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Abstract. Modern communication and identification prod-
ucts impose demanding constraints on reliability of compo-
nents. Due to this, statistical constraints more and more en-
ter optimization formulations of electronic products. Yield
constraints often require efficient sampling techniques to ob-
tain uncertainty quantification also at the tails of the distri-
butions. These sampling techniques should outperform stan-
dard Monte Carlo techniques, since these latter ones are
normally not efficient enough to deal with tail probabilities.
One such a technique, Importance Sampling, has success-
fully been applied to optimize Static Random Access Mem-
ories (SRAMs) while guaranteeing very small failure proba-
bilities, even going beyond 6-sigma variations of parameters
involved. Apart from this, emerging uncertainty quantifica-
tions techniques offer expansions of the solution that serve
as a response surface facility when doing statistics and op-
timization. To efficiently derive the coefficients in the expan-
sions one either has to solve a large number of problems or
a huge combined problem. Here parameterized Model Order
Reduction (MOR) techniques can be used to reduce the work
load. To also reduce the amount of parameters we identify
those that only affect the variance in a minor way. These pa-
rameters can simply be set to a fixed value. The remaining
parameters can be viewed as dominant. Preservation of the
variation also allows to make statements about the approx-
imation accuracy obtained by the parameter-reduced prob-
lem. This is illustrated on an RLC circuit. Additionally, the
MOR technique used should not affect the variance signifi-
cantly. Finally we consider a methodology for reliable RFIC
isolation using floor-plan modeling and isolation grounding.
Simulations show good agreement with measurements.

Keywords
Monte Carlo, importance sampling, tail probabilities,
failure, yield estimation, uncertainty quantification,
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1. Introduction
As transistor dimensions become smaller with each

new technology generation, they become increasingly sus-
ceptible to statistical variations in their parameters. These
statistical variations can result in failing memory. Addition-
ally, unintended RF couplings can occur, which also down-
grades the quality of the product and thus performance of
end products or even safety of environment or of the end-
user. Failures directly affect yield of the producing company
and its fame for reliable products. Hence there is a general
focus on reliability in IC design. In the Artemos project1,
NXP Semiconductors and Eindhoven University of Tech-
nology joined effort to tackle this topic. Mathematics was
needed to accurately estimate low tail probabilities. Several
novel methods were needed to do the simulations in an effi-
cient way. Enhanced floor planning of a design was set up.
In all the various tasks one was interested to determine the
dominant parameters and the dominant sources that caused
a certain effect.

1http://www.artemos.eu/
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The paper is organized as follows. Section 2 overviews
Monte Carlo simulation and comes down to estimation of tail
probabilities, based on results from Large Deviation The-
ory. Section 3 considers the benefits of Importance Sam-
pling. Section 4 gives some achievements obtained during
the project. Section 5 describes statistics based on uncer-
tainty quantification, where we combine the techniques with
model order reduction and sensitivity analysis. Section 6
deals with reliable RFIC isolation.

2. Monte Carlo Simulations
We start this section with some general, well-known,

results from statistics [2, 15]. We assume that N indepen-
dent random observations Yi (i = 1, . . . , N) of Y are taken,
each with mean µ and variance σ2, based on a probability
density function f . One can estimate the mean µ by the sam-
ple mean µ̂N = 1

N ∑
N
i=1 Yi and the variance σ2 by the sample

variance σ̂2
N = 1

N−1 ∑
N
i=1 (Yi− µ̂N)

2. Both, µ̂N and σ̂2
N , can

be updated on-the-fly, using recursion. The Central Limit
Theorem says that µ̂N converges in distribution to a standard
normal distribution, i.e.,

lim
N→∞

P
(

µ̂N−µ
σ/
√

N
≤ x
)

= Φ(x) (1)

where Φ(x) =
∫ x
−∞

1√
2π

e−
y2
2 dy is the cumulative distribution

function of the standard normal distribution, i.e., the normal
distribution with mean 0 and variance 1. In fact, this theo-
rem holds under much weaker conditions, but this is usually
not important when performing simulations. Note that Φ is
monotonically increasing and that, because of the symmetry
of Φ(x) around 0, we have Φ(−x) = 1−Φ(x).

