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Abstract. A simple method for approximation of all-pole re-
cursive digital filters, directly in digital domain, is described.
Transfer function of these filters, referred to as Ultraspheri-
cal filters, is controlled by order of the Ultraspherical poly-
nomial, ν. Parameter ν, restricted to be a non-negative real
number (ν ≥ 0), controls ripple peaks in the passband of
the magnitude response and enables a trade-off between the
passband loss and the group delay response of the result-
ing filter. Chebyshev filters of the first and of the second
kind, and also Legendre and Butterworth filters are shown
to be special cases of these all-pole recursive digital filters.
Closed form equations for the computation of the filter co-
efficients are provided. The design technique is illustrated
with examples.
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1. Introduction
The ultraspherical (or Gegenbauer) orthogonal polyno-

mials have already been used in low-pass FIR filter design
in time domain [1], [2] and as wavelet functions [3]. How-
ever, recursive digital filters can be designed either through
application of bilinear transformation on continuous-time fil-
ter [4], or directly in the z-domain [5].

In the first approach, the starting point is designing
of recursive filters in the continuous-time domain (analog
prototype), in addition to designing continuous-time filters
based on ultraspherical polynomials [6]. Lastly, transfer
function of recursive filter is obtained by using the bilin-
ear transformation. This method requires that all zeros lie
at z =−1 or on the unit circle.

The second approach is desirable especially for or all-
pole (autoregressive) digital filters which have no counter-
part in the continuous-time domain. All-pole transfer func-
tion class is an important filter category in which low-pass
transfer function contains all its zeros at the origin in the z-

plane. Those transfer functions are easier to implement than
transfer functions that contain only finite zeros on the unit
circle, such as elliptic filters.

Discussion in this paper has been restricted to direct
design of all-pole digital filters based on ultraspherical poly-
nomials.

Direct design of the recursive digital filters has first
been proposed by Rader and Gold [7]. They have shown
that characteristic function of these filters is trigonometric
polynomial of ω/2, where ω is the digital frequency in radi-
ans. They have also concluded that the square of the ampli-
tude characteristic must be rational function of z, where de-
nominator is an image mirror polynomial. Choosing differ-
ent trigonometric functions for frequency variable, different
types of IIR filters can be obtained. Based on these results,
direct synthesis of the transitional Butterworth-Chebyshev
(TBC) and Butterworth-Legendre filters has been proposed
in [8], [9]. These TBC filters are the generalization of the
results of previously given continuous-time TBC filters [10],
obtained by a mixture of the Butterworth and the Chebyshev
components.

Later, other types of orthogonal polynomial approxi-
mations for designing continuous-time and IIR digital filters
have been used, such as Bessel [11], Jacobi [12], ultraspher-
ical [6] and Pascal polynomials [13]. These approximations
are also referred to as polynomial approximations due to the
fact that characteristic functions are polynomials. Only But-
terworth [7], Chebyshev [14] and transitional Butterworth-
Chebyshev [10] continuous-time filters have counterparts in
the discrete-time domain.

In this paper a direct method for designing the all-pole
recursive digital filters using ultraspherical polynomials, is
presented. The frequency responses of ultraspherical fil-
ters span between Butterworth to Chebyshev, as the order
ν of ultraspherical polynomials goes from infinity to zero.
Transition between Butterworth to Chebyshev transfer func-
tion is continuous, in contrast with the classical TBC filter
where transition is gradual. The order of ultraspherical poly-
nomials, ν, restricted to be a non-negative number, enables
a trade-off between the stopband attenuation, passband rip-
ples and group delay deviation of the resulting filter.
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The rest of this paper is organized as follows. In Sec-
tion 2, we derive filter coefficients in closed form and cutoff
slope for the proposed design of the all-pole digital filters.
Section 3 presents design examples to illustrate the effective-
ness of the proposed approach, and finally the conclusions of
this paper are presented in Section 4.

2. Approximation
The squared amplitude characteristic of the ultra-

spherical filters can be expressed as a real function of fre-
quency variable x by using the Feldtkeller’s equation [15,
Chap. 2]:

|Hn(x)|2 =
1

1+ ε2
[Cν

n(x)
Cν

n(1)

]2
(1)

where Cν
n(x) is an ultraspherical, also known as Gegenbauer,

polynomial (entire even or odd) of order ν (ν is a real num-
ber) and degree n. Usually, ε is a design parameter re-
lated to the maximum passband attenuation amax (in dB) as
ε =
√

100.1amax −1.

