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Abstract. As a generalized particle filtering, the box-parti-
cle filter (Box-PF) has a potential to process the measure-
ments affected by bounded error of unknown distributions 
and biases. Inspired by the Box-PF, a novel implementa-
tion for multi-target tracking, called box-particle cardinal-
ity balanced multi-target multi-Bernoulli (Box-
CBMeMBer) filter is presented in this paper. More impor-
tant, to eliminate the negative effect of clutters in the esti-
mation of the numbers of targets, an improved generalized 
likelihood is derived. The approach can not only track 
multiple targets and estimate the unknown number of tar-
gets, but also handle three sources of uncertainty: stochas-
tic, set-theoretic and data association uncertainty. The 
advantage of the Box-CBMeMBer filter over the SMC- 
CBMeMBer filter is that it reduces the number of particles 
significantly when they reach similar accurate results and 
therefore remarkably decreases the runtime. The numerical 
study demonstrates it. 
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1. Introduction 
Multi-target tracking has attracted much attention in 

theoretical studies and practical applications. The objective 
of multi-target tracking is to jointly estimate the states and 
the number of targets from a sequence of observations with 
clutter, detection uncertainty and association uncertainty 
[1]. The finite set statistics (FISST) proposed by Mahler is 
an elegant Bayesian formulation of multitarget filtering 
based on random finite set (RFS) theory, which has gener-
ated considerable interests in recent years due to the devel-
opment of the Probability Hypothesis Density (PHD) filter 
[2], the Cardinalized PHD (CPHD) filter [3], and the 
Multi-Target Multi-Bernoulli (MeMBer) filter [4]. The 
PHD and CPHD recursions propagate moments and cardi-
nality distributions, while the MeMBer recursion propa-
gates (approximately) the multi-target posterior density. 
Many implementations of these three filters have been 
proposed, either using Sequential Monte Carlo (SMC) 
methods [5-7], or with Gaussian mixtures [8], [9].  

Recently, the problem of state estimation with quan-
tized measurements arises more and more interests in target 
tracking, especially in multi-sensor fusion and target track-
ing systems. Due to limited communication bandwidth, the 
measurements from sensors have to be compressed or 
quantized locally before being transmitted along the com-
munication link to the information fusion center. With the 
development of distributed sensor networks, one of the 
most challenging aspects of target tracking is how the 
quantized measurement data supplied by distributed sen-
sors to be applied to current tracking algorithms. The quan-
tized measurement that is different from conventional point 
measurement shows uncertainty due to randomness or 
statistical uncertainty. Obviously, the standard measure-
ment model is not adequate in this case. Much of work, 
e.g., [10], [11], have been done to deal with this problem. 
In particle filter (PF) methods, when the available measure-
ments present a high level of uncertainty, to reach an excel-
lent tracking accuracy, a large number of particles are 
needed to approximate the posterior state probability den-
sity function (PDF). However, it results in high computa-
tional complexity. Such an outcome would certainly be 
negative for the target tracking with strong real-time. Re-
cently, the concept of box-particle filtering in the context 
of reducing computation cost and processing distributed 
computing was first proposed in [12] and introduced again 
in [13]. The whole point is that box-PF is a Sequential 
Monte Carlo method generalized within set membership 
methods. As such, each box particle is propagated and 
corrected using set membership method and hence contains 
with guaranteed all the possible noise bounds (provided 
that these noises are bounded). The key idea is to replace 
a particle by a multi-dimensional interval or box of non-
zero volume in the state space. In [14] it is proven that box-
particles can be seen as supports of uniform probability 
density functions (PDF), which bring box-particle filters 
into Bayesian framework. In [15], a single target box-parti-
cle Bernoulli filter with box measurements was presented. 
Meanwhile, [16] derived a box-particle version of the PHD 
filter for multi-target tracking with an unknown number of 
targets, clutter and false alarms. 

