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Abstract. This paper presents a novel method for detection 
of multiple landmines using a ground penetrating radar 
(GPR). Conventional algorithms mainly focus on detection 
of a single landmine, which cannot linearly extend to the 
multiple landmine case. The proposed algorithm is com-
posed of four steps; estimation of the number of multiple 
objects buried in the ground, isolation of each object, fea-
ture extraction and detection of landmines. The number of 
objects in the GPR signal is estimated by using the energy 
projection method. Then signals for the objects are ex-
tracted by using the symmetry filtering method. Each sig-
nal is then processed for features, which are given as input 
to the support vector machine (SVM) for landmine detec-
tion. Three landmines buried in various ground conditions 
are considered for the test of the proposed method. They 
demonstrate that the proposed method can successfully 
detect multiple landmines. 
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1. Introduction 
Safe landmine removal is an urgent but difficult job 

faced by many countries. The removal process requires 
detection of a landmine buried in the ground. Once it is 
detected, the landmine can be eliminated in various ways. 
Therefore, robust landmine detection is a key step in land-
mine removal.  

Many efforts have been made for developing methods 
for detecting landmines. Among them, detection using 
a ground penetrating radar (GPR) has attracted many re-
searchers’ attention due to its various advantages over 
other devices; it can be used to detect landmines of metal 
and nonmetal materials [1] without changing its configura-
tion. Moreover, it can be made small and portable such that 
it is used in various forms such as a stand-alone handheld 
sensor [2]-[6], a complementary sensor or a vehicle-moun-

ted system in the form of an array of multiple antenna ele-
ments [7]-[9]. 

Detection of a landmine from a GPR signal requires 
extracting features of a landmine from the signal. There are 
various ways for computing features from the GPR signal 
for landmine detection such as geometrical feature of 
a landmine signal [10], hidden Markov models (HMMs) 
[6], Spatial Features analysis [11], polynomial fitting [12], 
texture-feature coding method (TFCM) [13], time-fre-
quency features [14], [15], and principal component analy-
sis (PCA) [16]-[18]. In [14], [17] and [18], multiple fea-
tures for a landmine such as PCA and Fourier coefficients 
are used for robust detection and identification. Those 
methods are designed to detect a single landmine from the 
GPR signal with some clutters. However, they are not 
intended to handle the case that multiple landmines are 
captured in one signal set. More than one landmine may be 
buried in the ground, yielding a GPR signal containing 
multiple landmines. In this situation, the methods for single 
landmine detection are not able to operate properly if the 
signal is provided as input without a priori knowledge on 
the number of landmines in the signal. It might happen that 
only one landmine might be detected, and the others would 
be ignored as obstacles when the number of landmines in 
the signal is not known. Although the implication of this 
problem is profound, little research on this problem has 
been presented in the literature.  

In this work, the problem of multiple landmine detec-
tion using the GPR is addressed, and a novel method is 
proposed, which detects multiple landmines from a GPR 
signal. The GPR scans a ground, to generate a signal. Next, 
the number of objects in the signal that are determined to 
be possible landmines is estimated. Once the number is 
computed, regions corresponding to each object are ex-
tracted, each of which is then processed to obtain features. 
The features are then used to decide if the objects are land-
mines or not. The decision is made using a support vector 
machine scheme (SVM). If a landmine is detected, its type 
(anti-personal and anti-tanks) is retrieved.  

This paper contains two contributions. The first one is 
the segmentation procedure of each landmine from an input 
signal that may contain multiple landmines. Most of the  
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landmine detection algorithms in the literature present 
methods for detection of a landmine from an input signal, 
which is usually assumed to contain at most one landmine. 
Therefore, without knowing the number of landmines in 
the signal, there is a high chance that landmines can be left 
undetected when the number of landmines in the signal is 
more than two. This problem can be handled after the num-
ber of landmines is computed. Here, the number can be 
estimated through segmentation, which has not been 
actively discussed in the literature so far. In this paper, our 
emphasis was laid on the segmentation of landmine signals 
and estimation of the number of landmines in the signal. 
Once the number of landmines is computed, then, identifi-
cation of each landmine is performed. As a second contri-
bution, the landmine identification method has been im-
proved compared with our previous work [17] and [18]. In 
particular, SVM was employed for identification, which 
provided better results than the authors’ previous method. 

