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Abstract. The aim of this paper is to reduce the complexity 
of the unrestricted uniform polar quantizer (UUPQ), 
keeping its high performances. To achieve this, in this 
paper we propose the multiproduct uniform polar quan-
tizer (MUPQ), where several consecutive magnitude levels 
are joined in segments and within each segment the uni-
form product quantization is performed (i.e. all levels 
within one segments have the same number of phase 
levels). MUPQ is much simpler for realization than 
UUPQ, but it achieves similar performances as UUPQ. 
Since MUPQ has low complexity and achieves much better 
performances than the scalar uniform quantizer, it can be 
widely used instead of scalar uniform quantizers to im-
prove performances, for any signal with the Gaussian 
distribution.  

Keywords 
Unrestricted uniform polar quantization, multiproduct 
uniform polar quantization, polar coordinates, 
Gaussian distribution 

1. Introduction 
Digital transmission and processing are dominant 

nowadays, while the most signals are analog. Therefore, 
an inevitable part of almost all modern telecommunication 
systems is A/D (analog-to-digital) converter. The main part 
of A/D converters is a quantizer. The quality of the digi-
tized signal mostly depends on the quantizer. Also, with 
the appropriate design of the quantizer, the compression of 
signals can be achieved, which is very important since 
resources for the transmission and storage of signals 
(channel bandwidth and memory space) are limited. There-
fore, the designing of quantizers is very important and 
topical subject. 

There are two main types of quantizers [1], [2]: scalar 
quantizers (where each sample of the signal is separately 
quantized) and vector quantizers (where several samples 
are jointly quantized; for example, if n samples are jointly 
quantized, we can say that they represent an n-dimensional 
vector in n-dimensional vector space, therefore we have 
an n-dimensional vector quantizer). Vector quantizers have 
much better performances (i.e. they can achieve much 
higher SQNR (signal-to-quantization noise ratio) for the 

same bit-rate) than scalar quantizers [2]. On the other hand, 
vector quantizers have one drawback: high complexity, 
which exponentially increases with the increasing of the 
dimension n. Therefore, the most used vector quantizers 
are two-dimensional quantizers, which are the simplest of 
all vector quantizers, but they still have much better per-
formances than scalar quantizers. Almost all signals of 
interest are random and can be described with some prob-
ability density function (pdf). A lot of signals can be mod-
eled with the Gaussian pdf. For signals with the Gaussian 
pdf, it is easier to design two-dimensional vector quantizer 
in the polar coordinates (magnitude r and phase ) than in 
the Cartesian coordinates. Such quantizers, designed in the 
polar coordinates, are called polar quantizers. 

There are two main types of polar quantizers: re-
stricted (also called product) and unrestricted. In product 
polar quantizers, the number of phase levels is the same for 
all magnitude levels, while in unrestricted polar quantizers 
the numbers of phase levels are different for different mag-
nitude levels, i.e. the number of phase levels are optimized 
for each magnitude level. Unrestricted polar quantizers 
have better performances than product polar quantizers, but 
they are more complex. In polar quantizers, the magnitude 
r can be quantized in different ways (using uniform or 
nonuniform quantization), while the phase  is always 
quantized using the uniform quantization since it has the 
uniform distribution.   

Polar quantization has been considered in many pa-
pers. In [3], [4] unrestricted polar quantizers were ana-
lyzed, using the optimal companding function for the 
quantization of the magnitude r. In [5], [6] the product 
uniform polar quantization was considered. The product 
polar quantizer with the companding function optimal for 
scalar but not for polar quantization, was considered in [7]. 
Embedded product and unrestricted polar quantizers were 
considered in [8]. Product polar quantizers with A-law 
companding function were analyzed in [9] with the appli-
cation for audio signals. In [10], [11] product polar quan-
tizers with µ-law companding function were considered. 
The solution in [11] is compatible with the ITU-T G.711 
standard. Unrestricted polar quantizers with square cells 
were analyzed in [12], applying µ-law companding func-
tion for the quantization of the magnitude r.  

