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Abstract. An Anomalous tropospheric propagation caused
by ducting phenomenon is a major problem in wireless com-
munication. Thus, it is important to study the behavior of ra-
dio wave propagation in tropospheric ducts. The Parabolic
Wave Equation (PWE) method is considered most reliable
to model anomalous radio wave propagation. In this work,
an improved Split Step Wavelet transform Method (SSWM)
is presented to solve PWE for the modeling of tropospheric
propagation over finite and infinite conductive surfaces.
A large number of numerical experiments are carried out
to validate the performance of the proposed algorithm. De-
veloped algorithm is compared with previously published
techniques; Wavelet Galerkin Method (WGM) and Split-Step
Fourier transform Method (SSFM). A very good agreement
is found between SSWM and published techniques. It is
also observed that the proposed algorithm is about six times
faster than WGM and provide more details of propagation
effects as compared to SSFM.
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1. Introduction
Due to the varying nature of refractive index in tropo-

sphere, the radio waves do not follow the straight path as
they do in free space. Since the radio refractive index varies
spatially and diurnally, it is necessary to carefully take it into
account before designing a wireless communication system.
The gradient of refractive index causes the formation of lay-
ers or ducts. When radio waves are channeled through these
ducts, they behave differently from normal environment.
This non-standard propagation is also referred to as anoma-
lous propagation. Due to ducting phenomenon and earth sur-
face profile, radio wave is affected by reflection, refraction
and diffraction mechanisms. Since the occurrence of these
mechanisms is localized and geometry specific, it is very
difficult to develop a uniform model to accurately predict
the propagation in such varying environments. Various an-

alytical and numerical models have been developed to fore-
cast the behavior of radio wave propagation in such environ-
ments. In numerical model, most reliable and widely used
technique for tropospheric radio wave propagation modeling
is the Parabolic Wave Equation (PWE) method [1]. In 1946,
the PWE method was first used for tropospheric radio wave
propagation modeling by Leonovich and Fock [2] and then,
in 1984, it was extended [3] for the case of a two dimensional
inhomogeneous atmosphere. With the passage of time, dif-
ferent versions of PWE are derived for many other areas [4],
[5], [6], [7].

PWE is derived from the Helmholtz equation by taking
into account only the forward propagation. As a full-wave
model, PWE models have certain unique advantages. First,
PWE can handle the refraction and diffraction effects simul-
taneously. Therefore, it is not only simple in calculations,
the accuracy level is also high. Second, PWE can efficiently
model the electromagnetic field distribution over irregular
surfaces under non-uniform distribution of the refractive in-
dex of atmospheric structure. Third, PWE model results in
iterative algorithms. Therefore, PWE model can be used for
regional forecast of propagation path loss.

The vast application and extensive research shows the
relative importance of the PWE model [4],[5], [6], [8]. It
should be noted that the robustness of PWE solution depends
on numerical technique used. For a given application, the se-
lection of best numerical technique is warranted to provide
the accurate results.

Due to complex boundary conditions and channel prop-
erties over earth surface, the rigorous solution of PWE is
a challenging task and it has been investigated by many re-
searchers for many years. PWE became an essential tool for
modeling wave propagation after the development of SSFM
by Tappert and Hardin [8]. SSFM takes the advantage of
computationally efficient Fast Fourier Transform (FFT) al-
gorithm [9], [10], [11]. In SSFM, diffraction and refraction
effects are treated separately while it also allows larger range
increments. The later property makes this algorithm attrac-
tive for large domain solutions. On the other hand, Finite
difference (FD) method and Finite Element (FE) Method are
also quite popular for solving PWE [4], [12], [13], [14], [15],
[16]. Effective boundary handling makes FD and FE meth-
ods attractive to the numerical solution of PWE. However,
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FD and FE methods are resource hungry in term of memory
and processing for non-standard atmospheric conditions.

