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Abstract. The Fast Fourier Transform is a very efficient 
algorithm for the Fourier spectrum estimation, but has the 
limitation of a linear frequency scale spectrum, which may 
not be suitable for every system. For example, audio and 
speech analysis needs a logarithmic frequency scale due to 
the characteristic of a human’s ear. The Fast Fourier 
Transform algorithms are not able to efficiently give the 
desired results and modified techniques have to be used in 
this case. In the following text a simple technique using the 
Goertzel algorithm allowing the evaluation of the power 
spectra on an arbitrary frequency scale will be introduced. 
Due to its simplicity the algorithm suffers from imperfec-
tions which will be discussed and partially solved in this 
paper. The implementation into real systems and the im-
pact of quantization errors appeared to be critical and 
have to be dealt with in special cases. The simple method 
dealing with the quantization error will also be introduced. 
Finally, the proposed method will be compared to other 
methods based on its computational demands and its 
potential speed. 
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1. Introduction 
Many techniques for spectral analysis are based on 

the short time Fourier spectra and since the Fast Fourier 
Transform (FFT) algorithms have been developed, the 
estimation of the spectra is even more suitable. Spectral 
resolution of the algorithms depends on the number of time 
domain samples that are processed, and the number of 
complex samples directly equals the resulted number of 
complex spectral lines (bins). The bins are equidistantly 
spread along the linear frequency scale in the range con-
strained by the sampling theorem. 

There are situations in which the linear frequency 
scale is not convenient, e.g. speech or music analysis. Such 
inconvenience originates from the natural character of 
a human’s ear the frequency characteristic of which is far 

different from the linear spectral scale. The model of 
a human’s ear [1] says that the spectral resolution should be 
logarithmically distributed over the audible spectrum. 
Several techniques are used for the logarithmically distrib-
uted frequency scale spectrum estimation; the Mel-Fre-
quency Cepstrum Coefficients (MFCC) [2] and the con-
stant Q-transform [3] are the main ones. 

The MFFC algorithm uses the spectral estimation of 
a sufficient frequency resolution computed by the FFT. The 
spectrum is then successively processed by triangular win-
dows in accordance to spectral requirements. Windowing 
may be provided by a predefined filter bank. Filter bank 
outputs are converted to a logarithmic amplitude scale and 
processed by the Discrete Cosine Transform (DCT). Each 
output of the DCT then corresponds to the spectral line of 
the desired frequency scale. Over the years many computa-
tional forms have been developed which are more or less 
effective as e.g. in [4] or [5]. 

The constant Q-transform originates from the basic 
definition of the Discrete Fourier Transform (DFT), where 
the computation is not provided for all bins. J. Brown in [3] 
defined the algorithm for computing DFT parameters to 
fulfill predefined requirements. The original calculation 
can also be efficiently modified as in [6] or for audio sig-
nals in [7]. 

M. Tröbs and G. Heinzel also published a different 
approach [8], where they applied an averaging over modi-
fied periodogram. Their improved method computes the 
Fourier transform optimally for the logarithmic frequency 
scale, but is more convenient for a high resolution analysis 
and therefore is very complex. 

The first step of mentioned algorithms is to estimate 
the spectrum of a huge frequency resolution to catch the 
differences between spectral components at low frequen-
cies. The proposed algorithm uses a separate setting for 
each desired spectral component as similar to a bank of 
filters and is also useful for estimating the spectrum of 
an arbitrary frequency scale distribution while maintaining 
a high computational efficiency. On the other hand the 
price paid for its simplicity is a spectral leakage when using 
a rectangular weighting window. The main contribution of 
the text is a simple way to partially eliminate the leakage at 
frequencies in between the Fourier spectrum bins described 
in Sec. 3. For better possibility of comparison, the 
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logarithmic frequency scale distribution will be studied in 
the following text. 

2. Efficient Approach to Spectral 
Power Estimation 
In Fig. 1 the problem of using conventional Fourier 

transform algorithms for spectral estimation is depicted. 
Under the log-scale at low frequencies there is an obvious 
lack of information whereas at high frequencies there are 
many redundant bins that have to be averaged. Thus, even 
though the FFT is a very efficient algorithm for estimation 
of linearly distributed spectra, its computational demands 
grow rapidly if high resolution at low frequencies is 
required. 

As obvious from the definition of the discrete Fourier 
transform  
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individual bins can be calculated separately. The resolution 
of the spectrum depends on the number of processed 
samples N and k indexes the bins. 

