Realization of Low-Voltage Modified CBTA and Design of Cascadable Current-Mode All-Pass Filter

Umut Engin AYTEN1, Mehmet SAGBAS2, Shahram MINAEI3

1 Dept. of Electronics and Comm. Engineering, Yildiz Technical University, Esenler, 34222, Istanbul, Turkey
2 Dept. of Electric-Electronics Engineering, Yeni Yuzyil University, Zeytinburnu, 34010, Istanbul, Turkey
3 Dept. of Electronics and Communications Engineering, Dogus University, Acibadem, Kadikoy, 34722, Istanbul, Turkey

ayten@yildiz.edu.tr, sagbasm@gmail.com, sminaei@dogus.edu.tr

Abstract. In this paper, a low voltage modified current backward transconductance amplifier (MCBTA) and a novel first-order current-mode (CM) all-pass filter are presented. The MCBTA can operate with ±0.9 V supply voltage and the total power consumption of MCBTA is 1.27 mW. The presented all-pass filter employs single MCBTA, a grounded resistor and a grounded capacitor. The circuit possesses low input and high output impedances which make it ideal for current-mode systems. The presented all-pass filter circuit can be made electronically tunable due to the bias current of the MCBTA. Non-ideal study along with simulation results are given for validation purpose. Further, an nth-order cascadable all-pass filter is also presented. It uses n MCBTAs, n grounded resistors and n grounded capacitors. The performance of the proposed circuits is demonstrated by using PSPICE simulations based on the 0.18 µm TSMC level-7 CMOS technology parameters.

Keywords

Modified current backward transconductance amplifier (MCBTA), current-mode circuits, all-pass filter, active networks.

1. Introduction

All-pass filters (APF) are widely used in analog signal processing in order to shift the phase while keeping the amplitude constant, to produce various types of filter characteristics, and to implement high-Q frequency selective circuits. Therefore, numerous circuits are proposed in the literature for realizing all-pass filters (see [1-11] and the references cited therein). However most of these circuits suffer from the use of excessive number of active components. Since power consumption is one of the most important parameters for the circuit designers, they look for simple structures employing no more than one active element. Use of large number of passive components, lack of electronic tunability, use of floating capacitors, and unsuitability for cascade connection are some of the other disadvantages which we may encounter in previously reported all-pass filters. The proposed circuits in references [1-6] operate in voltage-mode (VM). In addition, the circuit in ref. [7] operates in transadmittance-mode (TAM) where the input is voltage, the output is current. However, the CM based filters where both input and outputs are current [8-16] have been considered favorable owing to properties such as design simplicity, greater linearity, wider dynamic range, higher usable gain, and low power consumption compared with their VM counterparts.

Active circuits and other signal processing circuits play an important role in electronics. One of the versatile components for such applications is current backward transconductance amplifier (CBTA) proposed in 2010 [17]. As a consequence by using CBTA, grounded and floating inductance simulators [18], [19], frequency dependent negative resistor (FDNR) [19], and voltage- and current-mode filters [7], [17], [20-22], oscillators [23], [24], mutually coupled circuit [25] and multiphase sinusoidal oscillator [26] are presented in the literature.

In this paper, firstly, a low-voltage low-power modified CBTA (MCBTA) is proposed and discussed. Then, a new CM APF filter is proposed. The proposed APF employs one grounded capacitor, one grounded resistor and one MCBTA. It has low input current and high output impedance properties which make it ideal for cascade connection. The proposed CM APF is compared with some other previously reported ones as shown in Tab. 1. Although, the filters in [13] and [14] employ less passive component than the proposed filter, they use an active component namely; the z-copy current differencing transconductance amplifier (ZC-CDTA) which has more terminal than the MCBTA. In fact the implementation of the ZC-CDTA needs more transistors than MCBTA which consequently brings more power consumption and larger chip area. Further, a new current-mode general nth-order cascadable all-pass filter by cascading n first order all-pass section is proposed. It employs n grounded capacitors, n grounded resistors, and n active components. Finally, the simulation results are given for verifying the theoretical analysis.
terminals are defined as internal structure. In this case, the currents of the copied be increased easily by extending current mirrors used in its

\[\alpha = \frac{\epsilon}{|,|, \omega, \alpha} \]