The unrestricted uniform polar quantizer (UUPQ) is 
the polar quantizer with uniformly quantized magnitude r, 
where the optimization of numbers of phase levels is done 
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for each magnitude levels. It was analyzed in [13], [14]. It 
is two-dimensional polar counterpart of the scalar uniform 
quantizer. UUPQ can achieve much better performances 
(i.e. much higher SQNR for the same bit-rate) than the 
scalar uniform quantizer. UUPQ can be used instead of the 
scalar uniform quantizer (which is widely used), to im-
prove performances. However, UUPQ has high complex-
ity, since numbers of phase levels for all magnitude levels 
should be calculated and stored in memory.  

The aim of this paper is to reduce the complexity of 
UUPQ, keeping its good performances. Therefore, in this 
paper we propose the multiproduct uniform polar quantizer 
(MUPQ), where several magnitude levels are joined into 
segments. Within each segment the product polar quanti-
zation is done, i.e. all magnitude levels in one segment 
have the same number of phase levels. Therefore, for 
MUPQ we have to calculate numbers of phase levels for 
each segment, not for each magnitude level (which is the 
case in UUPQ). Since the number of segments is much 
smaller than the number of magnitude levels, it follows that 
for MUPQ we have to calculate much smaller number of 
parameters than for UUPQ, thus MUPQ is much simpler 
for realization than UUPQ. Furthermore, we will show that 
performances of MUPQ are very close to performances of 
UUPQ. Therefore, the main contribution of this paper is 
the designing of MUPQ, which is much simpler for reali-
zation than UUPQ, but which can achieve excellent per-
formances, very close to performances of UUPQ.  

The comparison between MUPQ and PUPQ (product 
uniform polar quantizer) [5], [6] is also presented. It is 
shown that MUPQ is better solution since MUPQ is 
slightly more complex than PUPQ but MUPQ achieves 
higher SQNR compared to PUPQ. Slight increase of com-
plexity provides appreciable increasing of SQNR. 

The asymptotic analysis is usually used for the de-
signing of polar quantizers [3-14]. Hence, the asymptotic 
analysis will be applied in this paper. We will consider 
medium and high bit-rates (roughly speaking, higher than 
4 bps (bits-per-sample)), since the asymptotic analysis is 
valid for these bit-rates.  

Simulations are done in MATLAB both for UUPQ 
and MUPQ. Simulation and theoretical results are matched 
very well, which proves the correctness of the developed 
theory.   

Theory is also proven by the experiment performed 
on the speech signal, for MUPQ, PUPQ and UUPQ. We 
use the speech signal since it can be modeled with the 
Gaussian distribution very well [1].  

This paper is organized in the following way. Polar 
quantizers are defined in Section 2. In Section 3, the 
analysis of performances of UUPQ is presented shortly. 
The designing of MUPQ, which is the main contribution of 
this paper, is presented in Section 4. Numerical results and 
discussion are given in Section 5. Section 6 concludes the 
paper. 

2. The Definition of Polar Quantizer 
Let’s consider a signal with the Gaussian distribution, 

which is defined with the probability density function (pdf) 

))2/(exp(
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xxf  , where σ2 denotes the power 

(variance) of the signal. The design of quantizers is usually 
done for the unit variance σ2 = 1, hence we will use this 
approach in this paper. For the designing of two-dimen-
sional quantizers, the joint probability density function of 
two consecutive samples x1 and x2 should be used. In Car-
tesian coordinates, the joint pdf is defined as 
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magnitude r  is: 
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which is the pdf of the Rayleigh distribution. The pdf of 

the phase   is 
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the phase   has the uniform distribution, which means that 

the two-dimensional source of information is circularly-
symmetric. One often used approach of the designing of 
vector quantizers is the geometric principle [15]. Accord-
ing to this principle, quantization cells are deployed on 
contours where the joint pdf is constant. Since the joint pdf 
of the Gaussian source in polar coordinates ),( rf  de-

pends only on r , it follows that ),( rf  is constant where 

.constr  , i.e. contours where ),( rf  is constant are 

concentric circles. Applying the geometric principle, the 
two-dimensional quantizer for the Gaussian source is much 
easier to design in polar than in Cartesian coordinates, by 
deploying cells on concentric circles. Quantizers designed 
in polar coordinates are called polar quantizers.  