In this paper, we propose a box-particle filter of the 
cardinality balanced multi-target multi-Bernoulli 
(CBMeMBer) recursion which accommodates nonlinear 
dynamic and measurement models with stochastic, set-
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theoretic and data association uncertainty. The key advan-
tage of this approach over the SMC-CBMeMBer filter [7] 
is that our method can reach the similar performance as the 
SMC-CBMeMBer filter with less computational complex-
ity and less time. Simulations demonstrate that both SMC-
CBMeMBer filter and Box-CBMeMBer filter perform 
comparably well when sufficient particles are used. How-
ever, to achieve similar satisfactory performance, the 
method presented in this paper needs much fewer particles 
than SMC-CBMeMBer.  

The rest of the paper is organized as follows. The 
necessary backgrounds on RFSs, cardinality balanced 
multi-target multi-Bernoulli filtering and interval method-
ology are given in Section 2 while Section 3 mainly intro-
duces the improved generalized likelihood, and describes 
the box particle filter implementations of cardinality bal-
anced multi-target multi-Bernoulli filter. A numerical study 
is presented in Section 4. Conclusions are drawn in the 
final Section 5. 

2. Background 
This section introduces multi-target system models, 

the cardinality balanced multi-target multi-Bernoulli 
filtering and interval analysis. 

2.1 Multi-Target System Model 

In multi-target tracking problem, suppose that at time 
k, there are N(k) target states ,1 , ( ), ,k k N kx x , each taking 

values in a state space nR xX  , and M(k) measurements 

,1 , ( ), ,k k M kz z  each taking values in an observation space 
nR zZ . In the random finite set approach, the finite sets 

of targets and observations, at time k, are treated as the 
multi-target state and multi-target observation, respectively 

  
   1 ( ), ,k k, k,N k  X x x XF ,   (1)

 

    ,1 ( ), ,k k k,M k  Z z z ΖF .  (2) 

In this paper, we assume that if targets or clutters are 
detected, the sensor does not report the conventional meas-
urement kZ . Instead, it reports a closed interval [ ]kZ , 

which contains the target originated point measurement (2) 
with some probability. The set of all such closed intervals 
on Z , denoted by IZ  is the interval measurement space. 

Due to the imperfect detection process, ( ) 0M k   in-

terval measurements ,1 ( )[ ] , ,[ ]k k,M kz z  are collected at time 

k . The measurements can be represented by a finite set: 

 
   ,1 ( )[ ] , ,[ ]k k k,M kz z IZ   F    (3)

 

where  IZF is the space of finite subsets of IZ . 

The RFS modeling the multi-target state kX  at time k 

is given by the union 

 
 
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 
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X x     (4) 

where  1k|k -S x  is the RFS of survival targets from time 

k – 1 to time k, and k  is the RFS of targets which birth at 

time k. The multi-target measurements k  is modeled by 

RFS as 

 
 

k

k k k


 
    

 x X

x 
 
  (5) 

where  k x  is the RFS of measurements from multi-tar-

get state kX , and k  is the RFS of measurements from 

clutter. 

2.2 CBMeMBer  Filter 

The CBMeMBer recursion is an improved version of 
original MeMBer recursion that the multi-target RFS at 
each time step is approximated by a multi-Bernoulli RFS 
[7]. The CBMeMBer recursion is briefly summarized as 
follows:  

1) CBMeMBer prediction: Assume that the posterior 
multi-target density at time step 1k   is represented by the 

multi-Bernoulli parameter set, that is    1( ) ( )
1 1 1

1
,

kM
i i

k k k
i

r p


   
 , 

where ( )
1

i
kr   is the existence probability and ( )

1
i

kp   is the state 

distribution of the i -th Bernoulli component, respectively. 
The predicted multi-target density is given by 

 
     1 ,( ) ( ) ( ) ( )

| 1 , | 1 , | 1 , ,
1 1

, ,
k kM M

i i i i
k k P k k P k k k k

i i
r p r p

 

     
 

 
(6) 

where ,( ) ( )
, , 1{( , )} kMi i
k k ir p 

    is the parameter set of the multi-

Bernoulli RFS of births at time step k  

 
( ) ( ) ( )
, | 1 1 1 ,,i i i

P k k k k S kr r p p   ,  (7)
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| 1 1 ,( )

, | 1 ( )
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( )
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i
k k k S ki

P k k i
k S k
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p x

p p

 





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  (8) 

where | 1( | )k kf x   and ,S kp  are the single target transition 

density and the probability of target survival, respectively. 
,   represents the inner product operation. 

