Follower algorithm in the paper.

In the algorithm, each system track is viewed as a Leader, and each local track is viewed as a Follower. Each track is a discrete sequence evolving over time, thus the Leader-Follower on-line clustering will be carried out among the state estimations at each time step.

In the Leader-Follower algorithm, the similarity between the features of Leader-Follow at time k is acquired by an entropy function, whose value range is from 0 to 1. The smaller the value is, the smaller the similarity is. Then "min" operation takes the minimum in the entropy values of all the features. Namely, we choose the feature with the smallest similarity to reflect the association degree of the Leader-Follow at time k. If the smallest similarity is larger than the threshold we set, then the similarities of all the features will be larger than the threshold and the Leader-Follow can be recognized to be associated at time k.
4.1 Algorithm Description

Step 1. Initialization

Assume that the set of Leaders consists of \(n \) system tracks, which are denoted as:
\[
x_i = \{x_{i1}, x_{i2}, \cdots, x_{in}\}.
\]
(1)
The state estimate vector \(x_{i} \) at time \(k \) is denoted as:
\[
x_i(k) = (r_{i1}(k), r_{i2}(k), \cdots, r_{ip}(k))^T \quad i = 1, 2, \cdots, n
\]
(2)
where \(r_{iq} \) denotes the feature of the track, \(p \) is the number of the features.

Assume that the set of Followers from sensor \(s \) consist of \(m \) local tracks, which are denoted as:
\[
x_s = \{x_{s1}, x_{s2}, \cdots, x_{sm}\}.
\]
(3)
The state estimate vector \(x_j \) at time \(k \) is denoted as:
\[
x_j(k) = (r_{j1}(k), r_{j2}(k), \cdots, r_{jp}(k))^T \quad j = 1, 2, \cdots, m.
\]
(4)

Step 2. Calculate the association degrees between Followers and Leaders at time \(k \)

Define the function of association degree.
\[
a_j(k) = \min \left(\frac{-r_{jq}(k)}{r_{ij}(k) + r_{jq}(k)} \log \frac{r_{jq}(k)}{r_{ij}(k) + r_{jq}(k)} \right)\]
\[+ \frac{-r_{jq}(k)}{r_{ij}(k) + r_{jq}(k)} \log \frac{r_{jq}(k)}{r_{ij}(k) + r_{jq}(k)} \right)
\]
(5)
By (5), the association degree of a Leader-Follower at time \(k \) is got.

Step 3. Association judgment

By (6), assign a Follower to the clustering which its nearest Leader represents:
\[
i' = \arg \max_i (a_{ij}(k)) \quad i = 1, 2, \cdots, n_i.
\]
(6)
One Follower can be associated with one Leader at the most. And target location is a critical attribute in the association judgment. So if \(i' \) is not unique, the Leader with minimum distance from the Follower will be selected to cluster.

If the above clustering is done once, the \(N_\alpha \) increases 1. Judge \(\max_i (a_{ij}(k)) \geq K \). If it is true, \(Q_a \) increases 1. Otherwise, \(Q_a \) remains unchanged. If \(N_\alpha = N \), then \(Q_a \) is compared with \(Q \). If \(Q_a \geq Q \), the Leader-Follower is associated. Otherwise, the Leader-Follower is unassociated. The association judgments are done between the Followers from sensor \(s \) and each Leader at time \(k \).

Here, \(K \) is a constant, which represents the threshold of association degree. \(Q_a \) is the association quality of a Leader-Follower, which is a non-negative integer and its initial value is 0. If the association degree is larger than \(K \), then \(Q_a \) will increase 1, which indicates that the Leader-Follower is associated at the time step. Otherwise \(Q_a \) remains unchanged, which indicates that the Follower is unassociated with any Leader at the time step. \(N_\alpha \) is the association step, which is a non-negative integer and its initial value is 0. When the association judgment is done once, its value increases 1. \(N \) is a constant, which represents the threshold of the association step. If \(N_\alpha > N \), the association judgment is not done any more and \(Q_a \) is compared with \(Q \).

Step 4. Ambiguity processing

One Follower from a sensor can be associated with one Leader at the most. So if a Follower is judged to be associated with multiple Leaders, the ambiguity processing is needed. Choose the Leader-Follower with the maximum association quality as the associated track pair. If the maximum is not unique, choose the Leader-Follower with the minimum average distance as the associated track pair. After ambiguity processing, each Follower is associated with one Leader at the most. The ambiguity processing of Leaders can also be done by the procedure above.

After track association, the associated Leader-Follower will be fused.

The global state estimation at time \(k \) is:
\[
\tilde{x}(k) = P_j(k)(P_j(k) + P_j(k))^{-1} x_j(k)
\]
(7)

The global error covariance at time \(k \) is:
\[
P(k) = P_j(k)(P_j(k) + P_j(k))^{-1} P_j(k)
\]
(8)
where \(x_j(k) \) is the local state estimation and \(P(k) \) is the local error covariance of the track from sensor \(i \) at time \(k \).

