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Abstract. Multiple-input Multiple-output (MIMO) radars 
benefit from spatial and waveform diversities to improve 
the performance potential. Phased array radars transmit 
scaled versions of a single waveform thereby limiting the 
transmit degrees of freedom to one. However MIMO ra-
dars transmit diverse waveforms from different transmit 
array elements thereby increasing the degrees of freedom 
to form flexible transmit beampatterns. The transmit beam-
pattern of a colocated MIMO radar depends on the zero-
lag correlation matrix of different transmit waveforms. 
Many solutions have been developed for designing the 
signal correlation matrix to achieve a desired transmit 
beampattern based on optimization algorithms in the liter-
ature. In this paper, a fast algorithm for designing the 
correlation matrix of the transmit waveforms is developed 
that allows the next generation radars to form flexible 
beampatterns in real-time. An efficient method for sidelobe 
control with negligible increase in mainlobe width is also 
presented.  
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1. Introduction 
MIMO radars employ multiple transmit antennas and 

multiple receive antennas thereby benefiting from in-
creased degrees of freedom due to spatial diversity. These 
radars further have the flexibility to transmit diverse wave-
forms from their different transmit antennas thereby bene-
fiting from waveform diversity. This spatial diversity and 
waveform diversity together can be used to improve many 
aspects of radar system performance [1]. MIMO configu-
rations employing widely separated antennas [2] called 
“Statistical MIMO” radars improve target detection capa-
bilities due to spatial diversity. MIMO radars can also 
employ closely spaced antennas [3] called “Colocated 
MIMO” radars to improve interference rejection capability, 
parameter identifiability and resolution performance due to 

increased virtual aperture. In this paper we deal with colo-
cated MIMO radar only. 

Conventionally MIMO radars employ orthogonal sig-
nals to obtain the phase delay for each transmitting/receiv-
ing antenna pair, thus increasing the degrees of freedom for 
beamforming. However MIMO radars can also employ 
partially correlated signals to form flexible transmit beam-
patterns with better performance than phased array beam-
patterns for a given number of transmit antenna elements. 
The advantages of MIMO radars (employing diverse wave-
forms) in forming flexible transmit beampaterns over 
phased array counterparts are well illustrated in [4]. While 
phased arrays employ only spatial diversity to form trans-
mit beams, MIMO radars employ both spatial and wave-
form diversity to form transmit beams with enhanced flexi-
bility. 

The transmit beampattern of a colocated MIMO radar 
depends on the zero-lag correlation matrix of different 
transmit waveforms [5–6]. Orthogonal transmit waveforms 
result in uniform illumination of power in all directions 
which is very helpful in search applications. Fully corre-
lated waveforms (perhaps also scaled by a complex con-
stant) result in directive beams used in tracking applica-
tions. Partially correlated waveforms with a specific zero-
lag correlation matrix can be used to form a wide range of 
beampatterns. 

To manage the complexity, the design of diverse 
waveforms to achieve a desired transmit beampattern is 
considered in the literature in two stages. In the first stage, 
the zero-lag correlation matrix R = XXH of the transmit 
waveform matrix X is designed. In the second stage, the 
design of signal waveform matrix X having a zero-lag 
correlation matrix R (obtained from the previous stage) and 
meeting some practically motivated constraints is consid-
ered. Low complexity algorithms for the latter problem 
exist in the literature [11–14]. Most of the existing algo-
rithms in the literature addressing the former problem  
[4–10] are based on computationally complex optimization 
methods and hence difficult to solve in real-time. Design of 
signal correlation matrix for specific transmit beampattern 
was first addressed in [5], [6] as an optimization problem 
solved using gradient search method. In [4], the design of  
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correlation matrix for designing different transmit beam-
patterns along with minimization of crossbeam pattern is 
formulated as an SDP optimization problem and solved 
using an efficient cyclic algorithm proposed therein. In [7], 
an eigenvalue decomposition method is used to achieve 
specific illumination pattern. Many target tracking applica-
tions require flexible transmit beampatterns generated in 
real-time. Previous works on signal correlation matrix 
design for approximation of desired transmit beampatterns 
employed optimization methods which are difficult to solve 
in real-time or highly complex to implement in hardware. 