The paper is structured as follows. In Section 2, the 
overall procedure of multiple landmine detection is pro-
posed to provide a workflow of the method. In Section 3, 
each step of the procedure is presented in detail. Examples 
are presented in Section 4 to demonstrate the potential of 
the proposed method. Section 5 concludes this paper with 
future work. 

2. Overall Procedure 
The overall procedure of multiple landmine detection 

is proposed as shown in Fig. 1. It consists of two major 
processes: segmentation and identification. The segmenta-
tion, which is indicated in a dotted rectangle in Fig. 1, 
estimates the number of possible landmines in GPR data. 
This step is important in the multiple landmine detection 
because it defines how many times the identification 
should be performed. Once the number of possible land-
mines is estimated, each segmented signal is processed for 
extracting features for identification. The identification, 
which is indicated in a black rectangle in Fig. 1, contains 
processes of signal extraction, post-processing of signal 
and feature extraction. Once the features of each signal are 
computed, identification of the signal is performed. 

The first step is to normalize a GPR signal in order to 
minimize the influence that might be caused by the differ-
ence of the hardware and the individual experimental envi-
ronments. Next, the number of objects in the signal is esti-
mated using the energy projection method [17]. Once the 
number is estimated, signals for each individual object are 
extracted separately using the Symmetry Filtering Method 
[20]. The extracted object signals are processed using the 
envelope detector [21] and Gaussian filter to reduce noise 
and ground effects. Then features such as the principal 
components and geometric features (ratios and lengths of 
signatures in the signal) are computed for each signal, and 
then provided as input to the identification module. The 
identification of the input signal is made using the support 
vector machine (SVM) based on the features. 

 
Fig. 1. The overall procedure of the proposed method. 

3. Multiple Landmine Detection 
Algorithm 

3.1 Pre-processing of GPR Signal 

A GPR signal is given as a set of intensity values at x 
and y positions as shown in Fig. 2. Here, the x axis indi-
cates the integer index of each sampling position (denoted 
as Column No.) for the width of the scanning area. The 
sampling interval of the two adjacent scanning positions is 
15 mm. The y axis is the depth and the z axis is the strength 
of the signal. The strength of the GPR signal reflects the 
size and material type of a landmine in the ground. There-
fore, it could be considered as a feature of a landmine. 
However, the strength can also be influenced by other 
factors such as the power of the GPR, the installation 
height of the radar and the properties of the ground. There-
fore, the power intensities of B-scan signal are normalized 
for the strength in order to minimize such effects. The 
normalization is performed in a linear manner so that the 
strength of each signal is scaled to the range from zero to 
one.  

 
Fig. 2.  An example of a GPR signal in 3D space.  
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3.2 Estimation of the Number of Objects 

Estimation of the number of objects in the GPR signal 
mainly consists of three steps: removal of clutters, noise 
reduction and estimation of the number of objects. Assume 
that I is a GPR signal given as an image as shown in Fig. 3, 
where the strength of the signal is given as intensity values 
in the x-y (Column No. and Depth) plane.  

 
Fig. 3. An example of an input signal given as an image in 

gray scale. The clutter due to the ground is clearly 
indicated. 

Clutters in the signal are removed from I using the average 
subtraction method [22], to yield Ic. The method is effec-
tive in removing the reflection from the ground, which is 
nearly constant in strength. It works as follows. I(x,y) is 
an intensity of the signal at x and y. Then, the new Ic (x,y), 
which is obtained by using the average subtraction method, 
is 
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Here, Ex[] indicates the operator computing the average for 
all x at yi. This equation is applied at each yi. Fig. 4(a) 
shows an example of the signal Ic. It clearly shows that 
most of the ground reflection has been removed. Then, 
a 3 by 3 Gaussian mean filter with the sigma of 0.5  
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is applied to the signal Ic for noise reduction, yielding the 
signal Ics of Fig. 4. Next, the Sobel edge detector [23] is 
applied to the signal Ics in order to extract signatures. The 
detector is an algorithm to extract edges in an image using 
the gradient of the intensity distribution. Given the input 
intensity I = I(x,y), the magnitude of the gradient is 
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If it is larger than or equal to a threshold, the intensity is set 
to one. Otherwise, it is set to zero. The threshold needs to 
be determined through various experiments. An example of 

