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Abstract. A two-stage CMOS operational amplifier with
both, gain-boosting and indirect current feedback frequency
compensation performed by means of regulated cascode am-
plifiers, is presented. By using quasi-floating-gate transis-
tors (QFGT) the supply requirements, the number of capa-
citors and the size of the compensation capacitors respect
to other Miller schemes are reduced. A prototype was fa-
bricated using a 0.5 µm technology, resulting, for a load
of 45 pF and supply voltage of ±1.65 V, in open-loop-gain
of 129 dB, 23 MHz of gain-bandwidth product, 60o phase
margin, 675 µW power consumption and 1% settling time of
28 ns.
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1. Introduction
The voltage amplifier is one of the most important

functional blocks in analog signal processing. It is widely
used as basic building block towards the design of many
complex functions, for instance: high-order filters, analog to
digital (A/D) and digital to analog (D/A) converters, to name
a few. It is well known that the performance of a voltage am-
plifier is related to some established characteristics, such as:
gain-bandwidth product, phase margin, and DC open loop
gain [1]. Unfortunately, the severe degradation of the gain
when modern technologies are employed is a limiting factor
for the accuracy and resolution in many applications [2]. It is
a consequence of large channel length reduction and shrin-
king of power supplies. Besides, the intrinsic gain, the sig-
nal headroom and the threshold voltage are also affected [3],
hindering the design of high-gain amplifiers by traditional
gain enhancement techniques. For instance, cascode ampli-
fiers have been commonly used for high frequency applica-
tions because of their single parasitic pole. However, cas-

code transistors require large power supply and present li-
mited output swing. Another common approach to boost
the voltage gain is by cascading gain stages. This strategy
allows to achieve a larger signal swing at the output node,
but requires utilization of complex and difficult-to-design
nested compensation networks to guarantee closed-loop sta-
bility [4, 5, 6]. Also, due to the reduction of the transistor
intrinsic gain, the overall gain for two-stages could be not
enough for many applications [7]. Other strategy is the use
of regulated cascode stages (gain-boosted stages) [8], which
employ local feedback to increase the output resistance and
the gain of a cascode amplifier without compromising sta-
bility. Unfortunately, the required power supply increases
and the output swing decreases, as in the case of cascode
structures. It was proposed in [2] the use of floating-gate
transistors to reduce the power supply requirements of gain-
boosted amplifiers, but the number of required capacitors can
be prohibitive since silicon area reduction is a crucial trend
in modern applications. Having identified these three im-
portant issues: gain reduction, complex frequency compen-
sation and large supply requirements, this paper proposes an
alternative that combines a gain-boosted telescopic amplifier
with reduced supply requirements and a second gain stage
with current feedback frequency compensation. By using
quasi-floating-gate transistors (QFGT) the number of capa-
citors is reduced by 50% with respect to the amplifier pro-
posed in [2], while the current feedback improves the settling
time.

2. Gain Boosted Amplifier with QFGT
Unlike the conventional gain-boosted telescopic ampli-

fier, the proposed topology, shown in Fig. 1, incorporates
a floating battery FB of value Vbat in order to reduce the re-
quired voltage at node Y to maintain M1, M2 and M3 ope-
rating in saturation mode. Assuming Ib1 and Ib2 with infi-
nite output resistance, the common source amplifier M3-Ib2
boosts the effective gain of the cascading transistor M2 by
a factor gm3rds3, where gm denotes transconductance and rds
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Fig. 1. Floating battery gain-boosted telescopic amplifier (FBG-
BTA).

drain-to-source resistance. Besides, the resistance at node
Vo achieve a high value Ro ≈ (gm3rds3)(gm2rds2)rds1 and the
corresponding voltage gain from Vin to Vout , AV , becomes

AV ≈−gm1gm2gm3rds1rds2rds3. (1)

Without FB, the minimum supply voltage requirements
of the amplifier is the sum of the supply voltage requirements
of the cascode current source Ib2 and the gate to source volt-
ages of M2 and M3, i.e V min

DD > Vsat,Ib2 + 2VT Hn +Vsat,m2 +
Vsat,m3 ≈ 4Vsat + 2VT Hn, where Vsat and VT Hn are the over-
drive and threshold voltages, respectively. With FB, the min-
imum required supply voltage is reduced to V min