This paper considers the real-time computation of the 
zero-lag signal correlation matrix R that approximates 
a desired beampattern. The main contributions of this paper 
are (a) closed-form solution for computing the zero-lag 
correlation matrix and (b) FFT based algorithm for compu-
ting the zero-lag correlation matrix. The advantage of the 
proposed algorithm is that the proposed algorithm is easily 
amenable to hardware implementation since efficient 
architectures for FFT algorithms exist [18]. 

Section 2 describes MIMO radar signal model and de-
fines a complete beampattern that includes the specification 
of transmit and cross beampattern. Section 3 derives the 
closed form solution and presents a fast implementation of 
the solution using 2D FFT algorithm. Section 4 presents the 
numerical results and Section 5 concludes the paper.  

2. MIMO Radar Signal Model 
Consider a monostatic MIMO radar that contains M 

transmitters with the antenna elements configured as uni-
form linear arrays. We assume a point target and also that 
the target and transmitters lie in the same 2-D plane as 
shown in Fig. 1. Let dT represent the spacing between con-
secutive transmitters. Let θ be the target angle with respect 
to the broadside direction and � is the carrier wavelength of 
the transmitted waveforms. Let {um(t)}, m �{0,1,…,M – 1} 
represent the  transmitter waveforms. All the transmit 
antennas transmit waveforms simultaneously in time. We 
further assume that the transmitter waveforms are narrow-
band and the baseband signal waveforms are not modified 
because of Doppler effect [15]. The correlation between 
two transmit waveforms um(t) and um’ (t)  at zero time-lag is 
defined as 
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and R = [rm,m’]M × M represents the zero-lag correlation 
matrix of the M transmit waveforms.  

2.1 Transmit Beampattern 
The baseband signal at the target location can be 

described by the expression 
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Fig. 1.  Transmitter model. 

where � �sin /Tf d � ��  is the spatial frequency of the 
target, 
 � � � � � � � � � �0 1 2 1   

T
Mt u t u t u t u t
� � �� �u  (3) 

is the vector of M transmit waveforms and a(f) is the array 
steering vector given by  
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With typical transmitter spacing of dT = �/2, the spatial 
frequency f is in [–½, ½]. The spatial distribution of power 
of the transmit signals is called the transmit beampattern 
and is given by [4], 
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Consider P(f) for a phased array radar case. The 
M × 1 transmit signal vector u(t) is given by 
u(t) = a(f0) u(t) where f0 = dT sin(θ0)/� with θ0 denoting the 
steered direction. Then, R = a(f0) aH(f0)  assuming unit 
power signal u(t) and  

� � � � � � � � � � � � � � 2

0 0 0 P f f f f f f f� �a a a a a aH H H H .  

  (6) 
Note that the transmit gain attains maximum value in 

the direction θ0 and is decreased at θ � θ0  Now, consider 
P(f) with orthogonal signals. Then, R = I, and 

 � � � � � � P f f f M� �a aH  (7) 

this implies that the beampattern is omnidirectional. Thus, 
the traditional beamforming results in a focused beampat-
tern while the beampattern of MIMO with orthogonal sig-
nals is uniform in all directions. In some applications, it 
might be desirable to synthesize a beampattern that is be-
tween these two extremes so that wide focus areas can be 
formed without wasting power in the directions that are of 
no interest. This can be achieved by adjusting the correla-
tion matrix R of the transmitted waveforms. 

2.2 Crossbeampattern 
The crosscorrelation between the signals backscat-

tered to the radar by any two targets (at location parameters 
f and f’), called the crossbeampattern is given by  
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In practical applications, it is desirable to minimize 
c(f, f’) for improving the quality of adaptive localization 
techniques [16]. In phased array beamforming, the signals 
backscattered to the radar from two targets (at location 
parameters f and f’ ) are fully coherent, which in particular 
makes the adaptive localization techniques inapplicable 
[16]. 

