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Abstract. This paper evaluates the nonlinear effects 
occurring in a bulk acoustic wave (BAW) filter which in-
cludes barium strontium titanate (BST) capacitors to can-
cel the electrostatic capacitance of the BAW resonators. To 
do that we consider the nonlinear effects on the BAW reso-
nators by use of a nonlinear Mason model. This model 
accounts for the distributed nonlinearities inherent in the 
materials forming the resonator. The whole filter is then 
implemented by properly connecting the resonators in 
a balanced configuration. Additional BST capacitors are 
included in the filter topology. The nonlinear behavior of 
the BST capacitors is also accounted in the overall nonlin-
ear assessment. The whole circuit is then used to evaluate 
its nonlinear behavior. It is found that the nonlinear con-
tribution arising from the ferroelectric nature of the BST 
capacitors makes it impractical to fulfill the linearity re-
quirements of commercial filters. 
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1. Introduction 
BAW technology has suffered tremendous improve-

ments since its invention that have made it possible to be 
now a technology that is widespread in wireless devices 
[1]. Still, increasingly stringent communication standards 
and a very high market competition push for even higher 
demands of performance that require improvements at all 
levels. One key aspect of BAW technology is the fact that 
each resonator shows two resonances, thus limiting the 
circuit topology to implement filters [2]-[4]. Although 
more advanced options in BAW exist, like Coupled Reso-
nators Filters (CRF), they still have not reached commer-
cial status due to poor fabrication yield. Therefore, current 
topologies are limited to ladder and lattice, the first being 
single ended and the second one balanced and both 
requiring two sets of resonators at different frequencies to 
implement the pass-band [3]. 

A variation of the lattice topology involves replacing 

the cross BAW resonators for capacitors having the same 
capacitance as the series resonators, so that the bandwidth 
would be considerably shrunk but the electrostatic capaci-
tance still cancelled. An advantage of this solution is that 
now one can choose any dielectric material for the capaci-
tor to miniaturize it. To this regard, this work presents 
simulations on a BAW filter of this type, where the dielec-
tric of choice for the crossed capacitors is BST, showing 
r = 320 and thus a high degree of miniaturization. More 
specifically, we discuss on the nonlinear performance of 
such a solution, given that BST is a well-known material 
for its high degree of tunability [5]. 

2. BAW Filter 
The filter that is being discussed on this work is 

implemented with BAW resonators and BST capacitors, on 
a balanced configuration showing two lattice sections to 
have a central frequency of 2.155 GHz. Next, we discuss 
on each of these technologies and their corresponding 
nonlinearities, along with their final implementation in the 
filter. 

2.1 Single BAW Resonator 

The BAW resonator used for this work is of a Solidly 
Mounted Resonator (SMR) type [2] with layer materials 
and thicknesses as shown in Tab. 1. 
 

SiN 200 nm 
Mo 250 nm 
AlN 1000 nm 
Mo 250 nm 

SiO2 1000 nm 
W 500 nm 

SiO2 500 nm 
W 800 nm 

SiO2 500 nm 
Si 725 µm 

Tab. 1. BAW resonator layers, top to bottom. 

Its modeling is accomplished by use of the Mason 
circuit model [6], so that the stress and strain fields are 
taken into account for all layers of the stack; this also en-
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ables its nonlinear simulation. The Mason model is appro-
priate because the acoustic fields are referenced to ground 
on it, thus providing a better understanding when extend-
ing it to the nonlinear domain. 
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Fig. 1. BAW resonator circuit model implementation, follow-

ing the Mason model approach. Electro-acoustic cou-
pling occurs in the piezoelectric layer, whereas acous-
tic propagation occurs along the entire materials stack. 