DD > 4Vsat +
2VT Hn−Vbat . This floating battery is implemented by means
of a quasi-floating gate transistor conformed by Mr1 and Cb
[9], as illustrated in Fig. 1. Here, Mrl is connected as an
inverted P-N junction, i.e, as a quasi-infinite resistor in the
range of Gohms used to weakly connect the gate of M3 to the
bias voltage Vb [9]. As a result, the drain to source voltage of
M1 is not dependent on the gate to source voltage of M3, re-
sulting VDS1=VDS3-Vsat,m2-VT Hn. Therefore, Vb can be chosen
such that VDS1 is close to its minimum value V min

DS1 = Vsat,m1.
In this way, the range of negative output signal swing in-
creases, because M3 stills remains in saturation when the
output voltage is below VGS3. If Ib1 is a cascode current
source, the amplifier output swing is given by V swing

out =VDD-
Vsat,m1-Vsat,m2-2Vsat . Also, the gain boosting produces a large
reduction of the impedance at node X which will be used
in the next section to establish the frequency compensation.
This impedance can be expressed as

ZX =
1

(gm3rds3 +1)gm2 +
1

rds1
+ 1

rds2

≈ 1
gm2gm3rds3

. (2)

3. High-Gain Two-Stage Amplifier
Figure 2 illustrates the proposed high-gain two-stage

amplifier. The first stage is a differential realization
of a Floating Battery Gain-Boosted Telescopic Amplifier
(FBGBTA). In this amplifier, Mb and Vb establish a tail
current of value 2Ib, M1 and M2 conform the differential pair
and transistors M3 to M8 are used to implement the cascode
active load. The effective gains of the cascode transistors
M3, M4, M7 and M8 are boosted by a factor gmrds by means
of the common source amplifiers MGB1-Ib, MGB2-Ib, MGB3-
Ib and MGB4-Ib, respectively. As was explained in section
2, the voltage requirements of these gain boosting arrays are
relaxed by means of the floating batteries FB realized with
transistors Mrl and capacitors Cb. The bias voltages Vbn and
Vbp adjust the floating batteries to Vbatn and Vbatp . The se-
cond stage is a common source structure conformed by tran-
sistors M9 and M10. It has a maximum output swing given
by V swing

out =VDD-Vsat,m9-Vsat,m10. CL is the total load capaci-
tance to be driven by the amplifier. Besides, the proposed
frequency compensation array consists of two compensation
capacitors CC connected between the output node and two
internal low impedance nodes of the first gain stage, labeled
as node 1 and node 3. This compensation strategy is simi-
lar to the scheme reported in [4, 5]. The currents through
the capacitors form indirect feedback currents that boost the
non-dominant pole and the left half plane zero to higher fre-
quencies, as will be analyzed in Section 4.

4. Small Signal Analysis
The small signal model of the proposed amplifier is de-

picted in Fig. 3. Here R1, R2, R3, RL, C1, C2(≈Cgs,10), C3 and
CL denote the overall resistances and capacitances at nodes
1, 2, 3 and Vout , respectively. In order to simplify the ana-
lysis it is assumed that transistors M1 to M9 have transcon-
ductances gm and drain-to-source resistances ro, while tran-
sistor M10 has transconductance gm10 and drain-to-source re-
sistance ro. Besides, the gain boosting arrays are modeled as
voltage controlled current sources with gain g2

mro. It is also
considered R1 ≈ R3 ≈ 1/(g2

mro), R2 ≈ g2
mr3

o, RL ≈ ro, and
C1 ≈ C3. Now, by performing a nodal analysis of this cir-
cuit, it is obtained the linear system (3) and by solving it the
transfer function of the amplifier becomes

vout

vin
=

N(s)
D(s)

≈ Ao(−n2s2−n1s+1)
d3s3 +d2s2 +d1s+1

(4)
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Fig. 2. Floating Battery Gain-Boosted Telescopic Amplifier (FBGBTA).
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d2 ≈ g2

mr4
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d3 ≈ 1
2

r3
oC2CLCC. (10)

In this way, the amplifier presents three poles and two
zeros. First, the effect of the poles will be analyzed. Then
it will be demonstrated that the zeros have no effect in the
phase margin. Considering that d3s3 << d2s2 + d1s+ 1 at
the frequencies of interest, the amplifier can be analyzed as
a system with two poles. Assuming that the dominant pole
sp1 and the non-dominant pole sp2 are separated from each
other, one obtains

sp1 ≈ −1
d1

=
−1

gm10g2
mr4

oCC
, (11)

sp2 ≈ −d1

d2
=

−gm10CC

C2 (CL +2CC)
. (12)