2.3 Complete Beampattern 
The complete beampattern s(f, f’ ) as a function of 

spatial frequencies f and f’ can be written as 
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We note that transmit beampattern P(f) is the com-
plete beampattern evaluated along the f = f ’ line i.e., 
P(f) = s(f, f ). The crossbeampattern c(f, f’ ) is the complete 
beampattern s(f, f’ ) at f � f ’  From (9), we see that the 
complete beampattern is the scaled two-dimensional Fou-
rier transform of the zero-lag correlation matrix R. We also 
notice that with typical transmitter spacing dT = �/2, s(f, f’ ) 
is periodic w. r. t  f, f’  with period 1. 

2.4 Problem Formulation 
The objective in transmit beampattern design, is to 

design R so that the transmit power is directed in desired 
directions f and c(f, f’ ) is minimized. The specification of 
complete beampattern s(f, f’ ) (rather than just the transmit 
beampattern P(f) captures both these goals. We state the 
design problem as follows: Given a desired beampattern 
function sd(f, f ’ ), find the matrix R = [rm,m’]M × M  that 
closely approximates the relation  
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Any practically achievable signal correlation matrix R 
will be positive semi-definite and Hermitian (i.e. 
rm,m’ = r*

m,m’). R will have the property if we choose the 
desired beampattern function sd(f, f ’ ) that is real valued 
and symmetric about the f = f ’ line. Further the total 
transmit energy can be constrained to P by multiplying R 
by the factor P/tr{R}. 

3. Closed Form Solution 
We now proceed to derive a closed form solution to 

design the correlation matrix R to realize the desired 
complete beampattern sd (f, f ’ ) given by 
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Multiplying (11) on both sides by 1 22 2j fk j f ke e	 	 �
  and 
integrating w.r.t f and f’  over one period (0,1) we have 
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Interchanging the order of integration and summation 
we have 
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In the above equation, the relation � � � �
1

2

0

j f n ke df n k	 �
 
 � 
�  

has been used. The closed form solution for the zero-lag 
correlation matrix R = [rm,m’]M × M  is given by 
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A similar solution is presented in [17]. However the 
difficulty is in the evaluation of the integral in (14). In 
mission critical target tracking applications, computation of 
R from (14) is not possible in real-time. This problem is 
analogous to FIR filter design using Fourier series method 
wherein the desired unit sample response hd (n) of the FIR 
filter to the designed one is calculated from the desired 
frequency response Hd (ejω) as [18]. 
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An approximation to hd (n) can be obtained by sam-
pling Hd (ejω) and using the inverse discrete Fourier trans-
form to compute 
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where N is the length of the FIR filter. If K >> N, � �dh n� �dh n�d  
can be expected to be a good approximation to hd (n). In 
a similar way, the integral in (14) can be approximated as 
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If K >> M, rr m,m’ can be expected to be a good ap-
proximation to r m,m’ (17) can be efficiently computed  
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using 2-D inverse fast Fourier transform (FFT). This allows 
the correlation matrix to be computed in real-time in con-
trast to previously proposed optimization based methods. 
The steps of the algorithm are presented below 

1. Given the desired complete beampattern function 
sd (f, f ’) (specified over a large grid of points over f and 

f ‘ ) as � � � �, ,  ˆ  d ds k k s f f�� � at � � , ,k kf f
K K

� �� � �
�

�

�
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with , {0,1 ,.., 1)k k K�� 
 where K >> M. Typically 
K = 3M is adequate. 

2. Find the 2-D inverse fast Fourier transform of � �ˆ , ds k k�
to obtain Ŝd (m, m').  

3. The desired correlation matrix can be obtained 
as � �� �,  , ˆ

m m d M
r S m m� � 
 �  over � �0 ,  1m m M�� � 
 . 

Here ()M  indicates modulo M operation. 

In Step 3 above, the reflection property of 2-D Fourier 
transform viz. If x(n1, n2) → X(ω1, ω2)  then x(n1, –n2) 
→ X(ω1, –ω2), is used.  