2.1.1 Nonlinear Modeling 

A complete model for a BAW resonator extended to 
the nonlinear domain is found in reference [7]. Its deriva-
tion is based on the internal energy and its corresponding 
thermo-dynamical relations up to third-order, which along 
with measurements, allow for the identification of the 
dominant nonlinear terms. The constitutive equations for 
piezoelectricity are 

 NL
E TeEScT  , (1)

 

 NL
S DEeSD    (2) 

with T, S, E and D being the stress, strain, electric field and 
displacement field respectively and cE, e and S the elastic-
ity, piezoelectric coefficient and permittivity. The nonlin-
ear terms TNL and DNL are: 
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and dominant nonlinear coefficients, for aluminum nitride 
(AlN) being 

 5/2e = -8.5, (5) 

 
E

E

c

c

6
3  = -18.5. (6) 

It is important to mention that these nonlinear terms are 
dominant within the pass-band, and thus other terms could 

be dominant out-of-band, as the fields’ distribution change. 
However, they are correct when simulating nonlinearities 
with driving signals within the pass-band.  

Finally, following the Mason model derivation, in-
cluding the nonlinear terms, proposed by [8], one can find 
the two nonlinear sources that can implement all nonlinear 
contributions: 
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The nonlinear sources can be added in the elemental 
cell implementation of the piezoelectric layer. 
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Fig. 2. Circuit model implementation of an elemental cell of 

the piezoelectric layer. Both mechanical and electrical 
domains are shown, as well as the electro-acoustic 
coupling and the nonlinear sources Tc and Vc. 

2.2 BST Capacitor 

Ferroelectric materials are well known for their high 
permittivity values, what makes them good candidates for 
applications where small footprint is required. On the other 
hand, the permittivity is nonlinear and thus changes with 
the electric field, therefore being a desirable attribute for 
tunable applications [9] or a major drawback when high 
linearity is a requirement. 

The samples being used for this work consist on 
a 240 nm thick Ba0.7Sr0.3TiO3 sandwiched between two 
metal electrodes on top of a 500 nm SiO2 layer. The bottom 
electrode is made of a 200 nm platinum (Pt) layer, sput-
tered over a thin (10 nm) TiO2 adhesion layer, to prevent 
oxygen leakage from the ferroelectric and to resist the high 
temperatures for BST deposition. The top electrode is 
a 350 nm gold (Au) layer with an adhesion layer of Ti 
(20 nm). 

2.2.1 Modeling 

Electrical characterization has been carried on-wafer, 
at LETI, for the fabricated samples by use of a network 
analyzer. Results are summarized in Fig. 3. 
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Fig. 3. Extracted dielectric constant vs. bias voltage. 

De-embedding the parasitic capacitance of the SiO2 
and Si substrate, for different applied voltage levels, allows 
for an accurate description of the permittivity dependence 
on the electric field, as follows [10]: 
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with ε(0) = 320 and E1/2 = 3.5 107 V/m. On the other hand, 
the loss tangent is not smaller than tan = 0.02, what leads 
to an electrical model in Fig. 4, with R = 2 k. This is the 
capacitor model that will be used to implement the filter in 
the circuit simulator. 

C=A(E)/t

R=2 k  
Fig. 4. Electrical circuit model of the BST capacitor; the 

model includes a purely low-loss capacitance whose 
permittivity changes with the electric field and the 
corresponding dielectric losses. 

2.3 Filter 

The topology of the filter is of a lattice type, with the 
particularity that the crossed resonators are replaced by the 
BST capacitors. For applications where a very wide band-
width is not required this solution might be enough, and 
has the advantage that the BST capacitors come with a very 
small footprint compared to the resonators. The area of the 
resonators and capacitors are set accordingly so that the 
filter shows a good 50 ohms impedance matching at the 
central frequency, being 2.24·10-8 m2 and 1.57·10-10 m2 
respectively. Figure 5 shows the circuit implementation of 
the filter, and Figures 6 and 7 show the impedance match-
ing at the input and the transmission s-parameters respec-
tively. 
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Fig. 5. BAW filter with BST capacitors implementation, of 

the lattice type, having balanced input and output. 
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Fig. 6. Smith chart of the simulated input reflection 

coefficient, showing good impedance matching at the 
central frequency. 
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Fig. 7. Simulated transmission S-parameters of the BAW 

filter, showing a good overall response. 