In addition, if a Leader-Follower is judged to be associated, a counter should be started. After a certain time, the Leader-Follower is separated, and the association judgment is done again. The aim is to prevent error associations from standing in the system.

4.2 Theoretical Analysis

In the surveillance region, suppose \(M \) sensors observe \(T \) targets. If there are no missing measurements, \(M \times T \) local tracks will be got. After a correct track association, \(M \times T \) local tracks are divided into \(T \) categories, each category consist of \(M \) local tracks from different sensors.

If the local tracks from different sensors are supposed to be points and the association operations are viewed as edges, then the topology of the association in pairs among the local tracks from different sensors is shown in Fig. 1 and the topology of the association using Leader-Follower algorithm is shown in Fig. 2. The node in the two figures represents the local track or the system track, and the local tracks are from different sensors.
Fig. 1. Association in pairs among local tracks.

Fig. 2. Association using Leader-Follower algorithm.

If the local tracks from different sensors are associated in pairs, then the association times T_{ll} are:

$$T_{ll} = C_M^2 \times T^2 = \frac{M \times (M - 1)}{2} \times T^2 .$$ \hspace{0.5cm} (9)

If the Leader-Follower algorithm is adopted, then the association times T_{LF} are:

$$T_{LF} = (M - 1) \times T^2 .$$ \hspace{0.5cm} (10)

Comparing the above two results, we can see if the number of sensors M is more than 2, then $T_{LF} < T_{ll}$. It means the Leader-Follower algorithm requires less association times. And its superiority becomes more obvious as the number of sensors increases. In applications, a multi-sensor system includes multiple sensors, i.e. $M > 2$, so the Leader-Follower algorithm can significantly reduce the association times.

5. Experiments and Remarks

5.1 Initial Setup

In order to facilitate problem discussion, suppose all the state estimations sent to the fusion center are in the same coordinate system, all the sensors sample synchronously, and the delay time of data transmission is 0.

In the simulation, four sensors are designed to observe the targets at the same time. The targets run at a variable speed in three-dimensional space. In order to validate the algorithm performance, the algorithm is simulated 100 times with Monte Carlo method. The value range of K is approximately acquired by the normal approximation method. Then the value of K is fine-tuned by the simulation experiments, and is determined as 0.92 at last. And take $N = 12$ and $Q = 10$.

Three cases are set in the simulation. Case 1 is the sparse target environment in which 30 targets enter the surveillance space. Case 2 is the medium density target environment in which 60 targets enter the surveillance space. And Case 3 is the dense target environment in which 120 targets enter the surveillance space. Fig. 3, Fig. 4 and Fig. 5 show the tracks with the target number 30, 60 and 120 respectively.

Fig. 3. 30 target tracks.

Fig. 4. 60 target tracks.

Fig. 5. 120 target tracks.

5.2 Experimental Results and Analysis

The algorithm performance is evaluated in terms of the following indexes: the probability of correct association (P_{ca}), the probability of missing association (P_{ma}), the probability of correct separation (P_{cs}), the probability of error association (P_{ea}) and the association time.

In order to define P_{ca}, P_{ma}, P_{cs}, and P_{ea}, we take the following assumptions. In the process of a track association, sensor 1 has A tracks and sensor 2 has B tracks, then there are $A \times B$ association track pairs. In them, N_c association track pairs from the same targets. After association, N_1 pairs are correctly judged to be associated, N_2 pairs are wrongly judged to be unassociated, and $N_e = N_1 + N_2$. N_c association track pairs from the different targets. After association, N_3 pairs are correctly judged to be unassoci-
ated, \(N_4 \) pairs are wrongly judged to be associated, and \(N_3 = N_3 + N_4 \). \(N_f \) association track pairs consist of an invalid track at least. After association, \(N_5 \) pairs are correctly judged to be unassociated, \(N_6 \) pairs are wrongly judged to be associated, and \(N_f = N_3 + N_6 \). \(A \ast B = N_4 + N_6 \). Then \(P_{ca}, P_{ma}, P_{cs}, \) and \(P_{ea} \) are defined as follow.

\[P_{ca} = \frac{N_4}{N_c} \] \hspace{1cm} (11)

\[P_{ma} = \frac{N_5}{N_c} \] \hspace{1cm} (12)

\[P_{cs} = \frac{(N_2 + N_4)}{(N_4 + N_f)} \] \hspace{1cm} (13)

\[P_{ea} = \frac{(N_4 + N_6)}{(N_4 + N_f)} \] \hspace{1cm} (14)