Besides the conventional numerical techniques men-
tioned above, another strong contender for the numerical
solutions of Partial Differential Equations (PDEs) is the
wavelet based methods. Briefly, a wavelet is a short du-
ration oscillatory mathematical function. In 1980s, Morlet
and Grosmman used a French word ondeltte for these func-
tions. Later, it was translated to wavelet by translating onde
into wave [17]. Ingrid Daubechies constructed the class of
compactly supported scaling and wavelet function in 1988
[18]. In early nineties, the attractive properties of wavelets
had drawn researcher attention to the application of wavelets
for numerical solution of PDEs. Afterwards, numerous lin-
ear and non-linear problems have been solved using wavelet
based numerical technique. It was proved that the best lo-
calization properties of wavelets lead to efficient numerical
method especially for the problem that involves the forma-
tion of shock, hurricane and turbulence etc. [19], [20], [21].
Normally, wavelet based techniques can be classified into
three types: methods based on scaling function expansion,
methods based on wavelet expansion and methods based on
wavelet optimized finite differences [22].

Recently authors of this paper have developed
a wavelet method based on scaling function expansion
namely WGM for the solution of PWE [23]. But from nu-
merical experiments, it is observed that WGM has similar
characteristics as FE Method. It does not allow larger range
increments for higher frequencies which leads to higher pro-
cessing load. Due to the computational complexity prob-
lem encountered in WGM, the focus is now shifted to-
wards SSWM. SSWM is also one of the popular techniques
to model non-linear optical pulse propagation [24], [25].
SSWM is also used for the application of underwater acous-
tic propagation [26]. It is found that the complexity of
SSWM is minimum as compared to SSFM and SSWM is
considered to be more accurate and computationally more
efficient for large domain solutions. Authors of this paper
also showed the feasibility of SSWM for the solution of
PWE for Perfectly Electric Conductive (PEC) ground sur-
faces [27], [28].

In this work, an improved formulation of SSWM is pre-
sented. The formulation of [27], [28] is generalized for im-
pendence boundary conditions using Discrete Mixed Fourier
Transform (DMFT). Unlike other sub-domain solutions, the
proposed method not only allows larger range steps but also
provides more accurate solution. It is seen to be as fast as
SSFM.

This work mainly focuses on the modeling of tropo-
spheric radio wave propagation under ducting phenomenon
using wavelets based numerical technique. The model under
consideration is a two-dimensional standard PWE. Further-
more, finitely conductive flat earth surface is assumed under
range dependent/independent environment. The propagation
path loss is computed for range independent and dependent

environment cases. We also consider standard and ducting
atmospheric conditions.

Since this work is still a fundamental research for the
application of wavelet to model radio wave propagation, the
topics like time dependent PWE, three dimensional (3D)
PWE and/or wide angle PWE and experimental validation of
proposed path loss propagation model are beyond the scope
of this study. The rough surface modeling is also not stud-
ied in this work. Only the wavelet methods based on scaling
function expansion are employed to solve PWE. Daubachies
family of wavelet is used throughout this work. The applica-
tion of other classes of wavelet and the comparison between
different families of wavelet to model radio wave propaga-
tion is also beyond the scope of this study.

This paper is organized as follows: Problem formula-
tion of tropospheric boundary value problem is given in sec-
tion 2. A detailed SSWM formulation is given in section
3. Section 4 includes the numerical implementation of the
SSWM algorithm. At the end, results are compared with
those from WGM and SSFM for various environment condi-
tions.

2. Problem Statement: Tropospheric
Boundary Value Problem

To develop the outline of the method briefly, a fairly
simple problem is selected to formulate. The model under
consideration here is a two-dimensional standard PWE for
the case of Tropospheric radio propagation over flat surfaces.
The paraxial form of scalar wave equation in Cartesian co-
ordinates system is given by [1]

∂2u
∂z2 −2 jk0

∂u
∂x

+ k2
0(n

2−1)u = 0, (1)

Zmin ≤ z≤ Zmax, x≥ 0

where k0 = 2π/λ is the wave number in vacuum and m is
the modified refractive index. Here, x-axis is the direction
of propagation while z-axis is the height above ground level.
The geometry of PWE problem for radio wave propagation
modeling and range dependant refractivity profiles are illus-
trated in Fig. 1 (a) and (b) respectively. The limits of height
and range axis are defined as; Zmin ≤ z ≤ Zmax and x ≥ 0 .
The whole domain is discretized into Nz no. of small grids.
In Fig. 1, ∆x and ∆y are the discretizing size for range and
height respectively. Bottom surface ( Zmin ) is finite or infi-
nite conductive flat surface while an absorbing layer at the
top of ‘domain of interest’ ( Zreq ). The bottom boundary is
flat earth surface.