(respective terminals. They can be expressed as;

the current, voltage or transconductance gains between the

\[\mu = \frac{\epsilon}{w, \omega, \mu} \]

(ideally), for the MCBTA we define \(I_p = I_w \). This will simplify the internal CMOS structure of the MCBTA in comparison to CBTA. The MCBTA terminal equations can be defined as

\[I = I_w = g_m(s)(V_p - V_n), V_n = \mu_w(s)V_z, \]

\[I_p = -\alpha_p(s)I_w, I_n = -\alpha_n(s)I_w. \]

The parameters \(\alpha_p(s), \alpha_n(s), \mu_p(s) \) and \(g_m(s) \) in (1) are the current, voltage or transconductance gains between the respective terminals. They can be expressed as;

\[\alpha_p(s) = \frac{\omega_{\text{diff}}(1 - \epsilon_p)}{(s + \omega_{\text{lin}})(s + \omega_{\text{mot}})}, \]

\[\alpha_n(s) = \frac{\epsilon_n(1 - \epsilon_n)}{(s + \omega_{\text{lin}})}, \]

\[\mu_p(s) = \frac{\epsilon_p}{s + \omega_{\text{lin}}}, g_m(s) = \frac{\epsilon_p \omega_{\text{lin}}}{s + \omega_{\text{mot}}} \]

where \(|,|, \omega, \alpha \) known as tracking errors are ideally equal to zero, \(g_o \) is the DC transconductance gain. Also \(\omega_{\text{diff}}, \omega_{\text{lin}}, \omega_{\text{mot}}, \omega_p \) denote corner frequencies. Note that, in the ideal case, the voltage and current gains (\(\mu_n(s), \alpha_n(s), \alpha_p(s) \)) are equal to unity.

The number of \(z \) output terminals of the MCBTA can be increased easily by extending current mirrors used in its internal structure. In this case, the currents of the copied \(z \) terminals are defined as \(I_z = g_m(s)(V_p - V_n) \). Meanwhile, the voltage at \(w \) terminal is dependent only to the \(z \) terminal.

2. Modified Current Backward Transconductance Amplifier and Circuit Description

A recent publication introduced the concept and implementation of a circuit building block termed CBTA [17]. CBTA is proven useful in many voltage-mode and current-mode analog signal processing applications, such as current-mode and voltage-mode filters, and immittance function simulators; see for example [7], [17-26]. The MCBTA is obtained by modifying the CBTA active component that introduced in [17]. The symbol of the MCBTA and its equivalent circuit are shown in Fig. 1, where \(p \) and \(n \) are input terminals, \(w \) and \(z \) are output terminals. In comparison to the CBTA, the MCBTA differs in the relationship between currents \(I_p \) and \(I_w \). While in CBTA \(I_p = I_w \) (ideally), for the MCBTA we define \(I_p = -I_w \). This will simplify the internal CMOS structure of the MCBTA in comparison to CBTA. The MCBTA terminal equations can be defined as

\[I = I_w = g_m(s)(V_p - V_n), V_n = \mu_w(s)V_z, \]

\[I_p = -\alpha_p(s)I_w, I_n = -\alpha_n(s)I_w. \]

The CMOS implementation of the MCBTA is shown in Fig. 2. It consists of a transconductance stage [27] and a current conveyor stage [28]. The internal circuit of the MCBTA is simpler than CBTA since there is no need to invert the current of the \(p \) terminal. Therefore smaller number of transistors is used in the internal structure of the MCBTA than CBTA. The dimensions of the MOS transistors used in the MCBTA implementation are given in Tab. 2. As seen from Fig. 2, the transistors \(M_{13-18} \) are used for realizing a dual-output transconductance stage, while transistors \(M_{2-12} \) form a current conveyor. In addition the current source \(I_{\text{REF}} \) and transistor \(M_i \) are employed for biasing purpose. The input voltage is defined as \(V_{\text{in}} = v_p - v_n \), and \(i_o \) is the output current of the transconductance stage. The output current \(i_o \) can be found as:

\[i_o = \frac{2I_{\text{REF}}K}{\sqrt{2I_B}}v_{\text{in}} \]

where \(K = \mu C_{ox}W_{18,19}/2L_{18,19}, \mu \) is the mobility of the carrier, \(C_{ox} \) is the gate-oxide capacitance per unit area, \(W_{18,19} \) is the effective channel width, \(L_{18,19} \) is the effective channel length of the transistors \(M_{10-M_{19}} \) and \(I_B \) is the bias current flowing through \(M_2 \).

Tab. 1. Comparison of the CM APFs.

* Composed of two NMOS transistors
Fig. 2. CMOS implementation of MCBTA.

<table>
<thead>
<tr>
<th>PMOS Transistors</th>
<th>W(µm)/L(µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1–M4</td>
<td>7.2/0.36</td>
</tr>
<tr>
<td>M6, M7</td>
<td>3.6/0.36</td>
</tr>
<tr>
<td>M13–M17</td>
<td>11.52/1.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NMOS Transistors</th>
<th>W(µm)/L(µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8, M9</td>
<td>1.8/0.36</td>
</tr>
<tr>
<td>M10–M12</td>
<td>3.6/0.36</td>
</tr>
<tr>
<td>M18, M19</td>
<td>4.5/0.36</td>
</tr>
<tr>
<td>M20–M22</td>
<td>5.76/1.44</td>
</tr>
</tbody>
</table>

Tab. 2. Dimension of the CMOS transistors.

3. DC and AC Characteristics of the MCBTA

The characteristics of the proposed circuits have been verified using PSPICE simulations. The MCBTAs are simulated using the schematic implementation shown in Fig. 2, with DC power supply voltages equal to $V_{DD} = V_{SS} = 0.9$ V. I_{REF} and I_B are chosen as 100 µA. The simulations are performed using 0.18 µm level-7 TSMC CMOS technology parameters. Some of the technology parameters used in PSPICE simulations are given as follows: threshold voltage $V_{TH} = 0.3725$ V, low field mobility $U_0 = 259.53$ cm²/Vs, and gate oxide thickness $Tox = 4.1 \times 10^{-9}$ m for the NMOS transistor in addition to $V_{TH} = -0.3948$ V, $U_0 = 109.976$ cm²/Vs, and $Tox = 4.1 \times 10^{-9}$ m for the PMOS transistor. The power consumption of the MCBTA is 1.27 mW. The DC transconductance transfer characteristics of i_z and i_{zc} against $v_p - v_n$ when $g_m = 0.5$ mS are shown in Fig. 3. For this simulation, a DC voltage sweep between $-0.9 \text{ V} \leq v_z \leq 0.9 \text{ V}$ was applied to the z terminal and the output voltage at w terminal was measured while the p and n terminals were grounded. From Fig. 3 it can be seen that the MCBTA works linearly between $-0.75 \text{ V} \leq v_w \leq 0.85 \text{ V}$ with an error less than 1 %.

In addition, the AC analysis of the CMOS implementation of the MCBTA given in Fig. 2 is investigated. The frequency characteristics, non-ideal parameters (current, voltage and transconductance tracking errors and their corner frequencies) and the maximum operating frequency of the MCBTA are found. The frequency responses of the transconductance gain $|g_m| = |I_z/(V_p - V_n)|$, the voltage gain $|\mu_w| = |V_w/V_z|$, and the current gains $|\alpha_p| = |I_p/I_w|$, $|\alpha_n| = |I_n/I_w|$ are given in Figs. 6 (a-c), respectively. It should be mentioned that the same simulation results are obtained for $|I_p/I_w|$ and $|I_n/I_w|$ both given in Fig. 6c.
Fig. 4. The voltage transfer characteristic $v_w = v_z$.

Fig. 5. The current transfer characteristics a) i_p versus i_m, b) i_n versus i_m.