2) CBMeMBer update: Assume that the predicted 
multi-target multi-Bernoulli density at time step k  is 

   | 1( ) ( )
| 1 | 1 | 1

1
,

k kM
i i

k k k k k k
i

r p


   
 , and then the posterior multi- 

target density can be approximated by a multi-Bernoulli as 

 
   | 1( ) ( )

, , , ,
1

, {( ( ), ( ; )}
k k

k

M
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k L k L k U k U k z Z
i
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
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  (9) 



RADIOENGINEERING, VOL. 23, NO. 2, JUNE 2014 611 

where 
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| 1 ,( ) ( )
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 , ,( ) ( | ) ( )k z k D kx g z x p x  .  (14) 

Here ( | )kg z x  is the single target measurement likelihood, 

, ( )D kp x  is the probability of target detection, Zk is the 

measurement set and ( )k z  is the intensity of Poisson 

clutter. 

2.3 Interval Analysis 

Since the algorithm presented in this paper relies on 
the concepts and tools from interval analysis, a short intro-
duction to the field of interval analysis [13] is given in this 
section. A real interval, [ ] [ , ]x x x is defined as a closed 

and connected subset of the set of real numbers. In a vector 

form, a box [x] of xnR is defined as a Cartesian product of 

xn  intervals: 1 2[ ] [ ] [ ] [ ]
xnx x x x   . In this article, the 

operator | [ ] |  denotes the volume | [ ] |x of a box [x]. The 

original idea of interval analysis is to deal with intervals of 
real numbers instead of dealing with real numbers. 

A nonlinear transformation of a box [x] in general has 
a non-box shape. To remain in the realm of boxes, an in-
clusion function has been developed. An inclusion function 
of a given function f is defined such that the image of a box 
[x] is a box [f ]([x]) containing f([x]). The goal is to use 
only inclusion functions, which are minimal in the sense 
that the size of the box [f ]([x]) is minimal but still covers 
the whole image of a box [x]. The role of inclusion func-
tion is to reduce the calculation and make the process con-
verge much faster. 

The next necessary concept is contraction, which will 
be used in the definition of likelihood functions and the 
update step of the proposed filters. A Constraint Satisfac-
tion Problem (CSP), often denoted by H can be written as: 

: ( ( ) 0, [ ])H f x x x  . A common interpretation of above 

equation is: find the optimal box enclosure of the set of 
vectors x belonging to a given prior domain [x] satisfying 
a set of m  constraints f 1 2( , , )mf f f  , with if  a real 

valued function. The solution consists of all x , that satisfy 
( ) 0f x   or written as a set: { [ ] | ( ) 0}S x x f x   . 

A contraction of H  means replacing [x] by a smaller box 
[ ]'x  under the constraint [ ] ' [ ]S x x  . In this work, we 

will use Constraint Propagation, for its good suitability in 
the context of tracking problems. 

3. Implementations 
In this section, we will detail a box-particle imple-

mentation of the CBMeMBer filter, especially the differ-
ence between the Box-CBMeMBer filter and the SMC-
CBMeMBer filter, including the generalized likelihood 
function and resampling method. 

3.1 From Particles to Boxes 

In SMC-CBMeMBer filter, we approximate probabil-
ity density | ( )k kp x  using a set of kN  weighted random 

samples as: 

 
( )

( )
|

1

( ) ( )
k

k

j

j
N

k k k
j

p w 


  x
x x ,  (15) 

with ( ) ( )j
k


x

x  the Dirac delta function concentrated at ( )j
kx . 

In [14], the authors propose to interpret box-particles as 
supports of uniform PDF, so that (15) changes to: 

 
( )

( )
| [ ]

1

( ) ( )j
k

k
j

k

N

k k
j

p w U


  x
x x ,  (16)

 

with ( )[ ]
( )j

k

U
x

x denoting the uniform PDF over the box 

( )[ ]j
kx . 