2.1 Boundary Conditions
Impendence Boundary Conditions:
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Equation (1) should satisfy the boundary condition to
handle the electromagnetic field at the earth surface. The
boundary conditions at surface of a smooth, finitely conduct-
ing earth can be approximated by [16]

α1(x)
∂

∂z
u(x,z)|z=0 +α2(x)u(x,z)|z=0 = 0 (2)

where α1(x) and α2(x) are constants. For a perfectly con-
ducting surface, α1(x) = 0 (Dirichlet BC) and α2(x) = 0
(Neumann BC) for horizontal and vertical polarization re-
spectively. For finitely conducting earth surface, α1(x) =
1, while α2(x) = ( j/µ0ω)η for horizontal polarization and
α2(x) = − jωεsη for vertical polarization. Here, εs is the
permittivity of the surface medium, µ0 is the free-space per-
meability, and ω is the radial frequency.
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Fig. 1. (a) Geometry of the problem for radio wave propagation
modeling (b) Refractivity profiles at specified ranges.

Absorbing Boundary Conditions

For absorbing boundary conditions, the maximum
height of problem domain is infinite but only finite height
can be handled with numerical methods. Truncation of the
domain at finite height can cause strong artificial reflections.
In order to stop these non-physical reflections, an absorbing
layer, either perfectly matched layer (PML) termination, or
non-local boundary condition (NLBC) is used [29], [1]. The
absorbing layer in turn is implemented via adding a complex
part to the refractive index or by using a window function.

A simple but effective filter is given by the Hanning
window of the form of [1]

wh(t) =
1+ cos(πt)

2
. (3)

The Hanning window provides a smooth absorptive
properties, since, wh(0) = 1 and wh(1) = 0, the derivative at
the end points are zero. To make the absorption layers effec-
tive, the ratio of absorbing layer height and range increment
need to be maximized. More details on domain truncation
can be found in [1]. In this work, both complex part to the
refractive index and window function is used to truncate the
domain above ’domain of interest’.

3. Split-Step Wavelet Method
The SSWM methods have relatively same features as

WGM [23] in discretizing altitude operator. However, in
terms of the numerical implementation and boundary han-
dling, both algorithms are different when applied to radio
wave propagation modeling. The major difference between
the SSWM and WGM is that SSWM uses image theory
method with periodic wavelet functions, whereas WGM uses
the fictitious domain approach with non-periodic wavelet
functions. In the formulation of split-step wavelet method,
the geometry of problem is modified by using image theory
as shown in Fig. 2.
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Fig. 2. Solution domain for SSWM.

Now the domain of integration with respect to z is
changed from [0 Zmax] to [Z−max Zmax]. Due to symmet-
ric extension of field and absorbing layer, we can write

u(x,Z−max) = u(x,Zmax)≈ 0. (4)

The equation mentioned above satisfies the definition
of periodic boundary condition and it allows us to use inte-
gration over the whole z axis. However, due periodicity we
can restrict to spatial domain to the interval [Z−max Zmax].