From these simulation results, corner frequencies are found as $\omega_{\alpha p} = 9610$, $\omega_{\alpha n} = 9610$, $\omega_{gm} = 650$, $\omega_{\mu} = 9675$ Mrad/s and errors of these gains are $\epsilon_{\alpha p} = 0.0013$, $\epsilon_{\alpha n} = 0.0013$, $\epsilon_{gm} = -0.02$ and $\epsilon_{\mu} = -0.079$, where, g_0 is 0.5 mS by choosing $I_B = 100$ µA. As a result, the maximum operating frequency of the MCBTA can be found as follows $f_{\text{max}} = \min\{f_{\alpha p}, f_{\alpha n}, f_{gm}, f_{\mu}\} \approx 104$ MHz.

Fig. 7 shows the non-ideal case and high frequency applications device model of the MCBTA, including essential non-idealities such as the high level input and output terminal resistances (R_p, R_n, R_z, R_{zc}), the low level output resistance (R_w) and the input and output capacitances (C_p, C_n, C_z, C_{zc}). This approach is almost acceptable, provided that the implementations of the active devices do not employ multi-stage or complicated parts, which may insert additional poles or zeros to the frequency responses. The parasitic resistances and capacitances values of the MCBTA for proposed CMOS implementation are given in Tab. 3.

<table>
<thead>
<tr>
<th>Parasitic Impedances</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_p</td>
<td>50.1 kΩ</td>
</tr>
<tr>
<td>R_n</td>
<td>50.1 kΩ</td>
</tr>
<tr>
<td>R_z</td>
<td>249 kΩ</td>
</tr>
<tr>
<td>R_{zc}</td>
<td>249 kΩ</td>
</tr>
<tr>
<td>R_w</td>
<td>75 Ω</td>
</tr>
<tr>
<td>C_p</td>
<td>180 fF</td>
</tr>
<tr>
<td>C_n</td>
<td>180 fF</td>
</tr>
<tr>
<td>C_z</td>
<td>244 fF</td>
</tr>
<tr>
<td>C_{zc}</td>
<td>196 fF</td>
</tr>
</tbody>
</table>

Tab. 3. Parasitic impedances of the MCBTA.
4. MCBTA Based All-Pass Filter Design

Consider an inverting first-order all-pass (AP) transfer function given by

\[T(s) = \frac{s - \sigma}{s + \sigma}. \]

(3)

The proposed current-mode first-order AP filter is shown in Fig. 8. Nodal analysis using (1) yields the following current transfer function

\[T(s) = \frac{I_o(s)}{I_i(s)} = \frac{-sg_mR_i - g_m/C_1}{s + g_m/C_1}. \]

(4)

From (4), the \(R_1 \) resistor should be chosen as \(g_m = 1/R_1 \). Therefore, \(\sigma = g_m/C_1 \) and the ideal transfer function \(T(s) \) has a unity gain and a frequency dependent phase given by

\[T(s) = 2\tan^{-1}(\omega C_1/g_m) \text{ for } g_m = 1/R_1. \]

(5)

Fortunately, this matching condition does not affect the AP filter characteristics because it is orthogonally controlled with the external resistor \(R_1 \).

![Fig. 8. MCBTA-based current mode first order all-pass filter.](image)

4.1. Effect of Tracking Errors

Fig. 1b shows the equivalent circuit of MCBTA. Here \(\alpha_w(s), \alpha_i(s) \) and \(\mu_i(s) \) are the current and voltage gains, respectively, \(g_m(s) \) is the transconductance gain as defined before.

The effect of the tracking errors can be found from the traditional analysis and by using non-ideal terminal equation of the MCBTA, the current transfer function of the circuit can be written as

\[\frac{I_o(s)}{I_i(s)} = -\frac{s\alpha_w g_m R_i - \alpha_m g_m}{s + g_m/C_1}. \]

(6)

Comparing (6) and (4) it can be realized that the pole of the proposed all-pass filter transfer function does not affect from the non-ideality parameters of the MCBTA.