According to (11) and (12), to satisfy sp1 << sp2 it is re-
quired that

gm10g2
mr4

oC2
C ≈ A4C2

C >>C2 (CL +2CC) (13)

where A = gmro is the intrinsic gain of a transistor. This
condition fulfills because typically C2

C > C2 (CL +2CC) and
A>> 1. Now, by combining (5) and (11) the gain-bandwidth
product results in

fGBW =
1
2

gm

CC
(14)

and fGBW is similar to the obtained with conventional Miller
compensation. Besides, it is well known that for a two-stage
amplifier in which the frequency behavior can be assumed
with a single non-dominant pole, the phase margin is ex-
pressed by [10],

Mφ = 90o−arctan
(

fGBW

sp2

)
. (15)

For instance, a phase margin of 60o means a sp2/ fGBW
value of about 1.7. By combining (12) and (14) and by con-
sidering CL >>CC,

CC = 0.92

√
gmC2CL

gm10
(16)

which represents a smaller capacitor CC respect to the re-
quired with Miller compensation

Fig. 4. Reduction of CC respect Miller compensation.

CMiller
C = 1.7

gm

gm10
CL. (17)

Figure 4 depicts the dependence of CMiller
C /CC with res-

pect to gm/gm10 and CL/C2 for a phase margin of 60o. It is
obtained by comparing (16) and (17). As can be observed,
the proposed frequency compensation reduce the size of
the required capacitors, allowing an increase of the gain-
bandwidth product and reducing the settling time respect to
the Miller compensation.

The effect of the zeros over the frequency response is
analyzed by solving N(s) = 0, where N(s) was defined in
(3). Here, it is concluded that the term −n1s of N(s) is ne-
gligible. Therefore, (3) can be simplified as

vout

vin
=

N(s)
D(s)

≈ Ao(1−n2s2)

d3s3 +d2s2 +d1s+1
(18)

with

z1,2 ≈±gm

√
gm10ro

C2CC
(19)

and the proposed frequency compensation produces two
identical real zeros, one in the left half and the other one
in the right half of the complex plane. In consequence, the
phase effects of these zeros cancel each other out. Besides,
the magnitude response of these zeros do not affect the sta-
bility because of |z1,2|> fGBW .

Design remarks: (i) Restrictions (13) and (16) must be sa-
tisfied in order to ensure stability with 60o of phase margin.
(ii) To reduce the voltage supply requirements, Vbn and Vbp
must be chosen such that VDS,MGBi be close to their minimum
values Vsat,MGBi .
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Aspect ratios and values
M1−M4 30 µm/0.6 µm
M5−M8 157.5 µm/0.6 µm

MGB1−MGB2 60 µm/0.6 µm
MGB3−MGB4 126 µm/0.6 µm

MRl 1.5 µm/0.6 µm
MB, M9 62.4 µm/0.6 µm

M10 315 µm/0.6 µm
VDD ±1.65 V

Ib 50 µA
Cb, CC, CL 1 pF, 2.5 pF, 45 pF

Tab. 1. Aspect ratios of transistors and bias details.

Parameter Calculated Simulated Measured
CC 2.8 pF 2.5 pF −−

fGBW 28.4 MHz 22 MHz 20 MHz
Mφ 54o 60o 59o

Tab. 2. Calculated, simulated and measured parameters.

5. Results
A two-stage amplifier using the structure shown in

Fig. 2 was simulated in HSPICE using BSIM4.6 level
49 models of a double-poly, three metal layers, 0.5 µm
CMOS technology from ON-Semi foundry (VT Hn = 0.65 V,∣∣VT Hp

∣∣= 0.95 V). The aspect ratio of the transistors and the
bias of the circuit are detailed in Tab. 1. Dimensioning of
the circuit was done considering the equations presented in
Section 4 for fGBW = 28 MHz and with CL = 45 pF and
Ib = 50 µA, resulting gm = 0.001 A/V, gm10 = 0.0024 A/V,
C2 = 0.52 pF and CC = 2.8 pF. For the simulations, a dual
power supply of VDD = ±1.65 V and a bias current of
Ib = 50 µA were employed, while the values of the used
capacitors were Cb = 1 pF, CL = 45 pF and CC = 2.5 pF
(12.75 times lower than with Miller compensation). A com-
parison of the calculated, simulated and measured parame-
ters CC, fGBW and Mφ is summarized in Tab. 2. According
to the obtained results and despite the simplified small sig-
nal analysis, we conclude that the behavior of the amplifier
follows the course anticipated in the synthesis of the circuit
performed in Section 4.