990 A. IQBAL, V. JEOTI, AN IMPROVED SSWM FOR ANOMALOUS RADIO WAVE PROPAGATION MODELING

Let us define the wavelet expansion for unknown function
u(x,z) in discrete form as

u(x,z) =
Nz−1

∑
l=0

al(x)ϕ(z− l); z ∈ [Z−max,Zmax] (5)

where al(x) are the unknown coefficient, ϕ(z) the scaling
function. In a fashion similar to WGM we obtain∫ Zmax

Z−max
ϕk(

∂2u
∂z2 +2 jk0

∂u
∂x

+ k0
2 (m2−1

)
u)dz = 0. (6)

After substituting the wavelet expansion of u(x, z) into
(6) and rearranging, we have

∑
l

∂al(x)
∂x

Zmax∫
Z−max

ϕkϕldz+∑
l

al(x)
− j
2k0

Zmax∫
Z−max

ϕk
∂2ϕl

∂z2 dz

+∑
l

al(x)
− jk0

2

Zmax∫
Z−max

(m2−1)ϕkϕldz = 0. (7)

In matrix notation, (7) can be written as

[Ik,l ]{∂al(x)/∂x}+[Lk,l +Sk,l ]{al(x)}= 0 (8)

where

Ik,l = δk,l =

Zmax∫
Z−max

ϕkϕldz ,

Lk,l =
− j
2k0

Zmax∫
Z−max

ϕk
∂2ϕl

∂z2 dz =
− j
2k0

(
Ω

0,2
l

)
,

Sk,l =−
jk0

2

Zmax∫
Z−max

(m2−1)ϕkϕldz,

δk,l is known as Kronecker delta function and Ω
0,2
l are the

connection coefficient as described in previous sections. By
considering the modified refractivity constant over an ele-
ment, Sk,l can be written as [30],

Sk,l =−
jk0

2
(m2−1)

Zmax∫
Z−max

ϕkϕldz. (9)

The problem given in (7) is an initial value problem.
The split-step method derives from the fact that the solution
of problem (7) satisfies the identity

{al(x+∆x)}= exp(L+S)∆x{al(x)} . (10)

The exponential operator given in (10) can be split in
two different ways, either

{al(x+∆x)}= exp(L∆x)exp(S∆x){al(x)} (11)

called asymmetric splitting or

{al(x+∆x)}= exp(L
∆x
2
)exp(S∆x)exp(L

∆x
2
){al(x)}

(12)

called symmetric splitting. It has been shown in [31] that the
asymmetrical splitting is accurate to the order O(∆x2) while
the symmetrical splitting is accurate to the order O(∆x3).
More details on splitting the exponential operator. On the
other hand, the accuracy of altitude operator is associated
with the moments (M) of the chosen wavelet. In this formu-
lation we are going to use asymmetric splitting and 3rd order
moment Daubechies wavelets.

As Sk,l is diagonal matrix, the exponential of Sk,l , re-
quired in (12), can be solved cheaply. However, since Lk,l is
not a diagonal matrix, instead it is a circulant matrix, there is
a need to compute the exponential of operator Lk,l . Let,

P = eQ; Q = L∆x�2. (13)

By using the fact that Lk,l is circulant, one can compute
(13) using FFT as [22]

P = F −1 exp(Λq)F (14)

where Λq = diag(_q), _q = F q and q is first column in Q ma-
trix, and F is FFT.

4. Numerical Implementation of
SSWM
In the formulation of SSWM, it was explained that

the domain of computation is assumed to be periodic in an
interval [Z−max Zmax]. The matrices given in (8) should
be scaled according to physical space. A detailed proce-
dure for physical space mapping of differentiation matrix
is given in the Section 7.4 of [22]. If the whole domain
is divided in to Nz number of grids points then the indices
l = k = 0, . . . ,Nz− 1 and the dimensions of resultant linear
system of (8) will be Nz×Nz. The matrices in (8) will have
a following structure for Daubachies wavelet of length 6

Lk,l =
1

(2Zmax)
2



Ω
0,2
0 Ω

0,2
−1 ··· Ω

0,2
−4 ··· Ω

0,2
4 ··· Ω

0,2
1

Ω
0,2
1 Ω

0,2
0 ··· Ω

0,2
−3 ··· 0 ··· Ω

0,2
2

...
...

...
...

...
...

...
...