Obviously, this property helps to eliminate unneces-
sary bins and additionally set the resolution for each bin 
computation separately. The Fourier transform can be 
viewed as a bank of band-pass filters with an impulse re-
sponse  
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where uN(n) denotes the constraints of the sum (1), i.e. 
rectangular window. The power spectral density (PSD) 
characteristics of the filters can be derived by the method in 
[9] and an example is shown in Fig. 2. 

From PSD it is clear that the length of the filter N di-
rectly influences its bandwidth, further description of this 
relation is in [10]; notice also the zero transfer at frequen-

cies of adjacent bins. The filters can then be set to analyze 
the signal under the desired scale; a nice example is a log-
scale of base 2. The k coefficient is constant over all bins 
and length N is halved with each bin going to the highest 
frequencies and it causes the desired widening of its band-
width as depicted in Fig. 3. 

The direct evaluation of (1) can be replaced by the 
faster Goertzel algorithm. The algorithm is a convolutional 
form of (1) and the derivation can be found in [9]. It is used 
for fast calculation of selected bins and hence very suitable 
for our purpose. Its transfer function is shown in the 
following equation  
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where the output sample is valid for every Nth sample after 
which the filter has to be cleared. This condition provides 
the rectangular windowing of the impulse response. 

The Goertzel algorithm is useful not only for discrete 
frequencies defined by N, i.e. k� , but as declared in 
[11] it can be used for frequencies in between the bins, i.e. 
k may be real. This statement is correct, but suffers from 
spectral leakage more than for integer k. The reason why 
the leakage is higher is that since the filter is complex, the 
main passing lobe of the PSD is present only on one side of 
the complex spectrum. Thus, shifting the frequency re-
sponse of non-integer k causes the zero of the transfer 
function not to be at the position of the opposite frequency 
image, which then causes aliasing. The effect is clear from 
Fig. 4. 

This effect is more apparent when the filter is tuned 
near the edges of a sampled region, where the images are 
very close, and when the spectral leakage is high, which is 
for  a rectangular  window.  Another  window  with  better 

 

Fig. 1. The upper image shows the linear distribution of the 
Fourier transform and the bottom image shows the 
same distribution under the log-scale. 

 

Fig. 2. PSD example for N = 10 and k = 2 (solid line) and 
N = 20 and k = 8 (dashed line). 

 

Fig. 3. Example of logarithmic frequency scale of base 2. 
From the left lobe N = [64 32 16 8] and k = [2 2 2 2]. 



180 F. ZAPLATA, M. KASAL, EFFICIENT SPECTRAL POWER ESTIMATION ON AN ARBITRARY FREQUENCY SCALE 

 

spectral leakage characteristics can be used by weighting 
the input signal because the impulse response is 
inaccessible within the effective realization of the Goertzel 
algorithm. The impact of weighting by Hanning window on 
the PSD has been presented in [10]. The additional win-
dowing has to be applied before the filter and therefore it 
degrades useful power of the signal and significantly in-
creases computational demands because each log-bin needs 
different N and consequently the window size is also 
different. 

3. A Novel Technique for Elimination 
of Additional Spectral Leakage for 
Arbitrary Frequencies 
The spectral leakage is usually treated by windowing. 

Even in [11], dealing with arbitrary frequencies defined by 
real k, some weighting window is supposed to be used. 
Authors in [8] also met this issue and due to its mini-
mization by windowing considered it as negligible. The 
following text presents a novel and more efficient approach 
to eliminating leakage of the mirror image of the desired 
frequency and therefore providing better characteristic for 
real k and rectangular weighting window. 

First, we have to find an analytic response of the bin 
calculation to a harmonic signal of the same frequency. The 
solution of the limited convolution is 
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The bin value is newly denoted as Y and is proposed 
to be dependent on time samples n instead of one time 
sample X in (1). The applied harmonic signal has 
magnitude M and phase φ. Note that for integer k the 
second term of the solution is zero and the result simplifies 
to a complex value expected for the Fourier bin power. 
Substituting the parasitic value  
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and the desired value  
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the response (4) can be rewritten as  
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Equation (7) can now be solved for unknown B as 
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where Yk is the output of the uncompensated Goertzel filter. 