3.2 Generalized Likelihood Function 

The generalized likelihood function needs to be 
studied in box-particle. From [15], we assume that the 
stochastic uncertainty (due to measurement noise v ) is 
small and can be approximated by a uniform PDF 

 [ ]p ( ) ( )v v U v
 
  (17) 

where [ ]  is the measurement noise support. Substitution 

of (15) into the definition of the generalized likelihood 
defined in [4, Ch.5] results in 

([ ]) [ ][ ] [ ]
([ ] | [ ]) ( ([ ])) ( )

| [ ] ( ([ ]) [ ]) |
.

| [ ] |

kk v k h

k

g p h d U d

h






 

 
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  z xz
x xz z z = z z

z x (18) 
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Equation (18) is not perfect for the following reasons. 
Firstly, in multiple target tracking, the measurements not 
only come from the targets, but also come from clutters, 
while clutters are randomly distributed in the target state 
space. Secondly, because the clutters in this paper are inter-
vals, the intersecting probability [ ] ( ([ ]) [ ])clutter kh z x  is 

greatly increasing when the distance between the clutters 
and box particles from prediction is relatively near, espe-
cially in high density of clutters. This will cause the exces-
sive estimation to target number. On the other hand, we 
find that there are always some box particles and the meas-
urements from true targets intersecting a large proportion. 
Based on the above reasons, we propose to set a threshold 

S  to control the size of the intersecting area. Denote 

[ ]z kS  z  and ( ) [ ]box kS h  x . S  is chosen as the per-

centage of the area of the measurement [ ]kz , then we sub-

stitute (19) for (18), where ([ ] | [ ])kg z x  is zero when the 

intersecting area of zS  and boxS  is less than S .  

0, | |

([ ] | [ ]) | [ ] ( ([ ]) [ ]) |
, | |

| [ ] |

z box S

k k
z box S

if S S

g h
if S S








  

z x z x






(19) 

In practice, a constant value for all the box particles at time 
k , e.g., 0.85 | [ ] |S k   z  is a good choice and we adopt 

this value for the rest of the paper. 

3.3 Box Particle Implementation 

The sequential Monte Carlo implementation details 
using a box particle representation are presented in the 
following. 

1) Prediction: Suppose that at time k - 1 the (multi-
Bernoulli) posterior multi-target density 

1( ) ( )
1 1 1 1{( , )} kMi i

k k k ir p 
     is given and each ( )

1
i

kp  , 11,..., ki M   

is comprised of a set of weighted samples 
( )

1( , ) ( , )
1 1 1{ ,[ ]}

i
kLi j i j

k k jw 
  x  

i.e. 
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L
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then the predicted multi-target multi-Bernoulli density 
,1( ) ( ) ( ) ( )

| 1 , | 1 , | 1 1 , , 1{( , )} {( , )} kk MMi i i i
k k P k k P k k i k k ir p r p 

         consists of 

two parts: persistent component and newborn component. 
Given the importance densities selected as state transition 
function, and newborn box-particles were obtained from 
the measurement set from the previous scan 1k  , i.e. 

, k-1=| |kM  . For every 1[ ] kz , ( )
,

i
kL  box-particles were 

produced, then these two parts can be computed as follows:  
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where 
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  (27)

 

 
( , ) ( , ) T ( , ) T T

, 1 , 1 , 1[ ] [[ ] ,[ ] ]i j i j i j
k k k     x = p u ,   (28)

 

 
( , )

, ,1i j
k kw M  ,    (29)

 

where ,B kp  is probability of newborn target. Equation (28) 

means that the target interval state vector ( , )
, 1[ ]i j
k x  consists 

of directly measured component ( , )
, 1[ ]i j
k p  and unmeasured 

vector component ( , )
, 1[ ]i j
k u , where T  denotes the matrix 

transpose. For the measured component of the state, we 
construct the inclusion function ( , ) 1

, 1[ ] [g ]([ ])i j
k k


  p z . For 

the unmeasured component of the state we form the inclu-
sion box which contains the support of its prior such as 
a uniform PDF. In this paper, one box particle is produced 
for each measurement 1[ ] kz , i.e., ( )

, =1i
kL , which we 

find is sufficient to cover entirely the region of the state 
space defined by a measurement and the prior. More infor-
mation on design of the new birth component can be found 
in [15]. 