Figure 5 shows the simulated input-output DC transfer
characteristics for selected values of gain, where no varia-
tions of an offset of 3.7 µV were found. Figure 6 shows
the open loop simulation of magnitude and phase of the pro-
posed amplifier, and its comparison with other cascode con-
ventional compensated structure [11] and the conventional
Miller compensated two-stage with telescopic input stage
amplifier. Because of the impedance reduction at nodes 1
and 3 used in the indirect compensation scheme, a lower
degradation is observed in the phase margin when compared
with other previously reported amplifiers. The proposed am-
plifier presents a DC gain of 129 dB, unity-gain frequency
of 22 MHz and phase margin of 60o.

Fig. 5. Input Output DC transfer characteristic for a) 74 dB
Gain, b) 60 dB Gain, c) 54.9 dB and d) 40 dB

Fig. 6. Frequency response of Proposed, Conventional Cascode
and conventional Miller two stage amplifiers with CL =
45 pF.

The simulated step response of the proposed amplifier
in non-inverting unity-gain configuration is shown in Fig. 7.
Here, an input step of 100 mV with 1 ns rise time was used.
The amplifier presents a settling-time of 28 ns which is 439
ns lower than with the compensated Miller and 19 ns lower
than with the compensated conventional cascode.

To estimate the sensitivity to tolerances of the pro-
posed amplifier, a Monte Carlo simulation for 100 sam-
ples was performed using the Pelgrom’s model [12] and
maximum tolerances of 5% for capacitors. Figure 8 shows
a fGBW mean value of 22.9 MHz with a standard deviation of
189 kHz, while Mφ presents a mean value of 60o with a stan-
dard deviation lower than 1o. A summary of the simula-
tion results of the three compared amplifiers and a two-stage
OPAMP with Miller compensation [13] is shown in Tab. 3.
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Fig. 7. Settling time simulation results.

Fig. 8. Phase Margin Monte Carlo simulation

FBGBTA CNV- CNV [13]
CAS MILLER

Gain (dB) 129 101 101 83
GBW (MHz) 23 26 2.7 5.4

Phase Margin (Deg) 60 47 45 67
1% Settling time (ns) 28 47 467 –

Power
Consumption (µW) 675 253 253 207
Supply Voltage (V) ±1.65 ±1.65 ±1.65 ±1.65

Cc (pF) 2.5 2.5 45 2.5 @
CL = 5 pF

Chip area (mm2) 0.0269 0.0197 0.0661 –

Tab. 3. Simulation results.

To validate the proposed circuit, a prototype was fabri-
cated using the ON Semiconductor 0.5 µm CMOS techno-
logy through MOSIS. Figure 9 shows the circuit micropho-
tography. The amplifier active area is of 124 µm x 217 µm.
The circuit was measured with CL = 45 pF, VDD =±1.65 V
and Ib = 50 µA. The measured closed-loop configuration by
using a feedback resistor R f = 560 kΩ and an input resistor
Ri = 1 kΩ leads to a lower frequency gain of R f /Ri = 54 dB.

Fig. 9. Microphotography (124 µm x 217 µm).

Fig. 10. Measured magnitude and phase responses in closed-
loop configuration.

Fig. 11. Experimental step response for a non-inverting unity-
gain configuration.

The measured frequency response is depicted in
Fig. 10. As can be noticed, a fGBW of 20 MHz and a Mφ

of 59o were obtained, which are consistent with the calcu-
lated and simulated results of Tab. 2. The measured step
response is shown in Fig. 11. A settling time of 270 ns for
an input step of 0.1 V with a settle band at 1% of ampli-
tude was obtained. The difference between simulations and
measurements of the settling time are basically due to the
measurement setup, because in a transient it is not possible
to perform the de-embedding of parasitic capacitances, as for
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example, wire bonding, package, PCB, connectors, which
was estimated in the order of 40 pF.

6. Conclusion
In this paper, a two-stage high-gain CMOS operational

amplifier with gain-boosting performed by means of regu-
lated cascode amplifiers was presented. The gain-boosting
enhances the low frequency gain and reduces the power su-
pply requirements, while the low impedance nodes created in
the first stage are used to implement an indirect current feed-
back frequency compensation. It produces dominant and
non-dominant poles separated from each other, and two ze-
roes with phase effects that cancel each other out. This fre-
quency compensation also reduces the size of the required
capacitors by an order of magnitude, saving silicon area,
increasing phase margin and reducing the settling time res-
pect to other Miller compensation schemes. By performing
Monte Carlo simulations it was demonstrated that the pro-
posed amplifier is not greatly affected by process variation,
preserving stability. Experimental results of a prototype fa-
bricated in an ON Semi 0.5 µm technology validate the syn-
thesis of the circuit performed in Section 4.