the extracted edges is given in Fig. 4(c). The edges are then 
projected onto the y-z and x-z planes, respectively. During 
the projection, the intensity values at the same projected 
positions are accumulated to produce the accumulated 
projected signatures in the y-z and x-z planes. As demon-
strated in Fig. 4(d), the projected values form distinct 
groups. Then, the numbers of groups whose peaks are 
larger than a tolerance T2 in each of the y-z and x-z planes 
are counted to be ny2 and nx2. Next, among ny2 and nx2, the 
numbers of groups, which have ranges (widths) wider than 
a tolerance T1, are computed to be ny1 and nx1. The largest 
one between ny1 and nx1 is selected to be the number of 
objects in the signal, which is denoted by nobj. This estima-
tion procedure is called Energy projection method [19]. 
Figure 4(d) shows that two objects are detected. 

 
Fig. 4. The results of the steps of the energy projection 

method. (a) The result of removing the constant clutter. 
(b) The result of applying the Gaussian filter. (c) The 
result of applying the Sobel edge detector. (d) The re-
sult of projecting GPR data to y-z (depth and intensity) 
plane. 

T1 is the minimum width of the signal range in the 
projection planes. T2 is the minimum intensity in the GPR 
data. Signals either with narrower width than T1 or with 
intensity smaller than T2 are ignored as noise. Basically, 
these values need to be chosen empirically with various 
landmines and objects. However, a guideline for the choice 
is that they should be so selected that the estimated number 
of objects in the signal becomes more than the actual num-
ber of landmines. In this case objects other than landmines 
can be discarded in the decision step. This way, the possi-
bility that a landmine is missed, a dangerous case than the 
false alarm, can be minimized.  

3.3 Extracting Individual Objects 

When an object buried in the ground is scanned by 
a GPR, a symmetric parabolic shape is obtained as shown 
in Fig. 4(a).  

Therefore, using a filter, which extracts a symmetric 
shape, a signal corresponding to the object in the ground 
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can be obtained. The symmetry filtering method [20] can 
be used to handle this problem. The GPR data in this work 
are given as shown in Fig. 2. Then, the method can be 
applied as follows. First, the symmetry position in the 
signal is located using the following equation.  
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Here, M and K are variables related with the radar pulse 
and the valid aperture of the radar given in [20]. I is the 
intensity, and the values of x and y are the column number 
and the depth, respectively. Next, the range direction sym-
metry weighting matrix is computed using the following 
equation. 
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The function, argmax(I2(x,y)), returns x coordinate, x0, 
where I2 in (4) is maximum. After that, the lateral direction 
symmetry weighting matrix is computed by 
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Once I3 and I4 are obtained, the synthetic symmetry 
filtering weighting matrix is computed by 
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Here, γ and μ are the range and lateral reduction factors and 
set to one in this work. I3n(y) and I4n(x,y) are the normal-
ized I3(y) and I4(x,y). The symmetric shape I6 is then ex-
tracted by multiplying the input signal I by I5. 
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Fig. 5. The results of the symmetry filtering method.  

(a) shows input data containing two symmetric pat-
terns, P1 and P2. (b) is the result showing one symmet-
ric pattern, P1. (c) is the result of the other symmetric 
pattern, P2 after P1 has been removed. 

Consider a GPR signal as shown in Fig. 5(a), where the 
clutter has been reduced and the number of objects has 
been estimated by using the procedure in Section 3.2. Next, 
the symmetry filtering method is employed to extract one 
symmetric pattern. The method detects the strongest signal 
in the data and extracts the associated symmetric pattern. 
As an example, the left one in Fig. 5(a) is extracted, which 
is denoted as P1. The pattern is then subtracted from 
Fig. 5(a), to produce a signal without P1, which is shown in 
Fig. 5(c). If the number of objects is estimated to be nobj, 
this process is repeated nobj-1 times to yield nobj signal sets, 
containing the symmetric patterns of each object. 