2) Update: Suppose that at time k the predicted multi-
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Then, the multi-Bernoulli approximation of the 
updated multi-target density | 1( ) ( )
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The generalized likelihood function ( , )
| 1([ ] | [ ])i j

k k kg z x in 
(36) and (40) is computed according to (19). 

3.4 Constraint Propagation Algorithm 

For any | 1[ ]k kx  that satisfies 

| 1 | 1{[ ] | [ ] ( ([ ]k k k k kh x z x ) [ ]) }   , we use a contraction 

algorithm to obtain a new box particle | 1[ ]k k newx . Given  

the measurement function ( )xh x z , and 

[ ] [ ] [ ] [ ] [ ]x x y y   x   , [z] [ ] [ ]z zx y  , the contraction 

step can be carried out as follows: 
[ ] [ ] [ ], [ ] [ ] [ ]z zx x x y y y    . 

3.5 Discarding and Resampling  

The Box-CBMeMBer filter also needs to discard and 
resample, while the discarding is similar to the SMC-
CBMeMBer filter. Proportional division resampling is used 
here. Finally, the multi-target state estimation can be ob-

tained as 
( )

( ) ( ) ( )
|

1

i
kL

i j j
k k k k

j

w


 x c , where ( )j
kc  is the center of the ith 

box particle. 

4. Numerical Studies 
In this section, we demonstrate the performance of 

Box-CBMeMBer filter proposed in Section 3, comparing 
with the SMC-CBMeMBer. We evaluate filter perform-
ance using the optimum subpattern assignment (OSPA) 
distance [15], together with the criteria for measuring the 
inclusion of the true state which is introduced in [14]. 

4.1 Simulation Setup 

Consider a four target scenario on the region 

 100,500 m   100, 200 m . The targets are moving 

according to the nearly constant velocity motion model in 
two dimensions and the prediction of the persistent 
particles can be modeled by:  

 1|[ ] [ ] [ ]k k k w  x F x . (41)
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with 1k kT t t   the sampling interval and ([ ],[ ])x y , 

([ ],[ ])x y   the target position interval and velocity interval, 

respectively. [ ]w  is a uniform distribution interval noise. 

The inclusion functions are hidden in (41) for the individ-
ual dimension of the state space. What we can see from 
(41) is that every variable only appears once for each di-
mension and all operations are continuous, so these natural 
inclusion functions are minimal and the propagated boxes 
have minimal size. Other values are adopted as σ = 1 m, 
υ = 0.5 m/s and T = 1 s. The point measurements function 

( ) [ , ]T
kh x yx , thus an interval measurement at time k  is 

defined as: 

 [ ] [ ( ) 0.45 , ( ) 0.55 ]k k k k kh h    z x v x v  . (40)
 

The measurement noise kv  is white Gaussian noise 

with a covariance matrix 2 2([1.5 ,1.5 ])R diag , while the 

interval width [40,40]T m. Fig. 1 shows the true target 

trajectories together with interval measurements in the 
presence of the clutters in x-y plane. The birth process is 
a multi Bernoulli RFS with density ( ) ( ) 4

, 1{ , }i i
SMC ir p    , 

(1) 1r  , (2) (3)r r   (4)r 0.02 , 
( ) ( )

, ( ) ( ; , )i i
SMCp m  x x PN , 1, 2,3, 4i  , 

(1)m   T0,8,-100,5 ,  T(2) 50,10,120,-2m  , 

 T(3) 0,10,80,-5m  ,  T(4) 0,10,0,0m   and  

([10,5,10,5])diag P . For the Box-CBMeMBer filter, 

we substitute ( )

( )
, [ ]