Formally, ultraspherical polynomials of degree n,
Cν

n(x), can be defined by the explicit expression [16]:

Cν
n(x) =

1
Γ(ν)

bn/2c

∑
k=0

(−1)kΓ(ν+n− k)
k!(n−2k)!

(2x)n−2k (2)

or by the recurrence formula:

Cν
n(x)=

1
n
[2x(n+ν−1)Cν

n−1(x)−(n+2ν−2)Cν
n−2(x)] (3)

where Cν
0(x) = 1, Cν

1(x) = 2νx and ν acts as a free parameter.
Furthermore, Cν

n(x) is an even function of x for n even, and
odd function of x for n odd. It also has n single zero locations
in interval x ∈ (−1,1).

The ultraspherical polynomials are related to the
Chebyshev polynomials of the first kind, Tn(x), to the Leg-
endre polynomials, Pn(x), to the Chebyshev polynomials of
the second kind, Un(x), and to the characteristic polynomial
of the Butterworth filter, Bn(x), by following relations [16]:

Tn(x) =
n
2

lim
ν→0

Cν
n(x)
ν

,

Pn(x) =C0.5
n (x),

Un(x) =C1
n(x),

Bn(x) = lim
ν→∞

Cν
n(x)

Cν
n(1)

= xn.

(4)

Thus, the ultraspherical responses span between But-
terworth to Chebyshev response, as the order ν goes from
infinity to zero.

Since, in approximation of all-pole transfer function
in (1), term Cν

n(x) = ∑
n
i=0 gn−ixn−i is polynomial, the corre-

sponding squared amplitude characteristic of all pole trans-
fer function takes the following form:

|Hn(x)|2 =
1

c2nx2n + c2n−2x2n−2 + · · ·+ c2x2 + c0
(5)

where

ci =
ε2

(Cν
n(1))2

i

∑
j=0

g jgi− j

for i = 1, . . . ,2n and for i = 0 holds c0 = g2
0 + 1 for n even,

but c0 = 1 if n is odd. By convention, gn+1 = . . .= g2n = 0.
Therefore, the magnitude response of all-pole transfer func-
tions (5) is a complete even polynomial.

If x is continuous-time angular frequency x2 = −s2,
then function (5) is magnitude characteristic of the continu-
ous time lowpass transfer function. On the other hand, for
obtaining the lowpass all-pole discrete-time transfer func-
tion a suitable rational function for the frequency variable
x is [17]:

x2 =
(z−1)2

−4α2z
(6)

where α = sin(ωc/2) and ωc is the normalized lowpass cut-
off digital frequency in π units. If we want high-pass all-pole
filter design, for frequency variable x should be used:

x2 =
(z+1)2

4β2z
(7)

where β = cos(ϖc/2) and ϖc is the normalized highpass
cutoff digital frequency in π units. This high-pass approx-
imation is performed by using transformation z → −z on
the lowpass transfer function. The poles of resulting high-
pass filter are obtained by changing angle by π−ϕ where
ϕ is the angle of the lowpass filter pole. This implies that
ωc +ϖc = π.

Substituting (6) into (5), function G(z) = H(z)H(1/z)
is obtained, which is equal to |H(e jω)|2 when it is evaluated
along the unit circle:

G(z)=
1

c2n
(z−1)2n

(−4α2z)n + · · ·+ c4
(z−1)4

(−4α2z)2 + c2
(z−1)2

−4α2z
+ c0

.