3.4 Post-processing 

Each extracted signal is processed to further reduce 
noise for feature extraction. A GPR signal changes its sign 
with respect to zero, due to the property of an electromag-
netic wave. Such alternation is eliminated for the subse-
quent process using the Envelope Detection Method [21], 
which restores the original signal from those modulated in 
a high frequency. The detector is given by 
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where x(n) is the n-th input signal, y(n) is the extracted enve-
lope at position n and τ is the reduction rate. The reduction 
rate needs to be selected such that the envelope detector 
yields the best result. A large τ could reduce the effect of 
the envelope detector. On the other hand, a small τ may 
distort the original signal. In order to avoid such problems, 
a GPR frequency is considered such that the power of the 
signal reduces to half. Namely, an equation e-τx = 0.5 is 
derived. From this equation, τ can be selected so that x 
becomes equal to the GPR frequency. y(0) is defined to be 
zero because a signal containing an object will not start at 
the beginning of the GPR signal. In other words, the dis-
tance between the GPR and an object is larger than zero.  

 
Fig. 6. The result of Gaussian processed data. 
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Next, a Gaussian filter is applied in order to reduce high 
frequency noise in the signal. For this work, a Gaussian 
filter with a 3 by 3 window and the sigma of 0.5 is used. 
The result of the filtered signal is shown in Fig. 6. Next, 
for better feature extraction, the filtered signal is processed 
such that the intensity values, which are less than 50% of 
the maximum intensity in the signal, are set to zero. The 
result of this step is given in Fig. 7. 

 
Fig. 7. The result of applying the threshold. 

3.5 Extracting Features of an Object 

The post-processed signal is used to extract features 
of a landmine for identification. First, normalization of the 
signal is performed to consider the difference of the re-
flected power along the burial depth. The maximum and 
the minimum intensity values of the signal are scaled line-
arly to the range of 0 to 1, to adjust the power difference 
due to the different depths. 

Two geometric features and one statistical feature are 
considered. The two geometric features are the geometric 
dimensions of the signal intensity distribution as shown in 
Fig. 7. In the x-y (Column No. and Depth) plane, intensity 
values larger than 50% of the maximum of the intensity 
usually leave an elliptic shape as shown in Fig. 7, which is 
obtained in the post-processing step given in Section 3.4. 
The shape can be characterized with the horizontal size and 
the vertical length. As a first feature the size, l1 is measured 
along the horizontal axis as shown in Fig. 7. It is related 
with the size of an object reflected in the signal. The bigger 
an object is, the larger l1 becomes. This feature can differ-
entiate objects with respect to their size. This value is 
measured as the number of columns that the horizontal size 
of the region covers. The second feature is the length, l2, 
which is measured along the depth (y axis) in the figure. It 
is mainly dependent on permittivity and permeability of 
materials of an object. The radio wave transmittance is 
different according to the object materials. It is observed 
that the length l2 of a plastic object is longer than that of 
a metallic one. Therefore, this feature can separate a steel 
object from a plastic one. This feature is measured in mm. 

As a third feature, a principal component by the prin-
cipal component analysis (PCA) method is used. PCA 
method analyzes discrete data points in n-dimensional 

space, producing n principal components in n principal 
directions, forming n pairs of the component value and its 
corresponding direction. Each component represents a pat-
tern of the data in that direction. The PCA has been fre-
quently used in the context of detection, and its applicabil-
ity can be extended to clutter reduction [24].  

Consider m sets of data, i = (x1i, x2i,…, xni), i = 1,…,m 
in n-dimensional space. The average data of the m data sets 
are obtained by 
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The difference of i with  is computed by i = i - . 
Then the covariance of the data sets is then  
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The eigenvectors and eigenvalues of the covariance matrix 
are the principal components, which are computed by 
solving the following equation. 

 uuC  .   (13) 

Here, u and  are a vector and a scalar value, respectively. 
u and  satisfying (13) are the eigenvectors and their 
eigenvalues of the covariance matrix, serving as the princi-
pal components of the data. 

A GPR signal is given in 3D space as shown in Fig. 2. 
The intensity distribution can be obtained by projecting the 
signal in the x-z and y-z planes. Among them, the intensity 
distribution of the signal projected onto the x-z (column no. 
vs. intensity) plane is selected because it shows clearer 
features of each landmine. An example of this projection is 
given in Fig. 8. Then, PCA is applied to the projected sig-
nal to obtain two principal components and their corre-
sponding direction vectors as depicted in Fig. 8.  