The Central Limit Theorem yields that we may use
the following approximative confidence interval for µ. Let
Z be a standard normal variable. In the sequel we will as-
sume that α < 1/2. We define zα to be the unique number
such that P(Z > zα) = 1−Φ(zα) = α. Note that zα > 0 and
P(|Z| > zα) = 2Φ(zα) = 2α. Combining this notation with
(1), we obtain

lim
N→∞

P
(
−zα/2 <

µ̂N−µ
σ/
√

N
< zα/2

)
=

lim
N→∞

P
(
−zα/2 < Z < zα/2

)
= 1−α.

If we wish to estimate µ within absolute accuracy ε with
100(1−α)% confidence, then N ≥ z2

α/2 σ2/ε2. This result
is not useful in practice, since we usually do not know σ.
Although (1) also holds with σ replaced by σ̂N (this is not
trivial, it requires Slutsky’s Lemma [2, Section 7.7]), this
only helps a posteriori unless we have some prior informa-
tion, like lower and upper bounds.

Fig. 1 shows the powers of the tail accuracy, log10(α),
versus the quantiles zα of the normal distribution along a σ-
scale. Clearly, the zα vary moderately for−12≤ log10(α)≤

−1. For default statistics around 2σ, we have zα = 2. In the
following, our interest will concern variations up to 6σ.

Fig. 1. Powers of tail accuracy, log10(α),versus quantiles zα of
the normal distribution along a σ-scale. Our interest goes
to variations up to 6σ.

We now show how to estimate tail probabilities, rather than
the mean, since this is relevant for determining reliability
of electronic components. For a given set A = (−∞,x), we
define the event indicator Xi = IA(Yi) where IA(Yi) = 1 if
Yi ∈ A and 0 otherwise. Then pMC

f = 1
N ∑

N
i=1 Xi estimates

p=
∫ x
−∞

f (z)dz=P(Y ∈A). The Xi are Bernoulli distributed,
hence N pMC

f ∼ Bin(N, p) is binomially distributed, and thus
for the expectation one has E(pMC

f ) = 1
N N p = p and for the

variance σ2(pMC
f ) = 1

N2 N p(1− p) = 1
N p(1− p). Note that,

here, we can not directly approximate σ2(pMC
f ), like in the

general Monte Carlo case. However, similarly to the gen-
eral case we may replace p, in the expression for σ2(pMC

f ),
by p̂ = pMC

f , using Slutsky’s Lemma [2, Section 7.7]. If we
know p then we can estimate the number of Monte Carlo
samples we have to take. Using (1), we derive

P(|pMC
f − p|> ε) = P

( |pMC
f − p|

σ(pMC
f )

> z
)

NMC→∞−→ 2Φ(−z)≤ 2Φ(−zα/2) (2)
= α (3)

where z = ε/
√

p(1− p)/NMC and N = NMC. The conver-
gence holds for all points z in (2) for which the distribution
is continuous. In our case it allows to derive an error esti-
mate for a particular value of z, which leads to estimate the
number of samples we have to take. Hence, if z ≥ zα/2, we
deduce

NMC ≥ p(1− p)
( zα/2

ε

)2
=

1− p
p

( zα/2

ν

)2
, (4)

for ε = νp. Here we assume ν = 0.1 and p = 10−10. Now
let α = 0.02. Then zα/2 ≈ 2 and (4) implies NMC ≥ 4 ·1012.
This is large, but it looks acceptable if we compare it to the
small value of p. We see that NMC may grow with 1/p and
not necessarily with 1/p2. A problem arises if we do not
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know p. Then more general estimates show up, in which
indeed NMC = O(1/p2) [8, 16, 17]. To cover this gap in rea-
sonable upper bounds for NMC, results from Large Deviation
Theory (LDT) can be used [4, 9, 10]. We assume the follow-
ing lemma.

Lemma (LDT) The sequence of the Monte Carlo results
PN(A) := pMC

f satisfies a “Large-Deviation Principle” [4,
9, 10], meaning that there is some “rate function” I : R→
R∪{−∞,+∞} such that

• (i) limsupN→∞
1
N lnPN(C)≤− infx∈C I(x) for all closed

subsets C ⊂ R,

• (ii) liminf N→∞
1
N lnPN(G) ≥ − infx∈G I(x) for all open

subsets G⊂ R.

Note the first statement implies an upper bound for
1
N lnPN(C), for N large enough. From this, we can prove
the following theorem [8, 16, 17].