4. Design Results 
Two scenarios are considered for the simulation. The 

first scenario considers the maximum power design at 
known target locations and the second scenario considers 
beampattern matching design. 

4.1 Maximum Power Design for Known 
Target Locations 
In practice, to obtain the prior knowledge about the 

target locations, orthogonal waveforms [19], 20] are used 
for MIMO probing. This is referred to as “initial probing”. 
After we get the target location estimates with this probing 
and spatial spectrum estimation techniques [21], we can 
optimize the transmitted beampattern to direct the transmit 
power in these known target locations. We define a simple 
parameterized expression for the desired beampattern 
function. Assume that there are K targets in the range of the 
radar, located at angles θk, corresponding to spatial fre-
quencies { fk }, k = 0,1, …, K – 1 with fk = dT sin(θk)/�. We 
would like to concentrate the energy in the vicinity of each 
target. The desired beampattern sd (f, f ’) is expressed as 
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and * represents convolution. 

The function g (f, f ’) is used to reduce the sidelobe 
level in the resulting beampattern by providing smooth 
tapering on all sides. When fx = fy and 0 < � < 1 the contour 
of g (f, f ’) reduces to an ellipse rotated by angle π/4 i.e. 
along the line f = f ’. This choice makes sd (f, f ’) symmetric 
along the f = f ’ line, resulting in a zero-lag correlation 
matrix R that is positive semi-definite and Hermitian. The 
choice of � affects the resolution along the f = f ’ line and 
f � f ’ directions. The choice of � = 0 and � = 1 makes the 
contour of desired beampattern a circle and ellipse respec-
tively at each desired direction along the f = f ’ line. The 
function in (19) provides more degrees of freedom to con-
trol sidelobe levels compared to a tapering window ap-
proach used in [11]. The values fx, fy can be increased so 
that energy in Ŝd (m, m') can be spread uniformly along 
m,m’  so that rm,m & constant thus satisfying the uniform 
elemental power constraint [4]. As an example, the desired 
beampattern function for three targets located at f0 = 0.25, 
f1 = 0.4 and f2 = 0.75 is shown in Fig. 2. The other parame-
ters are chosen as fx =fy =0.02 and � = 0.2. 

The 2-D inverse FFT coefficients Ŝd (m, m') of the 
desired beampattern function are shown in Fig. 3. We see 
that most of the energy is contained in the coefficients with 
0 � m � 15 and 0 � m’ � 15.  

The beampattern obtained for different values of M is 
shown in Fig. 4. Note that M = 5 does not provide enough 
degrees of freedom for synthesizing three distinct beams. 
We also note that M = 20 does not offer distinct advantages 
over M = 15. The transmit beampattern for different values 
of M is shown in Fig. 5. 

One of the practically motivated constraint is to have 
the transmit waveforms with uniform elemental power 
constraint to limit the transmit signals having wildly vary-
ing magnitudes thereby limiting signal distortion. The 
diagonal elements of the computed correlation matrix rep-
resent the power of the transmit signals emitted by various 
transmitters. With � = 0.4, the spread of the energy in the 
resulting correlation matrix R, is evenly distributed result-
ing in a maximum to minimum element ratio of 1.2 thus 
nearly satisfying the uniform elemental power constraint.  

 

 
Fig. 2.  Desired beampattern function sd (f, f ’).  
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Fig. 3. 2-D inverse FFT coefficients Ŝd (m, m') of the desired 

beampattern function. 

 
Fig. 4. Beampattern function with M =5, 10, 15 and 20. 

 
Fig. 5. Transmit beampattern with M =5, 10, 15 and 20. 

 
Fig. 6. Transmit beampattern evaluated using the algorithm in 

[4] and the proposed algorithm. 

For comparison, the correlation matrices  and  
for achieving maximum power at spatial frequencies 

f1 = 0.2 and f2 = 0.4 are computed using (i) convex optimi-
zation method proposed in [4], and (ii) the proposed FFT 
based algorithm. The other parameters are chosen as 
M = 15, fx =fy =0.02 and � = 0.2. The transmit beampattern 
of corresponding correlation matrices is plotted in Fig. 6. It 
can be noticed that the proposed algorithm achieves the 
low sidelobe levels with small increase in mainlobe width.  