Acknowledgements
The authors thank to the National Council of Science

and Technology (CONACyT) of Mexico for the financial
support through the projects SEP-2008-106269 and 181201,
and to the Program for Faculty Improvement (PROMEP)
of Mexico who partially supported this work through the
projects UPPUE-PTC-047. The authors would also to thank
to Ignacio Juarez for his helping in the prototype micropho-
tography.

References

[1] BULT, K. and GEELEN, G. J. G. M. A fast-settling CMOS OP Amp
for SC circuits with 90-dB DC gain. IEEE Journal of Solid-State
Circuits, 1990, vol. 25, no. 6, p. 1379 - 1384.

[2] RAMIREZ-ANGULO, J., et. al. Low voltage gain boosting schemes
for one stage operational amplifiers. IEEE Journal of Solid-State Cir-
cuits, 1990, vol. 25, no. 6, p. 1379 - 1384.

[3] ANNEMA, A-J., NAUTA, B., VAN LAGEVELDE, R. Analog cir-
cuits in ultra-deep-submicron CMOS. IEEE Journal of Solid-State
Circuits, 2005, vol. 40, no. 1, p. 132 - 143.

[4] AHUJA, B. K. An improved frequency compensation technique for
CMOS operational amplifiers. IEEE Transactions on Circuits and
Systems II, 1983, vol. 18, no. 6, p. 629 - 633.

[5] SAXENA, V., BAKER, R. J. Indirect compensation techniques for
three-stage CMOS OP-Amps. IEEE International Midwest Sympo-
sium on Circuits and Systems (MWSCAS). Seattle (USA), 2010,
p. 588 - 591.

[6] CHONG, S. S., CHAN, P. K. Cross feedforward cascode com-
pensation for low-power three-stage amplifier with large capacitive
load. IEEE Journal of Solid-State Circuits, 2012, vol. 47, no. 9,
p. 2227 - 2234.

[7] SANCHEZ-RODRIGUEZ, T., RAMIREZ-ANGULO, J., LOPEZ-
MARTIN, A. J., CARBAJAL, R. G., PATIL, C. Gain enhancement
and low-voltage techniques for analog circuits in deep submicrom-
eter CMOS technologies. In INIEWSKI,K. (Ed.) CMOS Nanoelec-
tronics: Analog RF VLSI Circuits p. 503 - 527, McGraw-Hill, New
York, 2011.

[8] DAS, M. Improved design criteria of gain-boosted CMOS OTA with
high-speed optimizations. IEEE Transactions on Circuits and Sys-
tems II, 2002, vol. 49, no. 3, p. 204 - 207.

[9] RAMIREZ-ANGULO, J., LOPEZ-MARTIN, A. J., CARBAJAL, R.
G., LACKEY , C. Low-voltage closed-loop amplifier circuits based
on quasi-floating gate transistors. In Proceedings of International
Symposium on Circuits and Systems (ISCAS). Bangkok (Thailand),
2003, p. I-813 - I-816.

[10] PALMISANO, G., PALUMBO, G., PENNISI, S. Design proce-
dure for two-stage CMOS transconductance operational amplifiers:
A tutorial. Analog Integrated Circuits and Signal Processing, 2003,
vol. 27, p. 179 - 189.

[11] HURST, P. J., LEWIS, S. H., KEANE, J. P., FARBOD, A. and
DYER, K. C. Miller compensation using current buffers in fully dif-
ferential CMOS two-stage operational amplifiers. IEEE Transactions
on Circuits and Systems II, 2004, vol. 51, no. 2, p. 275 - 285.

[12] PELGROM, J. M., DUINMAIJER, C. J., WELBERGS, P. G. Match-
ing properties of MOS transistors. IEEE Journal of Solid-State Cir-
cuits, 1989, vol. 24, no. 5, p. 1433 - 1440.

[13] MAHATTANAKUL, J., CHUTICHATUPORN, J. Design procedure
for two-stage CMOS opamp with flexible noise-power balancing
scheme. IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, 2005, vol. 52, no. 8, p. 1508 - 1514.

About Authors . . .
Javier LEMUS-LOPEZ received the B.Sc. degree and
the M.Sc. degree in Electronics from the Universidad Au-
tonoma de Puebla, Mexico in 2004 and 2007 respectively.
He is currently working at Instituto Nacional de Astrofı́sica,
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