Theorem (MC for tail probabilities) For N = NMC large
enough, the Monte Carlo results PN := pMC

f approximate p
with a relative precision ν such that

P(|pMC
f − p|> νp)≤ exp

(
−NMC

2
p

1− p
ν

2
)
. (5)

The exponential type of bound in (5) is also valid from below
and thus is sharp. For ν = 0.1, p = 10−10 and α = 0.02, as
above, we find: NMC ≥ 1012. Note that an extra k-th decimal
in ν increases NMC with a factor k2. Indeed, this lower bound
for NMC is close to the one found with (4). Consequently, the
result (5) is sharp. It means that in general one really needs
O(1012) samples, and, in general, NMC ≈ 1/p.

3. Importance Sampling
There are several methods to speed up Monte Carlo

sampling. In [5] antithetic variables, control variates, match-
ing moment technique, and stratification are exploited. Here
we will describe Importance Sampling. It fits the estima-
tion of tail probabilities very well and is based on the ob-
servation that p f (A) =

∫ x
−∞

f (z)dz =
∫ x
−∞

f (z)
g(z)g(z)dz for any

distribution function g (called design distribution) that sat-
isfies g(z) 6= 0 on A. Hence, we sample the Yi according
to a different distribution function g rather than according
to f and define a weighted success indicator V = V (A) =
IA(Y ) f (Y )/g(Y ).

Then with the g-distribution we have for the expec-
tation Eg(V ) =

∫
IA(y)

f (y)
g(y) g(y)dy =

∫ x
−∞

f (z)dz= p f (A).
Hence if we determine Vi = IA(Yi) f (Yi)/g(Yi) from the g-
distributed Yi we can define pIS

g = pIS
g (A) = 1

N ∑
N
i=1 Vi. Its ex-

pectation becomes Eg
(

pIS
g
)
= 1

N ∑
N
i=1 Eg (Vi)= p f (A), which

is unbiased. Note that this re-sampling may already be a ben-
efit: sampling according to a known and simple g may be
more efficient than sampling according to a density f that

involves more calculations.
We can easily prove [16, 17]

f (z)
g(z)

≤ 1 on A =⇒ Varg
(

pIS
g
)
≤ Var f

(
pMC

f
)
. (6)

Thus we obtain variance reduction using the same number of
samples as used for Monte Carlo sampling. We will sharpen
the amount of reduction shortly, in (11). The variance reduc-
tion does not yet imply more efficiency. However, similarly
to (5), we derive (7), in the next theorem (in which NIS = N),
for NIS large enough [16, 17].

Theorem (IS for tail probabilities) For N = NIS large
enough, the Importance Sampling results PN := pIS

g approx-
imate p with a relative precision ν such that

P
(∣∣pIS

g − p
∣∣> νp

)
≤ exp

(
− NIS p2

2Varg(V )
ν

2
)
. (7)

Also this result is sharp as it was for (5). Comparing (5) and
(7), we see the same type of exponential decay as a function
of N. So an improvement for Importance Sampling should
come from a proper choice of the distribution function g. As-
suming the same upper bounds values in (5) and (7), com-
paring them we obtain

NIS

NMC
=

Varg(V )

p(1− p)
=

Eg(V 2)− p2

p(1− p)
. (8)

This expression can also be obtained by equating
the normalized standard deviations σ(pMC

f )/E(pMC
f ) and

σg(pIS
g )/Eg(pIS

g ). However, the way via (5) and (7) indicates
the sharpness. Next, we consider the variance reduction (6)
more closely. For this, suppose

f (z)
g(z)

≤ κ < 1, on A. (9)

Then p =
∫ x
−∞

f (z)dz≤ κ
∫ x
−∞

g(z)dz ≤ κ. With q = 1− p,
we obtain [16, 17]

NIS

NMC
=

Eg(V 2)

pq
− p

q
≤ κ

q
− p

q
≤ κ(1+ζ), (10)

when |(1− 1
κ
)p+O(p2)| ≤ ζ. For κ = 0.1 and p = 10−10

this means that ζ ≤ 10−9. Hence, for κ = 0.1, we can take
an order less samples with Importance Sampling to get the
same accuracy as with regular Monte Carlo. This even be-
comes better with smaller κ. By Importance Sampling we
gain efficiency; this is the main message. Also the asymp-
totic accuracy improves when compared to regular Monte
Carlo, but the improvement is less impressive than for the
efficiency. We can derive an enhanced variance reduction
[16, 17]