 
Fig. 8. The result of the projected GPR signal onto x-z plane 

used in the projection step. 

In this work, the direction close to the x axis happens 
to correspond to the largest covariance value because most 
of the signal values are clustered near the x axis in the x-z 
plane when the signal is projected on the plane. The eigen-
vectors are not suitable for features of an object because 
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the signal patterns are almost symmetric so that they do not 
show any difference. The eigenvalue of Eigenvector 1 is 
not appropriate as a feature because most of the signal 
strengths are clustered near the x axis, making the eigen-
vector directed in the same axis. The eigenvalue of Eigen-
vector 2, however, captures the reflection patterns of 
an object, which depend on materials and the size of the 
object.  

3.6 Landmine Identification 

Landmine identification is performed by comparing 
features computed in Section 3.5 with those in a database 
that contains features of various landmines buried in differ-
ent ground conditions. If a match is found in the database, 
then the input landmine is identified. There are a lot of 
algorithms for identification such as the hidden Markov 
models [6], Mahalanobis distance based method [14], the 
decision tree [25], Bayesian learning [25] and Supporting 
Vector Machine (SVM) [25]. Among them, SVM is chosen 
in this work. It is a machine-learning algorithm used for 
data identification. A database is constructed, which con-
tains features extracted from existing data sets. The fea-
tures are classified into several groups, the outer most 
boundary elements of which are used to create optimal 
hyper planes differentiating each group. Algorithms for 
computing such hyper planes and robust decision are the 
main components of SVM. Once such a database is avail-
able, decision can be made that a group is determined 
where the features of input data belong. Various SVMs’ 
are introduced in the related literature. In this work, 
a method using the radial basic function (RBF) is 
employed [26].  

The basic concept of SVM is presented as follows. 
Suppose that there exist various data groups, which can be 
distinguished from each other. SVM is an algorithm to 
determine the optimal boundaries of the data groups for the 
group classification. Consider there are two groups of data, 
A and B. Here, the circles are the data in Group A, and the 
triangles are the data in Group B. 

 
Fig. 9. An example of SVM. (a) shows two data groups with 

various separating boundaries. (b) shows an optimal 
hyper plane separating the two groups. Here, lm is the 
maximum margin. 

As shown in Fig. 9(a), an infinite number of bounda-
ries can be introduced to separate the two groups. SVM 
selects one boundary that can optimally represent the 
boundaries of each group as illustrated in Fig. 9(b). In 

Fig. 9(b), the dotted line is the optimal separating line, 
called the optimal hyper plane, which is determined in such 
a way that the distance between the two data groups be-
comes maximal, or the maximum margin, lm, becomes 
maximal. In general, SVM can be formulated as follows. 

Consider that there exist data Ds in p dimensions.  
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Here, xi is a vector in Rp, np is the number of data, and yi is 
the vector class. The hyper plane of this data set is obtained 
by solving the optimization problem: 
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Here, wT is the normal vector of a hyper plane, x is the 
input data set, ξ is a slack variable and C is a constant for 
providing a constraint to Lagrange multipliers. Given the 
sign function,  
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a decision function using the hyper plane for determination 
of a data class is given as: 

 )sgn()( bf  wxx .  (17) 

In this work, three features are considered as dis-
cussed in Section 3.5. Each feature corresponds to one 
axis, forming 3D feature space. Therefore, one object is 
represented as one point in the feature space as shown in 
Fig. 10. As illustrated in the figure, a landmine buried in 
the ground of different conditions and at various depths 
forms a cluster in the space. These data are provided as 
input to SVM for constructing a database. Later, given 
a point in the space, detection of the point is performed 
using the database. In order to determine if an object is 
a landmine or not, the three feature values for objects other  

 
Fig. 10. A plot of features of three landmines buried in dry 

sand. 
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than landmines, so called clutters, are added to the database 
to form groups for non-landmines. Various rocks different 
in size or plastic and metal cans can be processed for this 
purpose. The database needs to be updated to contain fea-
tures of various objects, which would increase the identifi-
cation rate for landmines. 