4.2 Beampattern Matching Design 
Consider a desired beampattern  given by  

� � ' (, , 1,2, , 
0 otherwise

k k k k k k K) � � �
* �

� � 
 + , + � 
� �
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 (20) 

with K = 3, θ1 = –30°, θ2 = 0°, θ3 = 40°, Δk = 10°, μ1 = 0.5, 
μ2 = 1, and μ3 = 0.75. Here θk represents the location of the 
kth target. Δk, μk represent the beamwidth and transmit gain 
in the direction of the kth target respectively. The desired 
beampattern is obtained by convolution of ideal beampat-
tern with Gaussian tapering given by (20) with fx =fy = 
0.015 and � = 0. The desired beampattern for the three 
targets is shown in Fig. 7. The beampattern approximation 
for different values of M is shown in Fig. 8. The transmit 
beampattern (in dB) as a function of angle (in degrees) for 
different values of M is shown in Fig. 9. From the above 
figures we notice that with M = 20, the degrees of freedom 
are sufficient to closely approximate the desired beampat-
tern. We also notice that M = 25 does not offer improve-
ment over M = 20. 

 
Fig. 7. Desired beampattern. 

 
Fig. 8. Beampattern function with M = 10, 15, 20 and 25. 
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Fig. 9. Transmit beampattern with M =10, 15, 20 and 25. 

4.3 Computational Complexity and 
Comparison with Previous Works 
FFT is the only operation utilized in the proposed al-

gorithm. The complexity of the N-point FFT is known to be 
O(NlogN) [18]. Since 2-D FFT algorithm is a separable 
transform, computing Ŝd (m, m') from ŝd (k,k’) in Step 2 of 
the algorithm above requires computing M 1-D FFTs along the 
rows of ŝd (k,k’) followed by M 1-D FFTs along the columns. 
Hence, the overall complexity of the proposed algorithm is 
O(M 2logM). As a comparison, the SQP algorithms pro-
posed in [4], [6], [8] have a complexity of O(log(1/η)M 3.5) 
for an accuracy of η [13]. For comparison, the number of 
computations required for calculating the above correlation 
matrix using (i) convex optimization method proposed in 
[4] and (ii) the proposed FFT based algorithm are evaluated 
using MATLABv7. The number of complex computations 
using both the algorithms (with M = 20, K = 60 grid points 
over f, f � ‘{0,1}) are found to be 28317904 and 826712 
respectively. Roughly, in this case the FFT based algorithm 
speeds up the computation by a factor of 34.   

In terms of the calculated transmit beampattern, it has 
been found that the solution given by the iterative methods 
[4–6], [9], [10] and the proposed algorithm in this paper 
achieve identical transmit beampatterns (under similar set 
of input conditions), with possibly a tradeoff between 
mainlobe width, sidelobe level and out-of-band roll off.  

5. Conclusions 
In this paper, a fast calculation of signal correlation 

matrix that approximates a desired transmit beampattern of 
colocated MIMO radar based on 2-D inverse FFT is pro-
posed. Simulation results show correct operation of the 
proposed algorithm. While practically motivated con-
straints are easy to incorporate into the previously devel-
oped convex optimization based methods, they are difficult 
to solve in real time. However the proposed FFT based 
algorithm allows the correlation matrix to be computed in 
real-time and is easily amenable to hardware implementa-
tion [21]. 

Previous literature [1] considered windowing of zero-
lag correlation matrix to achieve low sidelobe level at the 

cost of increased mainlobe width. This paper achieved 
sidelobe control of beampattern function by considered the 
desired beampattern tapered by a two-dimensional Gauss-
ian density function. Results show low sidelobe levels with 
negligible increase in mainlobe width. The sidelobe levels 
and mainlobe width of the crossbeam pattern can be con-
trolled by adjusting the parameters of the function g(f, f ’). 
If extremely low sidelobe levels are desired then the taper-
ing windows approach [22] can be applied on the computed 
correlation matrix. 
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