Varg
(

pIS
g
)
≤ κVar f

(
pMC

f
)
− 1−κ

N
p2 (11)

and thus σg
(

pIS
g
)
≤
√

κσ f

(
pMC

f

)
, which for κ = 0.1 means

that here not an order is gained, but a factor
√

κ≈ 0.316.
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In the following we assume that A= (−∞,x) with x< 0
and |x| not too small. The condition (9) can usually easily be
satisfied if f is a Gaussian probability density distribution
and g has a broader or a shifted Gaussian distribution, with
enough density on A. Let us consider f (z) ∼ N(0,1) and
gσ(z) ∼ N(0,σ2), with σ ≥ 1 (hence a broader distribution
than f ).
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Fig. 2. log10(NIS/NMC) versus log10(p) for f (z) ∼ N(0,1) and
g(z)∼ N(0,σ2).

Fig. 2 shows the speed up that one can obtain. The figure also
indicates convergence with respect to increasing σ. Indeed
h̃(σ,x) = f (x)

gσ(x)
has a minimum when σ2

opt = x2 = z2
α. For α=

p = 10−10, we find za = 6.4, giving log10(NIS/NMC) =−8.5
and thus an optimal speed up of 3.2 ·108. This is an example
of parameterized Importance Sampling, in which an addi-
tional parameter (here σ) is used to optimize the outcome.
Note that with gσopt(x) still a significant fraction

1√
2π

1
σopt

∫
∞

−σopt
e
− x2

2σ2
opt dx =

1√
2π

∫
∞

−1
e−

x2
2 dx = 0.8413

is sampled outside A = (−∞,x); gσopt(−zα) =
1√
zαe . Only

15 % falls within A. Surprisingly even this results in a much
higher efficiency for Importance Sampling over ordinary
Monte Carlo sampling. Note that in this example the sim-
ple choice σ = 2 already gives good results (thus we may
use a sampling with a distribution that is double as wide as
that of f ).

Of course, all this reasoning assumes that each sample
requires the same amount of cpu.

4. Parameterized Quantities
In several simulations the nonlinear output response

Y (p) depends on independent input parameters p =
(p1, . . . , pP)

T with known density distribution functions fk
for each pk (in most cases a normal distribution). In this
case the ratio ” f (p)/g(p)” has to be considered in p-space,
where f is known and thus the ratio can easily be calculated.
Of course, in a multi-dimensional parameter space the defi-
nition of g(p) that should cover the area of parameters for the

rare events of interest, requires more attention. With increas-
ing dimension of the parameter space, importance sampling
can have more impact. Assuming p = (p1, p2)

T , a scalar
function Y (p) and samples Yi = y(pi) = y(pi

1, pi
2) in which

the input parameters pi
k are chosen according to density fk.

If the input parameters pk are independent, we have p f (A) =∫∫
A

f1(p1) f2(p2)dp, in which A is identified with a 2-D p-

area such that Y (p)> Ylim (or < Ylim).

The indicator function is now defined by

IA(y) = IA(p) =
{

1 if p ∈ A, i.e. if Y (p)> Ylim
0 else (12)

and similar as before one can estimate p f (A) by

pMC
f (A) ≈ 1

N

N

∑
i=1

IA(Yi), (13)

pIS
g (A) ≈ 1

N

N

∑
i=1

IA(Yi)∗
P

∏
k=1

fk(pi
k)

gk(pi
k)
. (14)

Note that, in practice, on A, not all factors fk/gk in (14)
may be less than or equal to 1. In [6, 8, 17] SRAM (Static
Random Access Memory) cells were considered. The
threshold voltages Vt of the six transistors in an SRAM
cell are the most important parameters causing variations
of the characteristic quantities of an SRAM cell [6] like
Static Noise Margin (SNM) and Read Current (Iread). Hence
SNM=SNM(Vt,1, . . . ,Vt,6) and Iread = Iread(Vt,1, . . . ,Vt,6).
In [6, 16] Importance Sampling (IS), using Gaussian dis-
tributions with a σ = 3σVt for the Vt -s in each transis-
tor in the SRAM cell, was used to accurately and effi-
ciently estimate low failure probabilities for SNM and Iread.
SNM = min(SNMh,SNMl) is a measure for the read stabil-
ity of the cell. SNMh and SNMl are identically Gaussian
distributed. The min() function provides a non-linear op-
eration after which the distribution of SNM is no longer
Gaussian. However, in this particular case, one can argue
that SNM = 2SNMh [6, 16]. For results, see [8].