3.7 Implementation 

The proposed method was implemented using a PC of 
2.7 GHz CPU and 8 Gbyte RAM. The operating system of 
the computer was Windows 7, and Visual C++ and Matlab 
were used for implementation.  

Conceptually the proposed method consists of six pri-
mary modules, modules for pre-processing, estimating the 
number of objects, extracting objects’ signals, post-pro-
cessing, extracting features and identification. Each pri-
mary module consists of one or more functions. The pre-
processing module contains a function for normalization. 
The module for estimation of the number of objects con-
tains a function of the energy projection method. The mod-
ule for signal extraction provides a function of the symme-
try filtering method. The post-processing module is com-
posed of two functions: envelope detection and Gaussian 
filter. The feature extraction module consists of three func-
tions of computing PCA and geometric lengths. The theo-
retical basis of these functions is given in Section 3.5. The 
identification module contains a function of SVM for iden-
tification as given in Section 3.6. The actual implementa-
tion of the method is structured as shown in Fig. 11. There 
exists a function for file I/O and data handling. This is 
a core part of the implementation, based on which the func-
tions for processing GPR signals and identification are 
implemented. The functions have interfaces with the file 
I/O and data handling for input and output. The sequence 
of execution of the functions is managed by the file I/O and 
data handling function.  

 
Fig. 11. A schematic diagram of the implemented program. 

4. Experiments 
In this work, three landmines are considered as shown 

in Fig. 12; KM16, which is made of steel, is an anti-per-
sonnel landmine. KM15 and KM19 are anti-tank land-
mines, each of which is made of steel and plastic, respec-
tively. Three different ground materials (sand, soil, and 
gravel) are considered with three moisture levels (dry, 
medium, and wet).  

 
Fig. 12. The landmines used in the experiments. (a) KM15,  

(b) KM16, (c) KM19. 

 
Fig. 13. The setup for the experiments. 

For the experiments, a GPR system of Minehound 
VMR2 from COBHAM is used. The GPR is attached to 
an arm, which moves horizontally. A landmine is buried in 
a wooden box of 1 m × 2 m × 1 m, which is filled with 
sand, soil or gravel of three moisture levels. The configura-
tion for the experiments is shown in Fig. 13.  

The method for estimation of the number of buried 
objects is tested with the three landmines. For this test, 
three test cases are considered: (1) Case 1: KM16 and 
KM19 buried at 10 cm and 30 cm in the dry sand, (2) Case 
2: KM15, KM19 and KM16 buried at 10 cm, 30 cm and 
20 cm in the dry sand, (3) Case 3: KM16 and KM15 buried 
at 10 cm and 30 cm in the dry sand. The three cases, Cases 
1, 2, and 3, are depicted in Fig. 14. The threshold values T1 
and T2 are selected to be 13 mm and 5% of the largest 
power in the signal for the estimation. 

The projection images of Case1 to y-z and x-z planes 
are shown in Fig. 15. Here, the projection data in y-z plane 
show three signal groups. The first one from the left corre-
sponds to the surface reflection, which is to be removed. 
On the other hand, the data in x-z plane show one distribu-
tion pattern. Therefore, in this case, the projection data in 
y-z plane are selected for the estimation of the number of 
objects. Here, two islands are observed in the data of y-z 
plane, which has been successfully estimated by the energy 
projection method. The correct numbers of objects were 
also obtained for Cases 2 and 3 using the proposed method. 
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Fig. 14. Input signals for the test cases. 

 
Fig. 15. The projection images of Case 1 to y-z and x-z planes. 

Next, the identification process is demonstrated with 
various examples. A database is created using the three 
landmines buried in different conditions as summarized in 
Tab. 1. In total, 162 cases are considered. Each case is 
produced by averaging measurements of three separate 
scans of the case. For each case three features are com-
puted and stored in the database with their corresponding 
landmine information.  
 

Landmine types KM15, KM16, KM19 
Ground conditions dry, medium, wet 

Ground types sand, gravel, soil 
Burial depths (cm) 5, 10, 15, 20, 25, 30 

Tab. 1.  Types of landmines and burial conditions for construc-
tion of the database. 