( ) ( )i

i
BOX m

p U


 x x  for ( )
, (x)i
SMCp , where 

( )[ ]im  is a box particle centered in ( )im  with position inter-

vals 40 m and velocity intervals 30 m/s. The probability of 
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target survival and detection for measurements are 

, 0.98S kp  , , 0.96D kp  , respectively. To reduce the num-

ber of particles, at each time step pruning of hypothesized 
tracks is performed by discarding those with existence 
probabilities below a threshold. In this paper, the threshold 
is 0.2  , so it can discard these hypothesized tracks 

affected by clutters as far as possible. The clutter is mod-
eled as a Poisson RFS with the mean 3r   over the sur-
veillance region. 
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Fig. 1.  True target trajectories together with interval measure-

ments in the presence of the clutters in x-y plane. The 
solid lines are the true target trajectories and start posi-
tion for each track are shown with circular. The meas-
urements are visualized as carmine boxes. 

For the SMC-CBMeMBer filter and the Box-
CBMeMBer filter, the number of particles are 

1000SMCL  , 40BoxL  , respectively. In addition, the 
maximum number of hypothesized tracks is max 100T  . 

The state estimates are extracted from the track hypotheses 
with weights greater than 0.5. The parameters of the OSPA 
distance are set to be 2p   and 100c m .The parameter 

 in the algorithm proposed takes as 0.85 in experiments. 

4.2 Experiments   

1) Evaluating the performance between Box-CBMeM-
Ber filter and SMC-CBMeMBer filter: To evaluate the 
average performance, 50 Monte Carlo (MC) trials are per-
formed. The OSPA distances for different filters are shown 
in Fig. 2. It can be seen that the OSPA values are in general 
very low both in SMC-CBMeMBer filter and Box-
CBMeMBer filter. The reason why the OSPA has a little 
big value from 1 to 15 s is that there are three newborn 
targets appearing in 5 s, 8 s, and 12 s, respectively. Recall 
that if the average inclusion is 1, it means the true value of 
the target state kx is consistently contained by the support 

of the particle representation of , ,( )L k U kp p  [15]. This fact 

can be demonstrated by Fig. 4, where Box-CBMeMBer 
filter shows better result than the other one. In addition, the 
estimated mean number of states is depicted in Fig. 3. The 
curve of the Box-CBMeMBer filter is more reliable than 
the SMC-CBMeMBer filter. Furthermore, the number of 
particles needed for the Box-CBMeMBer filter is much 
smaller than that of the SMC-CBMeMBer filter, which 
yields in a better runtime. The average computation time of 

one Monte Carlo trial for the two filters is listed in Tab. 1. 
It is obvious to see that the mean speedup factor for the 
Box-CBMeMBer filter is 10.85 s. The number of particles 
used in this scenario where 1500 for the SMC- CBMeM-
Ber filter and only 41 for the Box-CBMeMBer filter. This 
leads to a decrease in the average time for one running step 
more than ten times. 
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Fig. 2.  Mean OSPA values for two filters. 
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Fig. 3. Mean estimated number of states for two filters. 
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Fig. 4. Mean inclusion values for two filters. 

 

      Filter 
Parameter 

SMC-
CBMeMBer 

Box-
CBMeMBer 

Persistent  particle 
number 

1000 40 

Newborn   particle 
number 

500 1 

Running time(sec) 126.46 10.85 

Tab. 1.  Average running time and the number of particles for 
two filters. 

2) Comparing the performance of Box-CBMeMBer 
filter with different generalized likelihood (18) and (19): In 
the experiment below we investigate the behavior of Box-
CBMeMBer filter with original generalized likelihood (18) 
(OGL-Box-CBMeMBer) and proposed generalized likeli-
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hood (19) (PGL-Box-CBMeMBer) under different clutters 
scenario. The parameters in next experiments are un-
changed as the first part expect that the numbers of clutters. 
In the first test, the measurements only include measure-
ments from true targets, i.e., 0r  . The results are shown 
in Fig. 5. Fig. 5(a) shows that the estimated number of 
states is both reliable most of the time. This is because 
there are always some box particles ensuring the intersec-
tion with the interval measurements a large probability 
both in OGL-Box-CBMeMBer filter and PGL-Box-
CBMeMBer filter when no clutters. In other words, the 
threshold S  in (19) does not work in this case. Further-