Ω
0,2
4 Ω

0,2
3 ··· Ω

0,2
0 ··· 0 ··· 0

0 Ω
0,2
4 ··· Ω

0,2
1 ··· 0 ··· 0

...
...

...
...

...
...

...
...

0 0 ··· 0 ··· Ω
0,2
1 ··· Ω

0,2
−4

Ω
0,2
−4 0 ··· 0 ··· Ω

0,2
0 ··· Ω

0,2
−3

...
...

...
...

...
...

...
...

Ω
0,2
−1 Ω

0,2
−2 ··· 0 ··· Ω

0,2
3 ··· Ω

0,2
0


,

Nz×Nz

Sk,l = diag

 S0,0
...

SNz−1,Nz−1


Nz×Nz

, Ik,l = [I ]Nz×Nz,
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and
al (z) = [a0 · · · aNz−1 ]

T
Nz×1.

A symmetric extension of refractive profile is taken in
extended region at bottom, as shown in Figure 3.3. We can
write

Sk̂,l̂ = Sk,l ; k, l = (Nz
2 ), ...,Nz-1; k̂, l̂ = (Nz

2 −1), ...,0. (15)

Similarly, the initial field is computed at x = 0. To sat-
isfy the boundary condition over perfectly conducting sur-
faces in SSWM, unknown coefficients ({al(x)}) are com-
puted for Dirichlet and Neumann BCs in accordance with
image theory. Computational cost can be reduced by us-
ing discrete sine or cosine transforms (DST or DCT) for
Dirichlet and Neumann BCs, respectively. Since, SSWM
is inspired from SSFM, boundary handling cannot be done
using conventional methods like fictitious domain approach
and capacitance matrix method [21], [32], [33], [32], [23].
At this stage, no other method is available for handling the
finite boundary conditions in SSWM. In order to account of
finitely conductive surfaces, boundary handling is inspired
from DMFT that was basically developed for SSFM to in-
corporate the impedance boundary conditions.

4.1 Discrete Mixed Fourier Transform
(DMFT)

DMFT is basically developed to incorporate the bound-
ary condition in the solution of SSFM [34]. An overview of
DMFT formulation is given as follows:

Let us define an auxiliary function w(x,z) for
impedance boundary condition given in (2) by

w(x,z) =
∂u(x,z)

∂z
+αu(x,m∆z) 0≤ z≤ ∞. (16)

Backward difference formula is used to solve (16). The
discrete form of (16) can be written as

w(x,m∆z) =
u(x,m∆z)−u[x,(m−1)∆z]

∆z
+αu(x,m∆z)

(17)

where m = 1 . . .N − 1 , with w(x,0) = w(x,N∆z) = 0 and
∆z is the grid size for height operator. Let r = (1+α∆z)−1.
Equation (17) can be written as

w(x,m∆z) = u(x,m∆z)− r[u(x,(m−1))∆z] (18)

where, m = 1 . . .N−1. DST of w(x,m∆z) yields

W (x,g∆p) =
N−1

∑
m=1

w(x,m∆z)sin
gmπ

N
. (19)

Inverse DST of W (x,g∆p) is given by

w(x,m∆z) =
2
N

N−1

∑
g=1

W (x,g∆p)sin
gmπ

N
. (20)

Solution of (16) is given by

u(x,m∆z) = up(x,m∆z)+A(x)rm. (21)

Where the particular solution up(x,m∆z) can be found
by setting up(0) = 0 and using

up(x,m∆z) = w(x,m∆z)+ rup[(x,(m−1))∆z]. (22)

To completely specify the backward difference DMFT,
the coefficient A(x) can be computed as

A(x) =C(x)−G
N

∑
m=0

′rmup(x,m∆z), (23)

C(x) =
N

∑
m=0

′u(x,m∆z)rm, (24)

G =
2(1− r2)

(1+ r2)(1− r2N)
. (25)

∑
′ indicates that the m = 0 and m = N are weighted

with a factor of 1/2. The detailed formulation of DMFT can
be found in [34], [35].