Fig. 3. Cumulative distribution function for the Read Current
Iread based on extrapolated MC (dashed), regular MC
(solid) and IS (dotted) [8]. Extrapolation assumes a nor-
mal distribution.
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The Read Current Iread is a measure for the speed of
the memory cell. This quantity has a non-Gaussian distribu-
tion and the cumulative distribution is shown in Fig. 3 [8].
Here IS is essentially needed for sampling Iread appropri-
ately. Regular MC can only simulate down to a failure prob-
ability Pfail = p f (A)≤ 10−5.

In [7, 8, 17] the access time optimization for an SRAM
active column in combination with a sense amplifier was
considered. For robust design of SRAM memories, it is not
sufficient to only guarantee good statistical margins on the
individual SRAM cell parameters. The additional sense am-
plifier also needs sufficient input signal before it can reli-
ably sense the data, while the SRAM cell requires sufficient
time to develop that input signal. Here Importance Sampling
was used for the sampling in generating the voltage differ-
ences ∆Vk at the output of the SRAM cells. As constraint
one can guarantee a yield target set by the designer. Using
this method, the access time of a 45 nm high performance
SRAM could be improved 6 %, while simultaneously reduc-
ing the size of the sense amplifier.

5. Uncertainty Quantification
We consider Uncertainty Quantification (UQ) by ex-

panding the solution in so-called generalized Polynomial
Chaos expansions. In these expansions the solution is de-
composed into a series with orthogonal polynomials in
which the parameter dependency becomes an argument of
the orthogonal polynomial basis functions. The time and
space dependency remains in the coefficients. In UQ two
main approaches are in use: Stochastic Collocation (SC)
and Stochastic Galerkin (SG). In SC the coefficients in the
expansion are approximated by quadrature and thus lead to
a large series of deterministic simulations for several pa-
rameters. In SG one assumes a finite sum of the expan-
sion as approximation to the solution and requires that the
vector of residuals is orthogonal to all basis functions used
in the finite expansion (using an inner product in parameter
space), which leads to one big, but coupled, system. Also
here quadrature can be applied but this does not automati-
cally lead to decoupling as happens for SC.

We will denote parameters by p = (p1, . . . , pP)
T again

and assume a probability space (Ω,A ,P ) given where A rep-
resents a σ-algebra, P : A → R is a measure and p = p(ω) :
Ω → B⊆RP. Here we will assume that the pi are indepen-
dent.

For a function f : B → R, the mean or expected value
is defined by

Ep[ f (p)] =< f >=
∫

Ω

f (p(ω))dP (ω) =
∫

B
f (p) ρ(p)dp.

(15)

The specific probability distribution density is defined by the
function ρ(p). A bilinear form < f ,g > (with associated
norm L2

ρ) is defined by

< f ,g >=
∫

B
f (p) g(p) ρ(p)dp =< f g > . (16)

We assume a complete orthonormal basis of polynomials
(φi)i∈N, φi : B → R, given with < φi,φ j >= δi j (i, j,≥ 0).
When P = 1, φi has degree i. To treat a uniform distribution
(i.e., for studying effects caused by robust variations) Leg-
endre polynomials are optimal in some sense; for a Gaus-
sian distribution one can use Hermite polynomials [12, 28].
A polynomial φi on RP can be defined from one-dimensional
polynomials: φi(p) = ∏

P
d=1 φid (pd). Actually i orders a vec-

tor i = (i1, . . . , iP)T .

A solution x(t,p) = (x1(t,p), . . . ,xn(t,p))T of a dy-
namical system (which we do not further specify) becomes
a random process. We assume that second moments are fi-
nite: < x2

j(t,p)>< ∞, for all t ∈ [t0, t1] and j = 1, . . . ,n. We
express x(t,p) in a Polynomial Chaos expansion

x(t,p) =
∞

∑
i=0

vi(t) φi(p) (17)

where the coefficient functions vi(t) are defined by

vi(t) =< x(t,p),φi(p)> . (18)

Here the inner product is considered component wise. A fi-
nite approximation xm(t,p) to x(t,p) is defined by

xm(t,p) =
m

∑
i=0

vi(t) φi(p). (19)

When exploiting Stochastic Collocation (SC), the integrals
(18) are computed by (quasi) Monte Carlo, or by multi-
dimensional quadrature. We assume quadrature grid points
pk and quadrature weights wk, 0≤ k ≤ K, such that

vi(t) =< x(t,p),φi(p)>≈
K

∑
k=0

wk x(t,pk) φi(pk). (20)

Typically, for low numbers of random parameters, Gaussian
quadrature is used with corresponding weights. We solve the
dynamical system for x(t,pk), k = 0, . . . ,K (K+1 determin-
istic simulations). By post-processing we determine the vi(t)
in (20).