In order to simulate real signals, input signals are pre-
pared adding various levels of Gaussian noise. The noise 
model used in these experiments employs a random func-
tion with normal distribution, whose probability distribu-
tion function is  

 2

2

2

22

1
)( 



x

expdf


 .  (18) 

with σ = 0.5. The noise created by this model is added after 
scaling its magnitude to be from 0 to 50% to the original 
signal. An example of an input signal is shown in 
Fig. 16(a). Here, the case of KM16 buried at 10 cm in dry  

sand is taken. The image in Fig. 16(a) is the original one, 
and the rest images Figs. 16(b), (c) and (d) show those with 
10%, 30% and 50% noise added, respectively. It is obvious 
that as the noise level grows, the pattern of the signal 
becomes less clear.  

 
Fig. 16. Example data with various levels of Gaussian noise 

added. (a) no noise, (b) 10%, (c) 30% and (d) 50%. 

The input cases for experiments are prepared as fol-
lows. Three ground types, three moisture levels, six burial 
depths, and three landmines are considered. Moreover, the 
number of noise levels is five. Therefore, the total number 
of combinations becomes 810.  

Fig. 17 is a graph showing the changes of identifica-
tion rates of the input cases with respect to the levels of 
noise added to the signal, the ground conditions and differ-
ent burial depths. In order to show the changing patterns of 
the identification rates, the results of the identification of 
each case are arranged with respect to the five noise levels, 
the three ground types and the three moisture levels. The 
identification rates of the three landmines and six burial 
depths are averaged. For example, consider ‘saw1’ case. It 
indicates the dry sand ground condition. The average iden-
tification rates for three landmines buried at six burial 
depths are computed for each noise level, which are plotted 
with respect to the noise level. The other eight cases are 
similarly processed to produce graphs as shown in Fig. 17. 
The plot does not show the difference of identification rate 
of each landmine for different burial depths. However, it 
can show how the identification rates change with respect 
to the noise level depending on the ground conditions.  

The highest identification rates are obtained with 10% 
of noise, which gradually decrease as the level of noise 
increases. For sand (saw1, saw2, and saw3), the detection 
rate is more than 98% irrespective of the moisture level. 
For soil (sow1, sow2, and sow3), the rate is decreased. 
However, it still shows more than 90%. For the gravel 
ground (grw1, grw2, and grw3), the detection rate is more 
than 95%, but it decreases as the moisture level is in-
creased.  



650 S. PARK, K. KIM, K. H. KO, MULTI-FEATURE BASED MULTIPLE LANDMINE DETECTION USING GROUND PENETRATION RADAR 

 
Fig. 17. The changes of the detection rate with respect to the 

noise level. ‘sa’, ‘so’ and ‘gr’ indicate sand, soil and 
gravel. ‘w1’, ‘w2’, and ‘w3’ are the moisture levels of 
dry, medium and wet. The horizontal and vertical axes 
are the noise and the detection rates, respectively. 

5. Conclusions 
This paper proposes a novel method for detecting 

multiple landmines buried in the ground of various condi-
tions using a GPR. The method consists of clutter reduc-
tion, estimation of the number of objects in the GPR data, 
isolation of object signals, feature extraction and detection. 
The tests show that the proposed method can mostly detect 
multiple landmines in various conditions.  

The proposed method has two limitations: choice of 
tolerances and database construction. The method requires 
a couple of user-defined values: threshold values for the 
estimation of the number of objects and a parametric value 
used by the symmetry filtering method. These values main-
ly depend on the properties of the GPR hardware used in 
the system and are critical in the process. The other limi-
tation is that a database for landmines and various other 
foreign objects should be constructed for robust detection. 
The database for non-landmines could be limited in that it 
cannot consider all possible clutters different in size, shape 
and material. It means that there might be a false-alarm 
case that a non-landmine object is determined as a land-
mine due to the limited amount of data in the database. 
These two limitations can be overcome through extensive 
experiments with objects and landmines.  

The overall procedure of the method is designed for 
general environments. However, the tests in the paper were 
performed in controlled conditions, and the tolerances were 
chosen and the database was constructed for those condi-
tions. Therefore, it is necessary to refine the tolerances and 
to improve the database by considering more realistic situa-
tions. A thorough evaluation of the method for selection of 
tolerances and enhancing the database using real field data 
is recommended for future work. 
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