4.2. Effect of Terminal Impedances

Considering the parasitic resistances \(R_p, R_c, R_{p_c}, R_{c_p}, R_{p_c} \) and capacitances \((C_m, C_i, C_o, C_{mp}, C_{im}) \) shown in Fig. 7, the total impedances at nodes terminals \(p \) and \(n \) for the circuit of Fig. 8 can be given as follows

\[Z_{p1} = R_p||Z_c((1/sC_m)), \]

(7a)

\[Z_{c1} = R_c||Z_c((1/sC_i))(1/sC_o)((1/sC_{mp}). \]

(7b)

Therefore, the non-ideal the transfer function of the circuit in terms of \(\alpha_w, \alpha_i, Z_{p1} \) and \(Z_{c1} \) can be given as,

\[T(s) = -\frac{g_m(\alpha_w Z_{p1} - \alpha_i Z_{c1})}{g_m Z_{c1} + 1}. \]

(8)

The non-ideal input and output impedances of the proposed filter can be found as follows

\[Z_i = R_{p1}, \text{ } Z_o = R_{c1}||((1/sC_{im}). \]

(9)

In ideal condition the output has infinite impedance property since \(R_{p1} \) is the high impedance output terminal of the MCBTA and \(C_{im} \) is almost zero (see Tab. 3). Moreover, since \(R_{c1} \) of the MCBTA has low value (ideally zero) the proposed circuit enjoys low input impedance property. Therefore the proposed all-pass filter is fully cascadable. Further, the parasitic impedances can be compensated by choosing the external resistor value \(R_1 \) small enough with respect to the terminal resistance \(R_i \) and the external capacitor value large enough with respect to the terminal capacitances \((C_i, C_o) \).

5. Design of nth-order All-Pass Filter

The general all-pass filters have the transfer function

\[T(s) = \frac{I_o(s)}{I_i(s)} = \frac{D(-s)}{D(s)}. \]

Equation (10) can be rewritten the multiplication of the \(n \) all-pass sections as follows

\[T(s) = \prod_{i=1}^{n} \frac{s - s_i}{s + s_i}, \text{ } \text{Re } \{s_i\} > 0, i=1,2,\ldots, n \]

(11)

where \(T(s) \) is the all-pass function defined by the open right half of \(s \)-plane poles \(s \). If all of the poles/zeros of \(T(s) \) are real, it can be realized by cascading \(n \) first-order all-pass filter of Fig. 8 with transfer function given in (4). The result is shown in Fig. 9. In this case the transfer function on the obtained \(n \)th order all-pass filter is given as

\[T(s) = \prod_{i=1}^{n} \frac{-s g_m R_i - g_m / C_i}{s + g_m / C_i} \]

(12)

where \(g_m = 1/R_1 \) and \(s_i = g_m/C_i, i = 1, 2, \ldots, n \).
6. Design Example and Simulation Results

The fourth-order all-pass filter circuit is realized to verify the performance of the proposed nth-order all-pass filter circuit as an example. The proposed fourth-order all-pass filter transfer function is determined to be

$$T(s) = \frac{s^2 - 2.1s + 1}{s^2 + 2.1s + 1}.$$ \hspace{1cm} (13)

The passive components values of the 4th-order all-pass filter can be found as follows;

- **Section I:** $C_1 = \frac{1}{0.73R_1\omega_c}$, $g_{m1} = \frac{1}{R_1}$
- **Section II:** $C_2 = \frac{1}{1.37R_2\omega_c}$, $g_{m2} = \frac{1}{R_2}$
- **Section III:** $C_3 = \frac{1}{R_3\omega_c}$, $g_{m3} = \frac{1}{R_3}$
- **Section IV:** $C_4 = \frac{1}{R_4\omega_c}$, $g_{m4} = \frac{1}{R_4}$

The angular frequency is scaled by $\omega_c = 2\pi \times 10^6$ rad/s. Firstly, the simulation is done for the first-order all-pass filter circuit shown in Fig. 8. g_m and R_1 are chosen as 0.5 mS and 2 kΩ, respectively and C_1 is found 79.58 pF for $f_c = 1$ MHz. The gain, phase and group delay characteristics of the proposed first-order all-pass filter can be seen in Fig. 10.