As alternative to SC, Stochastic Galerkin (SG) can be
used. One puts the approximation (19) in the equations of
the dynamical system and makes the residuals orthogonal to
each basis function used. The result is a big system that in-
volves all coefficients vi(t), 0≤ i≤m, as unknowns. For lin-
ear dynamical systems one can determine all integrals over
B exactly, in advance. For nonlinear systems one may ap-
proximate these again by quadrature, similar as done for SC.

After determining the approximation (19) by SC or by
SG, the expansion provides a response surface facility from
which the solution can be determined for any values of t and
p. It also provides (fast) information about mean, variance
and sensitivity. In [1, 18, 20] efficient methods are described
to determine the coefficients by SC. In [18, 23, 25] also the
combination with (parameterized) Model Order Reduction
(MOR) was studied.
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Fig. 4. The various ways to obtain statistic information.

In Fig. 4 at the top-left Monte Carlo Sampling and Im-
portance Sampling generate a list of samples of p for which
the dynamical system has to be solved, after which statistical
analysis can be done. At the top-right the alternative path by
UQ is indicated. Stochastic Collocation provides a list of de-
terministic values p for which the dynamical system has to
be solved. In both cases parameterized MOR (pMOR) can
be of help to faster provide approximations. The path via
Stochastic Galerkin results in a huge system that involves all
coefficients. The system is independent of p, due to aver-
aging. Here normal MOR can be of use - it may be even
necessary to reduce the huge system to be able to obtain ap-
proximative solutions.

In [13, 18, 22] (response surface) approximations or the
combination between them and more accurate solutions was
studied for Failure Analysis. In [20] the method can shift the
(probability density) weighting function in the inner product
to the area of interest (shifted Hermite chaos). One can also
use a windowed Hermite chaos. The shift is tuned by some
optimization procedure. The windowed Hermite chaos looks
to be the most accurate alternative. In [21] various multi-
dimensional integration methods have been studied for the
purpose of efficient reliability analysis.

Central in Fig. 4 is the question on dominant parame-
ters. In [23, 24] the sensitivity coefficients of parameters to
the variance of the solution have been studied via a Sobol de-
composition [26] and using uniform distributions. Assuming
a scalar solution x in (17), the variance of x (at time t) reads
as

Varx(t) =
∞

∑
i=1

v2
i (t).

The total normalized sensitivity of the j-th random parame-
ter can be written as

S j :=
Vj

Varx
, with Vj := ∑

i∈I j

v2
i , for j = 1, . . . ,P. (21)

Here i ∈ I j if and only if φi varies with respect to the ran-
dom variable p j , i.e., φi includes a non-constant univariate
polynomial in p j . Clearly the bounds 0 ≤ S j ≤ 1 apply for
each j. One obtains approximations of these total normal-
ized sensitivities by a truncated expansion

V D
j := ∑

i∈I D
j

v2
i , with I D

j := {i ∈ I j : degree(φi)≤ D}.

Although the bounds 1≤ S1 + · · ·+SP ≤ P hold, the sum of
the total normalized sensitivities is often close to the lower
bound. In view of this variability of the sum of sensitivities,
we further normalize

S∗j := S j

( P

∑
l=1

Sl

)−1

, j = 1, . . . ,P. (22)

We now have S∗1 + · · ·+ S∗P = 1. This facilitates to compare
the S∗j . After determining the dominant S∗j [23] we only deal
with the S j. Note that Varx and the S j vary with t. If we as-
sume a partitioning (possibly after re-ordering) p = (q,r),
where q are Pred parameters that will be allowed to vary,
while r are the parameters set to a fixed value r0, we ob-
tain, for the error δ(t,r0) in doing this, the estimate in the
following theorem [23, 24].