3. Nonlinear Analysis 
The requirements regarding the nonlinear behavior of 

filters are getting more and more challenging as new com-
munication standards require higher levels of linearity to 
perform properly [1]; and it is expected to get even more 
challenging when LTE carrier aggregation gets established. 
In this scenario, it is of a crucial importance to test for the 
nonlinear behavior at the design stage prior to fabrication, 
as it avoids unnecessary fabrication iterations. 
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Specifications usually affect the transmission filters 
and the entire duplexers, with specific requirements for 
each. For example, a specific requirement for duplexers is 
the level of second-order intermodulation distortion and 
third-order intermodulation distortion that would produce 
mixing components that would fall within the receiver 
band, as this would desensitize the receiver. For single 
filters, the specifications usually affect the generation of 
spur content that could cause interference in other bands. 
More specifically, second harmonic, third harmonic and 
third-order intermodulation distortion. 

3.1 Second Harmonic Generation 

Second order nonlinearities, resulting in second order 
intermodulation distortion and second harmonic, are the 
main issue regarding the nonlinear behavior of aluminum 
nitride based BAW filters. This arises due to a piezoelectric 
constant that changes with the strain [7]. While this is true 
for single ended filters, it is not a concern for balanced 
filters, where the second harmonic is cancelled at the out-
put. This is also the case for the filter under study as shown 
in Fig. 8.  
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Fig. 8. Simulated second harmonic response at the output for 

the filter for all nonlinear contributions active (thick 
line), and for only the BAW resonators active (fine 
line). Input power is set at +25 dBm. 

3.2 Third Harmonic Generation  
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Fig. 9. Simulated third harmonic response at the output for the 

filter for all nonlinear contributions active (thick line), 
and for only the BAW resonators active (fine line). 
Input power is set at +25 dBm. 

The levels of third harmonic generated from regular 
AlN based filters are usually not that critical when com-
pared to the levels of second harmonic [11]. On the oppo-
site, it is well known that ferroelectrics exhibit a strong 
quadratic nonlinear response given its inherent tunable 
nature [5]. This is confirmed by the simulations presented 
here, in Fig. 9, where a very strong third harmonic is ob-
tained, with a maximum equivalent OIP3 of +42.5 dBm. 
For the same level of input power, the same filter with 
BAW resonators instead of BST capacitors, would show 
a level around -100 dBm. 

3.3 Third-Order Intermodulation Distortion 

Finally, the third-order intermodulation distortion is 
simulated, by use of two balanced tones with a separation 
of 10 MHz at +25 dBm, showing extremely high levels, 
with a maximum equivalent OIP3 of +32.5 dBm. This 
would degrade the overall signal quality, as it produces 
spectral regrowth, and can potentially produce spur signals 
that negatively impact on neighbor bands or other devices 
on the radiofrequency path. For a regular lattice filter, with 
no BST capacitors, the level of third-order intermodulation 
distortion would be around -60 dBm. 
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Fig. 10. Simulated third order intermodulation distortion re-

sponse at the output for the filter for all nonlinear con-
tributions active (thick line), and for only the BAW 
resonators active (fine line). Input power is set at 
+25 dBm. The central frequency is swept in a two tone 
test. 

4. Conclusions 
Second harmonic, or in general, second-order nonlin-

earities is the problematic aspect in regular AlN based 
BAW filters, while third-order nonlinearities are usually 
not a special concern. On the contrary, for BST-based 
filters we see very high levels of third harmonic and third-
order intermodulation distortion content. This would create 
serious doubts about the viability of tunable filter solutions 
based on ferroelectric materials like BST. Therefore, a non-
linear analysis would be of a crucial importance in those 
cases, and its filter applications probably limited to recep-
tion filters not being part of any duplexer.  
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While still more progress has to be done on testing 
this technology with other topologies, or even cancellation 
techniques, this work on a specific design shows nonlinear 
levels too high for a regular commercial filter. Therefore, 
exploring other high permittivity materials, not of a ferro-
electric nature, that could still offer a miniaturization 
advantage without the high nonlinear response, would be 
a smarter alternative. 
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