To test the input dynamic range of the proposed current-mode first-order all-pass filter, the time-domain simulation of the all-pass filter as an example has been performed for a sinusoidal input signal at $f = 1$ MHz. Fig. 11 shows the time-domain response of the filter where an amplitude of 140 μA (peak to peak) is obtained at the output without significant distortion. The THD value for the current output is less than 0.1% and the total power dissipation of the proposed all-pass filter is found to be 1.27 mW. The famous X–Y pattern (Lissajous pattern) for the circuit as -90° phase shifter is shown in Fig. 13. Since the amplitudes of the input and output of the proposed APF are different, the shape of the simulated phase characteristic in Fig. 12 looks like ellipsis.

The 4th-order all-pass filter circuit using the MCBTA is shown in Fig. 13. This circuit is obtained by cascading four all-pass filter circuits shown in Fig. 8.
magnitude and phase responses of the all-pass filter are in good agreement

From simulation, the gain values of the proposed circuit are 0.98 for frequencies lower than 500 kHz and 1.0152 for the corner frequency 1 MHz, while the theoretical value is one. The phases are measured to be -0.7° at low frequencies and -362° at 1 MHz while they are 0° and 360° respectively for ideal case.

A sinusoidal input current with 70 μA peak value is applied to the circuit and the output signal is observed as shown in Fig. 15a. The simulation results are found in very good agreement with the ideal ones. The FFT spectrum of the input and output signals are shown in Fig. 15b. The THD value for the current output is 2.52% and the total power dissipation of the proposed 4th-order all-pass filter circuit is found to be 5.08 mW.

7. Conclusion

A novel low-voltage low-power MCBTA is proposed and verified through PSPICE simulation using 0.18 μm TSMC level-7 CMOS technology parameters. The MCBTA operates at a low supply voltage of only ±0.9 V and a total power consumption of only 1.27 mW. A novel first-order current-mode all-pass filter using two grounded passive component and one MCBTA is also proposed. The proposed circuit has the advantage of having low input and high output impedances which makes it for easy cascadability. Further, a nth-order all-pass filter topology which
uses \(n \) MCBTAs, \(n \) grounded resistors and \(n \) grounded capacitors, is also proposed. As an example, a fourth-order all-pass filter which has only real poles/zeros and low \(Q \) value is designed. Non-ideal study along with simulation results are given to verify the theory.

References

[18] SAGBAS, M. Component reduced floating \(\pm L, \pm C \) and \(\pm R \) simulators with grounded passive components. AEU-Int. Journal of Electronics and Communications, 2011, vol. 65, p. 794-798.

About Authors ...

Umut Engin AYTEN received the M.Sc. and Ph.D. degrees in Electronics Engineering from the Yildiz Technical University, Istanbul, Turkey, in 2003 and 2009, respectively. He is currently an Asst. Professor at Yildiz Technical University. His current field of research concerns analog integrated circuits, active filters, current-mode circuits and analog signal processing.
Mehmet SAGBAS received his B.S. degree in Electronics Engineering from the Istanbul Technical University in 2000. He received his M.S. degree in Electronics Engineering from the Fatih University in 2004. He received his Ph.D. degree in Electronics Engineering from the Yildiz Technical University in 2007. He is currently an Assoc. Professor at Yeni Yuzyıl University. His research interests are analog integrated circuits and analog signal processing.

Shahram MINAEI received the B.Sc. degree in Electrical and Electronics Engineering from Iran University of Science and Technology, Tehran, Iran, in 1993 and the M.Sc. and Ph.D. degrees in Electronics and Communication Engineering from the Istanbul Technical University, Istanbul, Turkey, in 1997 and 2001, respectively. He is currently a Professor in the Department of Electronics and Communication Engineering, Dogus University, Istanbul, Turkey. He has more than 140 publications in scientific journals or conference proceedings. His current field of research concerns current-mode circuits and analog signal processing. Dr. Minaei is a senior member of the IEEE, an associate editor of the Journal of Circuits, Systems and Computers (JCSC), and an area editor of the International Journal of Electronics and Communications (AEÜ).