The optimized way for signal power computation of 
the original Goertzel algorithm  
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has been obtained by powering the complex Goertzel out-
put Xk [12]. Variables d(n) and d(n-1) denote delayed sam-
ples within the recursive part of the algorithm [12]. C de-
notes the frequency coefficient (10), which can also be 
evaluated by corresponding absolute frequencies fc (tuned 
frequency) and fS (sampling frequency), 
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The solution of (8) can be put into (9) in the form of 
additional coefficients resulting in 
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The compensation coefficients are then  
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For more convenient evaluation, the substituted com-
plex constant A is split into real and imaginary parts AR and 
AI respectively. Notice again the state where the frequency 
coefficient k is integer and A is then zero. All coefficients 
simplify to only weighting constant (2/N)2 that is common 
for the Fourier transform power computation. 

The evolution of the coefficients is shown in Fig. 6. 

 

Fig. 4. Aliasing of mirror images. Filter of N = 10 is tuned to 
k = 0.8, corresponding harmonic images are shown by 
the dashed lines. 
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It is obvious that the most critical are the frequencies near 
the edges of the sampled region where the coefficients 
grow to infinity. Otherwise the coefficients slightly fluctu-
ate around the weighting value (2/N)2, which equals 1/9 in 
this example. The compensation effect is clearly seen on 
the waterfall spectrogram in Fig. 5; the upper image is for 
the original uncompensated algorithm, where strong 
fluctuations at the tuned frequency (k = 2.3) are seen. No-
tice also the magnitude range, which goes even over the 
unity value. The bottom image shows the output signal 
after compensation, the fluctuations are effectively sup-
pressed at the tuned frequency. 

4. Quantization Error of the 
Coefficients 
When implementing whatever signal processing 

algorithm, the issues about limited accuracy computing has 
to be taken into account. The general problem of 
overflowing and rounding error has been discussed e.g. in 

[12]. The solution of these issues mainly lies in properly set 
accuracy of the fixed point calculations and appropriate 
order of arithmetic operations. However, the quantization 
error of the coefficients is a more complicated issue which 
may cause total failure of the system and therefore it should 
be given attention.  

In Fig. 7, there are two lines, the solid one shows the 
real quantization error of coefficient C when 4 bits of 
memory are allocated for its fractional part. The dashed 
curve shows the maximal error given by 

 

1

qC

0.5cos cos 2

2

k
N R

E
�

�

� � 	� 	 �� �� �
 � ��  (15) 

and is the envelope of the real error. The coefficient reso-
lution is given by the quantum count R, which is R = 24 for 
4-bit resolution. The equation was obtained by the reverse 
tuning coefficient computation, i.e. the absolute frequency 
error is the frequency calculated back from the ideal tuning 
coefficient distorted by a half quantum of fixed point num-

Fig. 5. Waterfall spectrogram of the original method and compensated method for N = 10 and k = 2.3. 

 

Fig. 6. Evolution of the magnitude compensation coefficients: 
example for N = 6. 

 
Fig. 7. Absolute quantization error of coefficient C for 

quantum count R = 16. 
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ber representation. It is now clear that the most critical are 
the edges of the frequency range, where the error grows 
rapidly. Note also, that equation (15) does not have a real 
solution for all frequencies, where the argument of the  
cos–1(x) function can run out of the range �–1; 1�. Such 
an occurrence has to be prevented during the design. 

The quantization error of coefficient C is particularly 
critical for log-scale frequency spectral estimation, where 
the need of accuracy in frequency grows at low frequen-
cies. A possible solution for this issue is to raise the quanti-
zation accuracy of the system, i.e. raise R, or to move the 
ratio k/N to a less critical region. The second way can be 
maintained by pre-filtering and decimation. 

A simple low-pass filter is the moving average, which 
in fact is a limiting case of the Goertzel algorithm and 
therefore the equation  

 � �
� �2 1

G

sin
1

sin

kj f N
N

kN f
N

H f e
N kf

N

�
�

�

� 	� �� �
 �

� 	� 	�� �� �
 � ��

� 	� 	�� �� �
 � �

 (16) 

[9] can be used for calculating the frequency response of 
the moving average filter  
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The impulse response is then 

 � � � �MA NMA
MA

1h n u n
N

�  (18) 

which is a rectangular pulse in fact. 

The moving average is realized as the summing of 
NMA samples and weighting them by its number before 
letting them into the Goertzel filter. The design of the 
Goertzel coefficients then has to include NMA times 
decimation as a substitution  
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i.e. to give the desired frequency response, the k/N ratio of 
the Goertzel filter is NMA times raised. 

The same approach can be used to design the high-
pass filter resulting in the impulse response 
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and magnitude frequency response 
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From the impulse response it can be derived that realization 
of the high-pass filter lies also in summing of NHP samples, 
but with alternating signs. 