(8)

As can be seen, G(z) is a rational function of z with
zero of order n at the origin. Equation (8) can be rewritten in
the following form:

G(z) =
zn

c2n
(z−1)2n

(−4α2)n + · · ·+ c2
(z−1)2

−4α2 zn−1 + c0zn

. (9)

Note that the component (z− 1)m is a mirror-image
polynomial, and that the sum of the mirror-image polyno-
mial of degree m and the mirror-image polynomial of degree
(m− 2r), multiplied by zr, is a mirror-image polynomial of
degree m. Applying this property, it follows that denomi-
nator of G(z) is the mirror-image polynomial of degree 2n:

G(z) =
zn

d0z2n +d1z2n−1 + · · ·+dnzn + · · ·+d1z+d0
. (10)
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Relation between coefficients di and coefficients c2i is
given in closed form by:

d2n−i =
2n−i

∑
j=0

(−1) jc2(i+ j−n)

(−4α2)i+ j−n

(
2(i+ j−n)

j

)
(11)

for i = n,n+1, . . . ,2n.

Poles of the transfer function Hn(z) are obtained by
equating the denominator of (10) with zero, and solving it
by numerical technique. Since the roots occur in reciprocal
pairs, the poles of all-pole ultraspherical filter, H(z), are the
roots zi that lie inside the unit circle:

Hn(z) =
h0zn

∏
n
i=1(z− zi)

=
h0zn

∑
n
i=0 an−i zn−i (12)

where h0 = ∑
n
i=0 ai/

√
∑

2n
i=0 ci is constant which ensures that

amplitude |Hn(e jω)| is bounded above by unity.

These types of filters can not be obtained from ana-
logue domain by applying the bilinear transformation.

2.1 Cut-off Slope
For filters considered here, a comparison of steepness

of their slopes at the cutoff frequency (cutoff slope), can be
made by calculating the slopes:

S =
d

dω

1√
1+ ε2

[Cν
n(x)

Cν
n(1)

]2

∣∣∣∣∣
ω=ωc

(13)

at the cutoff frequency ω = ωc for equal attenuation in the
pass-band, amax [6]. Since on the unit circle, z = exp( jω),
the frequency variable (6) on the real frequency is:

x =
1
α

sin
ω

2
.

By implying the relation [16]:

d
dx

Cν
n(x) = 2νCν+1

n−1(x)

and after simple mathematical manipulation follows:

S =− ε2ν

(1+ ε2)3/2

Cν+1
n−1(1)
Cν

n(1)
cot

ωc

2
. (14)

The cutoff slope depends on the width of the passband,
ωc, and it is steeper if the passband is narrower. When the
normalized passband is π, the cutoff slope is equal to zero.
In comparison to standard approximation, which uses bilin-
ear transformation [8], this all-pole approximation is suitable
for the design of narrow-band lowpass recursive digital fil-
ters because it uses n+ 1 multipliers less than for their im-
plementation [18]. For example, if the pass-band edge is
less than 0.2π, then both filters have approximately the same
slope.

The cutoff slope of highpass all-pole filters depends
also on the cutoff frequency:

S =
ε2ν

(1+ ε2)3/2

Cν+1
n−1(1)
Cν

n(1)
tan

ϖc

2
. (15)

If cutoff frequency, ϖc, increases then cutoff slope also
increases. Since the highpass filter has passband above
the cutoff frequency, then passband decreases if cutoff fre-
quency increases. In comparison with standard approxima-
tion, which uses bilinear transformation, this approximation
is suitable also for design narrow-band high pass all-pole
digital filter because it saves (n+1) multipliers.

Based on the above-mentioned cutoff slope, cascading
low pass filter with high pass filter for the bandpass filter
producing is not suitable.

3. Design Examples
Derived equations have been used for calculation of the

magnitude and the group delay responses of the Chebyshev
of the first and of the second kind, Legendre and Butterworth
filters, for degree n= 8 and for different values of the param-
eter ν.

The coefficients of the eight degree transfer functions
are given in Tab. 1 (ν = 0,0.5,1 and ∞) and corresponding
digital frequency responses are displayed in Fig. 1. The fre-
quency is normalized so that the passband edge is ωc = 0.3π

and the maximum passband attenuation is amax = 2 dB (ε =
0.7647831).