Tab. 1, Tab. 2 and Tab. 3 show the comparisons on the average \(P_{ca}, P_{ma}, P_{cs}, \) and \(P_{ea} \) of 100 times simulation for associating all targets by WTA, FCM and Leader-Follower in Case 1, Case 2 and Case 3.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(P_{ca})</th>
<th>(P_{ma})</th>
<th>(P_{cs})</th>
<th>(P_{ea})</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTA</td>
<td>0.8831</td>
<td>0.1169</td>
<td>0.8239</td>
<td>0.1761</td>
</tr>
<tr>
<td>FCM</td>
<td>0.9232</td>
<td>0.0768</td>
<td>0.9425</td>
<td>0.0575</td>
</tr>
<tr>
<td>Leader-Follower</td>
<td>0.9201</td>
<td>0.0799</td>
<td>0.9366</td>
<td>0.0634</td>
</tr>
</tbody>
</table>

Tab. 1. The performance comparisons in Case 1.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(P_{ca})</th>
<th>(P_{ma})</th>
<th>(P_{cs})</th>
<th>(P_{ea})</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTA</td>
<td>0.7250</td>
<td>0.2750</td>
<td>0.7115</td>
<td>0.2885</td>
</tr>
<tr>
<td>FCM</td>
<td>0.8436</td>
<td>0.1564</td>
<td>0.8573</td>
<td>0.1427</td>
</tr>
<tr>
<td>Leader-Follower</td>
<td>0.8589</td>
<td>0.1411</td>
<td>0.9056</td>
<td>0.0944</td>
</tr>
</tbody>
</table>

Tab. 2. The performance comparisons in Case 2.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(P_{ca})</th>
<th>(P_{ma})</th>
<th>(P_{cs})</th>
<th>(P_{ea})</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTA</td>
<td>0.4869</td>
<td>0.5131</td>
<td>0.3234</td>
<td>0.6766</td>
</tr>
<tr>
<td>FCM</td>
<td>0.7894</td>
<td>0.2106</td>
<td>0.8367</td>
<td>0.1633</td>
</tr>
<tr>
<td>Leader-Follower</td>
<td>0.8036</td>
<td>0.1964</td>
<td>0.8850</td>
<td>0.1150</td>
</tr>
</tbody>
</table>

Tab. 3. The performance comparisons in Case 3.

Tab. 4 shows the average time for associating all targets by WTA, FCM and Leader-Follower in Case 1, Case 2 and Case 3.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Case1</th>
<th>Case2</th>
<th>Case3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTA</td>
<td>1.3627</td>
<td>4.3183</td>
<td>14.5161</td>
</tr>
<tr>
<td>FCM</td>
<td>7.6775</td>
<td>25.9536</td>
<td>100.1188</td>
</tr>
<tr>
<td>Leader-Follower</td>
<td>4.2946</td>
<td>14.7320</td>
<td>55.7374</td>
</tr>
</tbody>
</table>

Tab. 4. The comparisons on association time.
Association accuracy with an acceptable computational cost. FCM, Leader-Follower algorithm acquires the highest accuracy and computational cost. Compared with WTA and FCM both have serious imbalance between accuracy and computational cost. WTA pays out a heavy computational cost. WTA increases. FCM has higher association accuracy than WTA, but it is the fastest in dense target environments, the speed of WTA is fastest, but its online clustering is given. By doing association judgment between Leaders and Followers, the association times are reduced. Furthermore, by fusing the associated Leader-Follower to acquire a new Leader, fusion process and Leader generation is combined, which improved the efficiency of the fusion system. Simulation results show that in dense target environments, the algorithm balances the conflict between association accuracy and association speed.

6. Conclusion

In the paper, the track association problem is transformed into the on-line clustering problem with constraints, and the track association algorithm based on Leader-Follower online clustering is given. By doing association judgment between Leaders and Followers, the association times are reduced. Furthermore, by fusing the associated Leader-Follower to acquire a new Leader, fusion process and Leader generation is combined, which improved the efficiency of the fusion system. Simulation results show that in dense target environments, the algorithm balances the conflict between association accuracy and association speed.

Acknowledgements

The work described in this paper is supported by the National Natural Science Foundation of China under Grant No. 61201084 and No. 11301110, China Postdoctoral Science Foundation funded project under Grant No. 2013MS41346, the State Scholarship Fund from the China Scholarship Council(CSC) under Grant No. 201203070290 and No. 201206125024, and the Fundamental Research Funds for the Central Universities under Grant No. HEUCF100604.

References

About Authors...

Li XU was born in Shuangyashan, China. She received her Ph. D. in Computer Application Technology from Harbin Institute of Technology in 2012. Now she serves as an assistant professor at Harbin Engineering University. Her research interests include information fusion, intelligent planning and plan recognition.

Shuilin JIN was born in Xingtai, China. He received his Ph. D. in Mathematics from Jilin University in 2009. Now he serves as an assistant professor at Harbin Institute of Technology. His research interests include information fusion and operator algebra.

Guisheng YIN was born in Taixing, China. He received his Ph. D. in Control Theory and Control Engineering from Harbin Engineering University. Now he serves as a professor at Harbin Engineering University. His research interests include information fusion, database and virtual reality.