4.2 Use of DMFT Algorithm in SSWM
The step by step procedure to implement the DMFT is

given as follows:

(1) Compute the coefficients al(0,z) using initial field [23].
(2) Construct the discrete auxiliary function w(x,m∆z) us-

ing (18).
(3) Perform DST of w(x,m∆z) to compute W (x,g∆p).
(4) Compute free space propagation using procedure given

in (14) and extract one side of field.
(5) Multiply the free space propagator to obtain W (x +

∆x,g∆p).
(6) The coefficients C(x) must also be propagated to the

new range step

C(x+∆x) =C(x)exp
[

i∆x
√

k2
0 +
( lnr

∆z

)2
]

.

(7) Perform the Inverse DST to obtain w(x+∆x,m∆z).
(8) Solve for u(x+∆x,m∆z) using (21)-(23).
(9) Finally, multiply the field distribution u(x+∆x,m∆z)

with environment propagator.
(10) Repeat step 2 to 9, until maximum required range

achieved.
(11) After reaching the required range step, the required co-

efficients will be extracted from the extended domain
solution.

It should be noted that, for perfectly conducting surfaces,
DCT or DST can be used for vertical or horizontal polarized
initial field respectively.

In summary, overall algorithm for SSWM implementa-
tion is given in Fig. 3.
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Fig. 3. SSWM Implementation Algorithm for PWE.

5. Results and Discussion
Simulation Experiments:

To illustrate the performance of proposed wavelet
based techniques, three major types of numerical experi-
ments, similar to [23], are performed to estimate the path
loss in troposphere.

• In the first experiment, we take case of commonly
available standard environment condition with Per-
fectly Electrical Conducting (PEC) BC. Though earth

is not PEC but for high conductive surfaces e.g. water
it is justified.

• Second, we have chosen a case of propagation over wa-
ter. Since, the evaporation duct exists almost all of the
time, it is important to predict the behavior of radio
wave propagation to design an effective maritime com-
munication system. A detailed study is performed to
examine the effect of evaporation duct height and an-
tenna height.

SSWM results are validated by comparing with those
of SSFM and WGM [23]. The testing performed here is just
to show that the particular implementation of the SSWM, for
modeling and simulation of tropospheric radio wave propa-
gation, is valid and the models are suitable for their intended
purpose within reasonable bound of accuracy. To show the
relative difference between SSWM results and published
techniques, Mean Relative Squared Difference (MRSD) is
computed for each case with SSFM and WGM data. The
formula used to calculate MRSD is given by [36],

MRSD =

1
n

k

∑
i=0

(
(SSFM or WGM Datai)− (SSWM Datai)

SSFM or WGM Datai

)2

.

(26)

5.1 Test Case 1: Propagation over Perfectly
Electrical Conducting Earth Surface in
Standard Environment

Simulation Setup:

In the first case, path loss results for 100 km transmis-
sion range over Perfectly Electrical Conducting (PEC) earth
surface are obtained for standard environment at 5.8 Ghz.
A refractivity profile used in this simulation is specified by
a linear function as [37]

M(z) = 326.615+0.121433z, 0≤ z≤ 100 (27)

where z is measured in meters. Horizontally polarized trans-
mitter antenna height is chosen at 25 m above the ground
level. Beam-width is set to be 3 degrees. The vertical grid
size is taken 0.054 m. The range increment is taken to
be 125 m for SSFM and SSWM, and 1 m for WGM. The
range increment for WGM is taken to be very small to avoid
numerical oscillation problems [12]. The bottom bound-
ary is assumed to be perfectly conducting flat earth surface.
All simulations for SSWM and WGM are carried out with
Daubechies wavelet of length 6. The parameters used in this
simulation are summarized in Tab. 1.
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Fig. 4. (a) Range (km) vs. height (m) path loss (dB) diagram for standard environment. (b) Path loss vs. height for range of 20 km. (c) Path-loss vs.
range for height of 45 m. (d) Standard environment refractive profile.