The design of the Goertzel filter coefficients then has 
to include substitution according to formula 
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This proposed solution helps to eliminate the quanti-
zation error of the coefficient C, however, very simple 
filters cause aliasing and distortion; therefore to reach the 
best performance, the system has to be optimized, or other 
better filters have to be used. 

The compensation coefficients QM1, QM2, QM3 do not 
affect the recursive part of the filter and therefore, their 
impact on the results is weak and can be easily predicted 
from their values, as seen in Fig. 6. 

5. Efficiency Comparison 
Finally, the proposed method is briefly compared to 

the FFT methods from an efficiency point of view. The 
efficiency or computation demands can be assessed from 
the theoretical number of multiplications and additions per 
frame or in our case per fixed number of samples. 

The realization equations of the Goertzel algorithm 
are summarized as 
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From the equations the number of real multiplications 
per frame is N + 6 and the number of real additions is 
2(N + 1). Assuming the log-scale distribution of base 2, as 
in Fig. 3, results in the number of multiplications  

 � �1
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and additions  
 � �G 2 2 4 4K pA K� 
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for K log-scale bins. The frame size of each bin is different, 
so the number of samples, to which the results are com-
pared, is the length of the longest frame. The longest frame 
also defines the length of the FFT algorithm used for the 
same frequency resolution within other spectral analysis 
algorithms. The value  

 2 Klogp N�  (27) 

defines the bandwidth of the bin tuned to the highest fre-
quency, i.e. with the widest bandwidth NK. 

The fast Fourier transform radix-2 algorithm has the 
following number of multiplications  
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 FFT 2log 2M N N N� 
  (28) 
and additions  
 FFT 22 logA N N N� 
 , (29) 

when used for power spectrum computation. 

In Tab. 1, there are a few values of the Goertzel algo-
rithm computational demands in comparison with its 
equivalent FFT algorithm for p = 3. For example for the 
row for eight log-scale bins at relative frequencies 

3

2 2 2 2 2 2 2 2, , , , , , ,
8 16 32 64 128 256 512 1024 p�
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 the relative deviation is 

-20.9% and -19.1% for multiplications and additions re-
spectively compared at 1024 samples of the input signal. 
The comparison was provided as a relative deviation of the 
computational demands against the reference FFT radix-2 
power spectrum algorithm. In all cases, there appears the 
minus sign which means an improvement. Notice also that 
for very large number of bins K, equation (25) and (26) 
converge to the FFT demands (28) and (29), because in 
such a case K = log2N. 
 

K MG MFFT δrM AG AFFT δrA 

4 346 512 -32.4% 572 832 -31.3% 

8 9722 12288 -20.9% 17404 21504 -19,1% 

16 4587514 5242880 -12.5% 8650748 9699328 -10.8% 

32 5.76E+11 6.18E+11 -6.9% 1.12E+12 1.19E+12 -5.8% 

64 4.83E+21 5.02E+21 -3.7% 9.52E+21 9.81E+21 -3.0% 

Tab. 1. An example of computational demands. 

6. Conclusion 
The Goertzel algorithm has been introduced in a role 

of an efficient bank of filters for an arbitrary frequency 
scale spectral analysis. The algorithm implicitly uses 
a rectangular weighting window and this causes strong 
spectral leakage, which is a price paid for its simplicity. 
The Goertzel algorithm is able to be tuned to whatever real 
frequency within the sampled range, but has stronger leak-
age caused by the mirrored central frequency. The novel 
method of effective mirror image elimination has been 
introduced. The elimination lies in compensation provided 
on the output power side with 3 additional, mostly non-
critical, coefficients which are much more efficient com-
pared to window weighting. 

Implementation issues are a very important part of the 
system design and the Goertzel filter has a very critical 
issue in the quantization error of the tuning coefficient, 
which affects the recursive part. The proposed solution 
helps to significantly reduce the tuning error, but the price 
paid is the aliasing of leaking signals from the stop-band. 

The efficiency of the algorithm was assessed by com-
paring the FFT radix-2 algorithm of equivalent length. The 
number of multiplication and addition operations per 
a fixed number of samples was compared. The result 

showed that the algorithm is slightly less demanding, but 
considering that the FFT spectral evaluation is only a part 
not giving the desired arbitrary frequency scale power 
spectrum, the proposed algorithm is even more efficient. 

The algorithm has already been implemented within 
an audio amplifier to visualize an input signal spectrum in 
the logarithmic frequency scale. The display resolution is 
16 bins of 4-bit depth. In such cases the spectral leakage of 
the rectangular window is not disturbing; moreover the 
speed of the algorithm is excellent. 
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