Theorem (Scaled approx. error after fixing parameters)

δ
2(t,r0) =

<

(
x(t,q,r)− x(t,q,r0)

)2

>

Varx(t)
,

≤ (1+ ε
−1)

P

∑
j=Pred+1

S j(t). (23)

In (23), ε is a confidence parameter, and q∈RPred and r0 ∈Bε

with P (p−1(RPred × Bε)) ≥ 1− ε (here p−1 is the inverse
mapping in the sense of p−1(C) := {ω ∈ Ω : p(ω) ∈ C}).
Note that δ2(t,r0) is scaled by Varx. It assumes that Varx(t)
is bounded away from 0. Clearly, if Varx(t) is bounded,
small S j, corresponding to the parameters r set to r0, lead
to an upper bound for the mean of the squared approxima-
tion error. In [23] the parameter reduction is considered for
the transfer function H(s,p) where s ∈ iR on the imaginary
axis. Now, first an approach similar to (23) is applied to the
transfer function H(s,(q,r0)) after splitting p, resulting in an
error estimate for δ2

H(s,r0) and leading to a mean squared er-
ror < |H(s,q,r)−H(s,q,r0)|2 >. From this an upper bound
for maxt>0 < x(t,q,r)− x(t,q,r0)>, for the solution x(t,p)
in the time domain, can be derived.

Fig. 5. Normalized variation sensitivities of H(s,p) for conduc-
tances as random parameters [23].

For an RLC-circuit, Fig. 5 shows a typical outcome
for the variation sensitivities of H(s,p) of various conduc-
tances as random parameters. Similar results can be shown
for capacitances and for inductances. By this we obtain error
estimates for the coefficients in the generalized polynomial
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chaos expansion by which we can provide error plots of the
mean and of the variance (as functions of time).

Next, parameterized MOR on H(s,(q,r0)) can be ap-
plied, which leads to an additional error. In [23] a typical
Krylov-subspace MOR-technique was used after first apply-
ing Stochastic Galerkin. As an alternative, Balanced Trun-
cation MOR techniques could be applied, which provide er-
ror estimation. This type of MOR-technique leads to an L2-
norm estimate (in time). In [25] the authors did focus on
Stochastic Galerkin and considered first reducing the orig-
inal system by parameterized MOR, followed by SG, ver-
sus first applying SG on the original system, followed by
a (global) MOR.

At Eindhoven University of Technology, several Ph.D.
theses on Model Order Reduction have been done during
the last years, with emphasis on sparsity and multi-terminal
problems [11, 27], with application to coupled systems by
exploiting low-rank approximation [14], with application to
nonlinear problems [3], and use of MOR within optimiza-
ton [19]. The sensitivity technique described in this section
can lead to variation-aware MOR approaches. Clearly, MOR
should not lead to reduced models that do not preserve the
main statistical characteristics of the full model.

6. Reliable RFIC Isolation
In order to minimize interference issues and coupling

effects in RF products, it is essential to apply proper floor-
planning and grounding strategies. The interaction of the
IC with its physical environment needs to be accounted for,
so as to certify that the final packaged and mounted product
meets the specifications.

The first focus was on the key requirements to address
physical design issues in the early design phases of com-
plex RF designs. Typical physical design issues encountered,
such as on-chip coupling effects, chip-package interaction,
substrate coupling and co-habitation, were investigated.

Fig. 6. Floorplan model for isolation and grounding strategies.

The main challenges are the first order prediction of
cross-domain coupling. Therefore we apply a floorplan
methodology to quantify the impact of floorplanning choices

and isolation grounding strategies. This methodology is
based on a very high level floorplan EM/circuit simulation
model, including the most important interference contribu-
tors and including on-chip, package and PCB elements, to
be applied in the very early design phases (initial floorplan-
ning).

The overall model of a complete RF product contains
the following parts (see Fig. 6):

• On-chip: domain-regions, padring, sealring, splitter-
cells, substrate effects.

• Package: ground and power pins, bondwires/down-
bonds, exposed diepad.

• PCB: ground plane and exposed diepad connections.

The effect of the number of parameter variations on the im-
pact of noise from digital parts on the isolation sensitive RF
domains has been investigated, i.e., the number of down-
bonds, the number of ground pins, the domain spacing and
shape, the application of deep-Nwell and exposed diepad,
and the number of exposed diepad vias.

Key to the investigations is the cross-domain transfer
function from the digital to RF domain. First a reference sit-
uation (Icore to Voltage at domain grounds) has been chosen,
with which all other situations have been compared.