Parameter Value
Frequency 5.8 GHz

Transmission range 100 km
Maximum height 100 m

Altitude grid size (∆z ) 0.054 m

Range grid size ∆x
SSFM, SSWM 125 m

WGM 1 m
Antenna heigth 25 m

Beamwidth 3◦

Bottom boundary PEC

Wavelet Class SSWM, WGM
Daubechies

wavelet (D=6)

Tab. 1. Simulation parameters for propagation over PEC Earth
surface in standard environment.

Discussion:

A 3D coverage map of height versus range propagation
path loss (dB) over flat earth surface is shown in Fig. 4 (a). In
Fig. 4 (a), the results from SSWM are presented and the re-
sults from other methods are used only for detailed compar-
ison. The color code bar on the right side of Fig. 4 (a) shows
the range of path loss (dB), i.e. [100 160]. For detailed com-
parison between developed technique, SSFM and WGM, the
path loss data are extracted from the results obtained using
different numerical schemes for the specific range and height
and presented in Fig. 4 (b) and (c). Environment profile is
shown in Fig. 4 (d).

From Fig. 4 (a), it can be seen that, for the case of
standard refractivity gradient, energy moves away from the
earths surface and the radio horizon is only few kilometers.
Due to this, energy attenuates fast and beyond the horizon
communication becomes a challenging task. A comparison

of propagation path loss results at range 20 km is shown
in Fig. 4 (b). The results from both SSWM show a very
good match with those from SSFM and WGM. Fig. 4 (c)
illustrates the comparison of path loss versus range at height
45 m. A strong interference and deep nulls can be seen for
the first few kilometers because of the reflections from the
earth surface. This region is normally referred to as interfer-
ence region. After 30 km, or beyond the horizon, the atten-
uation slope is very high. In this region, the major part of
energy comes from the diffraction phenomenon. Due to this,
it is referred to as diffraction region. In diffraction region,
the attenuation reaches approximately 200 dB for standard
environment. Therefore, a good communication after few
kilometers is not possible for low altitude receiver antenna
heights. Communication range can only be increased by
increasing the altitude of our receiver or transmitter antenna.

For performance evaluation of the newly developed
techniques SSWM, the MRSD is computed using (26) for
the cases given in Fig. 4 (b) and (c). It is found that the
MRSD is of the order of 10−5, the detail of MRSD results is
presented in Tab. 4.

It is also observed that, for large range increment sizes,

SSWM can produce good results while WGM suffers from
oscillation problem, due to which the range increment size
for WGM is taken quite small compared to SSWM. It is also
observed that SSWM is about 18 times faster then WGM
and the computation cost of SSWM is no different from that
of SSFM and being a sub-domain solution, SSWM takes all
advantages of WGM, as shown in Tab. 5.
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5.2 Test Case 2: Propagation in Evaporation
Duct over Finite Conductive Earth Surface

Simulation Setup:

This simulation is performed over finite conductive sea
surface using 10.5 GHz. And we demonstrated the behav-
ior of radio wave propagation in evaporation duct as shown
in Fig. 5. The evaporation duct profile used in this simula-
tion is given in Tab. 2. Simulations were carried out with
horizontally polarized transmitter antenna with 15 m height
above the ground level. Beam-width is set to be 2 degrees.
The vertical grid size is taken 0.054 m. The range increment
is 125 m for SSFM and SSWM and 1 m for WGM. The bot-
tom boundary is assumed to be finitely conducting flat sea
surface. The parameters used in this simulation are summa-
rized in Tab. 3.

Height (m) M-Units
0 357.021

0.135 334.332
0.223 332.730
0.368 331.169
0.607 329.673

1 328.273
1.649 327.007
2.718 325.920
4.482 325.061
7.389 324.488
11.76 324.293
12.182 324.294
20.086 324.623
33.115 325.720
54.598 328.010

100 332.186

Tab. 2. Refractive profile for evaporation duct.

Discussion:

Once more, a comparison between results is presented.
In Fig. 5 (a), 3D converge map using SSWM shows the
strong trapping of signals in evaporation duct. Fig. 5 (b)
and (c) shows the detailed comparison of AREPS and from
SSWM and WGM data at specified range and height. Fig.
5 (b) illustrates the path loss versus height at range 35 km
while Fig. 5 (c) shows the path loss versus range at height
15 m. Environment profile used in this simulation is shown
in Fig. 5 (d).