Coeff.
A(z) = a8z8 +a7z7 + · · ·+a1z+a0

ν = 0 ν = 0.5 ν = 1 ν→ ∞

a8 1.000000 1.000000 1.000000 1.000000
a7 –5.789367 –5.353353 –5.059713 –3.381678
a6 15.871965 13.635670 12.229774 5.649514
a5 –26.6694584 –21.321581 –18.172022 –5.830866
a4 29.891276 22.232672 18.004784 3.988422
a3 –22.827204 –15.767002 –12.118705 –1.829804
a2 11.593282 7.411023 5.394609 0.545467
a1 –3.584770 –2.109682 –1.449659 –0.096038
a0 0.518558 0.278735 0.179975 0.007612
ho 0.003399 0.006344 0.009009 0.052630

Tab. 1. Polynomial coefficients for the eight degree ultraspheri-
cal filters for different order ν.

When ν is gradually changing from zero to infinity we
have a continuous transitional Butterworth-Chebyshev all-
pole approximation of recursive digital filters which covers
Chebyshev second kind and Legendre approximation. If the
degree of the filter is given, transitional region can be contin-
ually adjusted with order (ν) of ultraspherical polynomial.

Figure 1 shows the attenuation characteristics of eight
degree ultraspherical all-pole filter with ωc = 0.3π for vari-
ous values of ν. In Fig. 1 it can be shown that the proposed
ultraspherical filter with ν > 1, has very small ripple in the
passband and lower group delay variation in comparison to
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Chebyshev filter. As might be expected, the Chebyshev fil-
ter (ν = 0) has best performance in the stopband. It can be
concluded that case ν = 1 is better from the standpoint of
amplitude response, but it has a poorer group delay response
than the Butterworth filter (ν→ ∞). Order of ultraspheri-
cal polynomial, ν, enables trade-off between ripple peaks in
passband and delay response of filter.
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Fig. 1. Attenuation responses and group delay characteristic of
the eight-degree ultraspherical all-pole digital filters.

If group distortion is too great, then group delay cor-
rector is available [19].
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Fig. 2. The pole plot of the eight-degree ultraspherical all-pole
digital filters with passband edge ωc = 0.3π.

Figure 2 gives the pole-zero diagram of the eight order
ultraspherical recursive digital filters. It is shown that dom-
inant poles of ultraspherical filters for ν ≤ 1 are positioned
very close to each other, but their dominant pole quality fac-
tors (Q-factors) are significantly different.

For example, modulus of dominant poles for thirteenth-
degree ultraspherical filters for ν = 0, 0.5 and 1 are 0.98553,

0.97255 and 0.96206, respectively, but their Q-factors1 are
42.8962708, 22.4701481 and 16.1788120, respectively. As
it is known [20, Chapter 5], the sensitivity in the passband in-
creases with pole Q-factor. Thus, the sensitivity in the pass-
band decreases as the order of the ultraspherical polynomial
increases.

4. Conclusion
Polynomial approximations, such as Butterworth and

Chebyshev, leading to all-pole transfer functions, are exten-
sively used in analog and IIR digital filter design. The Ultras-
pherical polynomials, Cν

n(x), are used to present new all-pole
IIR discrete-time filter approximation. These filters, which
can be referred to as Gegenbauer filters, include as special
cases Butterworth (ν→∞), Chebyshev second kind (ν = 1),
Legendre (ν = 0.5) and Chebyshev first kind (ν = 0) discrete
time all-pole filters, amongst others. The order of ultraspher-
ical polynomials, ν, enables a trade-off between the stopband
attenuation, the group delay behavior and the passband rip-
ples of the resulting filter. As expected, the group delay be-
comes more constant as ν deviates from zero (Chebyshev of
the first kind) to infinity (Butterworth). The coefficients of
the eight order transfer function are tabulated for ν= 0,0.5,1
and ∞.

It should be noted that other combinations of ultra-
spherical polynomials can be used in (1). For example,
a product of lower degree ultraspherical polynomials yield-
ing a new one of the same order. Thus, another transfer func-
tion is given by

|Hn(x)|2 =
1

1+ ε2
[

Cν
k (x)C

ν
n−k(x)

Cν
k (1)C

ν
n−k(1)

]2 (16)

for k = 0,1, . . . ,n/2.
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Serbia, in 1984. He was the director of the Institute for Re-
search and Development and part-time professor for digital
image processing at the Faculty of Electronic Engineering.
After five years of working in the industry he became the
full-time professor for analog and digital signal processing
at the Faculty of Electronic Engineering in Niš, Serbia.