more, Fig. 5(b) shows that the mean OSPA value of OGL-
Box-CBMeMBer filter is a little better than that of PGL-
Box-CBMeMBer filter. It is reasonable that proposed 
generalized likelihood will discard some box particles with 
relatively small weight but usefulness.  
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Fig. 5.   (a) Mean estimated number of states for two filters 
with different generalized likelihood under clutter = 0. 
(b) Mean OSPA values for two filters with different 
generalized likelihood under clutter = 0. 

Then we test the case in which clutter is equal to 1, 
i.e., 1r  . The results can be found in Fig. 6. The perform-
ance in this case is similar to the first case except that the 
mean OSPA value of the PGL-Box-CBMeMBer filter 
begins to be close to the OGL-Box-CBMeMBer filter. That 
is to say that the original generalized likelihood can exhibit 
well performance when the clutter density is low. 

Finally, 3r   has been tested and Fig. 7 reveals the 
results. From Fig. 7 (a), it is obvious that the number of 
targets of OGL-Box-CBMeMBer filter is seriously overes-
timated. This means that almost all of the time the true 
target  number  is  not  correct.  This  indicates  filter diver- 
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Fig. 6. (a) Mean estimated number of states for two filters 
with different generalized likelihood under clutter = 1. 
(b) Mean OSPA values for two filters with different 
generalized likelihood under clutter = 1. 

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Time(s)

N
u

m
b

e
r 

o
f t

a
rg

e
t

 

 

real number

PGL-BOX-CBMeMBer

OGL-BOX-CBMeMBer

 
(a) 

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Time(s)

O
S

P
A

 

 

PGL-BOX-CBMeMBer

OGL-BOX-CBMeMBer

 
(b) 

Fig. 7. (a) Mean estimated number of states for two filters 
with different generalized likelihood under clutter = 3. 
(b) Mean OSPA values for two filters with different 
generalized likelihood under clutter = 3. 

gence, which is considered a catastrophic event in multi-
target tracking. The PGL-Box-CBMeMBer filter, on the 
other hand, reaches the reliable result similar to the first 
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experiment without bias. Besides, the mean OSPA value 
shown in Fig. 7(b) demonstrates that the OGL-Box-
CBMeMBer filter has worse estimated result than the PGL-
Box-CBMeMBer filter. The performance of the proposed 
method is almost unchanged with the increase of clutter 
numbers. These results lead to the conclusion that the 
PGL-Box-CBMeMBer filter can outperform the OGL-
Box-CBMeMBer filter in scenarios with strong clutter 
measurements. 

5. Conclusions 
This paper presents a novel filter for nonlinear multi-

target tracking based on box particles, called the Box-
CBMeMBer filter. The theoretical foundation is the ran-
dom finite set theory, while interval analysis is used for the 
implementation to achieve a box-particle representation of 
the CBMeMBer filter. Besides, we improve the generalized 
likelihood function to eliminate the negative effect of clut-
ters in the estimation of the number of targets. The previ-
ous part of experiments demonstrate that Box-CBMeMBer 
filter allows a decrement of the number of particles and has 
more cost efficient than SMC-CBMeMBer filter. It re-
quires more than ten times less computational time. The 
reduction in the number of particles is important in the 
context of distributed networked systems due to a smaller 
communication bandwidth requirement. Last part of the 
tests proves that the Box-CBMeMBer filter with improved 
generalized likelihood is more appropriate and reliable than 
the filter with original likelihood in the case of larger clut-
ter density. 

Future work will focus on the following two aspects. 
First, it will be meaningful to realize the Box-CBMeMBer 
filter in a distributed environment such as the multisensor 
network so as to take the full advantage in the reduction of 
particles. Second, the available resampling method used in 
Box-PF is not perfect in some case, e.g., taking the birth 
intensity as a prior knowledge. So it is necessary to find 
more appropriate resampling method without affecting by 
the birth model. 
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