Fig. 7. Coupling paths: 1. (Top-Left) Exposed diepad & down-
bonds 2. (Top-Right) Splittercells 3. (Bottom-Left) Sub-
strate 4. (Bottom-Right) Air.

The specific coupling paths that have been identified
and investigated are (see Fig. 7, row-wise ordered)

1. Via the exposed diepad and downbonds.
2. Via the splitter cells.
3. Via the substrate.
4. Through the air.
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We describe these couplings in more detail in the next sub-
sections.

6.1 Exposed Diepad & Downbonds
From the investigations, the following conclusions can

be drawn. Without downbonds the isolation is independent
of the diepad impedance (up to 300 MHz). With downbonds
we find that the isolation is determined by the diepad–PCB
ground impedance. In this case as many PCB ground - ex-
posed diepad vias as possible should be used. Furthermore
we see that the frequency range of isolation increases.

6.2 Splittercells
The main conclusion from the investigation is that

a splitter cell only impacts the domain to domain coupling
(between neighbours). There is no impact on the coupling of
the digital domain to RF (< 1 GHz).

6.3 Substrate
A number of investigations have been performed. First

of all the substrate can be described by a resistive network.
This is mainly fixed by the specific technology choice. Cou-
pling can be minimized by maximizing the lateral resistance.
Several options can be used to ensure this, such as minimiz-
ing the domain boundary length, usage of so-called ”pwell-
prot” at the boundary between domains to ensure high re-
sistivity between domains, and increasing the domain spac-
ing. However, the latter has very limited impact on domain-
domain coupling and no impact on the coupling of digital
to RF.

6.4 Air
The capacitive coupling via air (plastic mold, ε ≈ 4)

between domains is determined (from electromagnetic sim-
ulation) to be negligible compared to the other coupling ele-
ments in the network. Simulations show some impact when
the coupling capacitances would be 100-1000 times higher.

Additional coupling paths and measures are via seal-
ring downbond to diepad (see Fig. 8) and using domain
buffers, but investigation shows negligible effect.

Overall conclusions of the coupling path investigation
are:

• The digital - RF main coupling path is via the exposed
diepad and downbonds.

• Downbonds are effective only in combination with
a low-ohmic connection of exposed diepad to PCB
ground. When this impedance is too high, downbonds
have an adverse effect, serving as a coupling path to the
RF; removing the downbonds then improves the isola-
tion.

• Isolation of digital - RF is not impacted by inter-
domain spacing, downbonding the sealring, splittercel
capacitance ( < 1 GHz) or domain buffers ( < 1 GHz).

Fig. 8. Coupling paths: 5. Sealring downbond to diepad.

Fig. 9. Measurement result showing downbonds improve isola-
tion.

Fig. 10. Downbonds improve isolation shown by simulations.

The modeling methodology predicting RFIC interfer-
ence issues allows investigation into various floorplan op-
tions and verification of isolation and grounding strategies.
Application of this modeling methodology guides in mak-
ing well quantified choices and trade-offs in the implemen-
tation of RF products, ultimately enabling achievement of
single-pass design success, avoiding costly re-spins and loss
of market opportunities. As a first verification of the method-
ology, measurements were performed of the impact of the
downbonds on the coupling, showing indeed an isolation im-
provement of > 8 dB (see Fig. 9 and Fig. 10, which compare
well).
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7. Conclusions
Importance Sampling has very effectively been ex-

ploited in SRAM design and certainly will also be used in
other IC-design processes. Recently, Eindhoven University
of Technology, Fachhochschule Oberösterreich (Hagenberg
im Mühlkreis, Austria) and Bergische Universität Wuppertal
did start work on Importance Sampling for Communication
Systems, where one aims for low Bit Error Rates (BER).
First outcomes show promising results.

Uncertainty Quantification has led us to identify pa-
rameters that mostly contribute to the variation of an output
quantity. In [14, 18] other concepts of ’dominant’ parame-
ters have been described. Reduced models should preserve
the main statistical characteristics of the full model.

The modeling methodology predicting RFIC interfer-
ence issues, presented here, allows investigation into various
floor planning options and verification of different isolation-
and grounding strategies. It shows a good agreement of
model predictions and measurements. Application of this
modeling methodology guides in making well quantified de-
sign choices and trade-offs.
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