Again, for performance evaluation, MRSD is computed
for SSWM using (26) for the cases given in Fig. 5 (b) and (c).
Results given in Tab. 4 show that MRSE is of the order of
10−4. Hence, a very good agreement between the results is

found. Similar to previous case, the range increment size for
SSWM is quite large compared to WGM. Therefore, SSWM
saved much more computation time as compared to WGM
while the computation cost of SSWM is similar to SSFM.
The summary of computation cost for all test cases is given
in Tab. 5.

Parameter Value
Frequency 10.5 GHz

Transmission range 100 km
Maximum height 100 m

Altitude grid size (∆z ) 0.054 m

Range grid size ∆x
SSFM, SSWM 125 m

WGM 1 m
Antenna heigth 15 m

Beamwidth 2◦

Bottom boundary Sea Surface

Wavelet Class SSWM, WGM
Daubechies

wavelet (D=6)

Tab. 3. Simulation parameters for propagation in evaporation duct
over finite conductive Earth surface.

From Fig. 5 (a), it can also be seen that the radio waves
are highly affected by this natural waveguide. In this case
too, the same regions of interference, diffraction and tro-
poscatter are present as in surface duct. In Fig. 5 (b), it can
be observed that the propagation path loss is about 140 dB at
observation height of 4 m and remains very stable for long
distances. Fig. 5 (c) also shows another interesting feature
of evaporation duct that, unlike previous cases, the interfer-
ence region is shrunken to few kilometers and a very smooth
attenuation can be observed with a rate much less than stan-
dard atmosphere. It also indicates that evaporation duct can
be suitable for radio links using receiver antenna at few me-
ters altitude. As the percentage occurrence of evaporation
duct is more frequent as compared to surface-based and ele-
vated duct.

Test Case
MRSD w.r.t.

SSFM WGM
Range Height Range Height

1 3.2x10−03 1.2x10−05 3.6x10−04 1.1x10−04

2 8.1x10−05 1.0x10−04 1.2x10−04 5.1x10−05

Tab. 4. Summary of MRSE results.

Test Case Computation Time (Sec)
SSWM SSFM WGM

1 8.71 7.21 149.57
2 8.62 7.23 150.44

Tab. 5. Comparison of computation time for SSWM, SSFM and
WGM.
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Fig. 5. (a) Range (km) vs. height (m) path loss (dB) diagram for evaporation duct. (b) Path loss vs. height for range of 35 km. (c) Path-loss vs. range
for height of 15 m. (d) Evaporation duct refractive profile.

It can be observed from Tab. 5, the computation time
for SSWM and SSFM is almost same. However, SSWM has
better localization properties as compared to SSFM where
the basis functions are entire-domain functions. Sub-domain
basis functions gives us the opportunity to handle disconti-
nuities more efficiently with same computational load while
Fourier solutions may require very high order of harmonics
to achieve the similar accuracy. It is also possible to ex-
tend sub-domain solution to adaptive gridding which may
not possible in Fourier based solutions. The feasibility of
SSWM for PWE also opens the door for hierarchical solu-
tions for desired level of accuracy with less computations
cost as compared to other finite element or difference meth-
ods.

6. Conclusion
In this paper, an improved SSWM is presented for the

numerical solution of two dimensional PWE. It incorporate
DCT/DST and DMFT for PEC and non-PEC boundary con-
ditions respectively. The performance of SSWM is demon-
strated for standard and ducting environment conditions and
results were compared with those from AREPS. A strong
agreement is found for all environment conditions. From re-
sults, it is also found that unlike other sub-domain solutions,
the proposed method not only allows larger range steps but it
also provides more accurate solution almost as fast as SSFM.
In conclusion, this work can be a significant step towards the
improvement of propagation model to predict the anomalous
propagation in troposphere.
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