Let’s define some parameters of polar quantizers: N 
denotes the total number of quantization cells, maxr  de-

notes the maximal magnitude, L denotes the number of 
magnitude levels, ir , i = 0,…,L denote thresholds and im , 

i = 1,…,L denote representation levels for the quantization 
of the magnitude r . On each magnitude level the uniform 
quantization of the phase   is done, since the phase   has 

the uniform distribution. Let iP  denote the number of 

phase levels on the i-th magnitude level. It holds that 

NP
L

i i  1
. Let iji Pj /2,   , iPj ,...,0  denote 

thresholds and ji,  iPj /2)2/1(  , iPj ,...,1  denote 

representation levels for the quantization of the phase  for 
the i-th magnitude level.  
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Within each cell there is one representation point. 
Let’s consider an arbitrary quantization cell jiS ,  

}|),{( ,1,1 jijiii rrrr    , i = 1,…,L , j  

iP,...,1 . Within this cell there is the representation point 

),( , jiim  . All points ),( r  from the cell jiS ,  are mapped 

to the representation point ),( , jiim  . 

There are two basic types of polar quantizers: unre-
stricted (where numbers of phase levels are different for 
different magnitude levels, i.e. the optimization of the 
number of phase levels is done for each magnitude level) 
and restricted (also called product, where the numbers of 
phase levels are the same for all magnitude levels, i.e. 

LPPP  ...21 ). 

During the quantization process, an irreversible error 
is made, which is expressed by the distortion. The total 
distortion D  is equal to the sum of the granular distortion 
Dg (which is made in the area 0  r  rmax) and the overload 
distortion Dov (which is made in the area r > rmax), i.e. 
D = Dg + Dov. Distortions in this paper will be defined per 
one dimension. It is usual that performances of vector 
quantizers are defined per one dimension, to simplify com-
parison of performances of vector quantizers with different 
dimensions. The quality of the quantized signal is defined 
with SQNR (signal-to-quantization noise ratio), which is 
defined as: 

 )/1(log10SQNR[dB] 10 D . (2) 

The bit-rate (the average number of bits required for the 
coding of one sample) is defined as: 

 NR 2log
2

1
  [bps]. (3) 

3. Unrestricted Uniform Polar 
Quantizer (UUPQ) 
This is the unrestricted polar quantizer where the uni-

form quantization of the magnitude r  is performed, i.e. the 
magnitude range ],0[ maxr  is uniformly divided into  L 

intervals. Thresholds for the uniform quantization of the 
magnitude r are defined as Lirri /max , i = 0,…,L, while 

representation levels are defined as Lrimi /)2/1( max , 

i = 1,…,L. Let Lrrr iir /max1    denotes the stepsize 

for the uniform quantization of the magnitude r .  

UUPQ was already analyzed in [13], [14]. We will 
recall some results from [13], [14]. The expression for the 
number of magnitude levels was derived in [14]:    
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In [13], the following expression for the number of phase 
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The expression for the granular distortion was derived in 
[14]:  
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However, the analysis of UUPQ presented in [13] and 
[14] was incomplete and not quite correct from the fol-
lowing reasons: in [13] the overload distortion was ne-
glected and the optimization of rmax was not done (instead 
of that, the value of rmax for the scalar uniform quantizer 
was used); in [14] the expression for the overload distor-
tion was not given and the method for calculation of rmax 
was not explained. Due to these reasons, performances of 
UUPQ calculated using the analysis from [13], [14] is not 
accurate enough. Since we need accurate performances of 
UUPQ, we will present some new results for UUPQ (cal-
culation of the overload distortion and the optimization of 
rmax) which are missing in [13] and [14]. 

Using the similar procedure as for the granular dis-
tortion in [13], we can define the overload distortion as: 
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article 1/2 on the beginning of this expression denotes the 
fact that ovD  is defined per one dimension. Using approxi-

mation maxrmL  , which is valid for the asymptotic analy-

sis, it is obtained that: 
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Using (5) for LP , the following final expression for the 

overload distortion is obtained: 
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where 
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The total distortion D  is obtained by summing expressions 
(6) and (8). SQNR and the bit-rate R are calculated using 
(2) and (3).  
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Now, we will shortly summarize the design process. 
The parameter N is defined in advance, i.e. N is known on 
the beginning of the design process. Optimal values of 
other parameters (rmax, L and Pi) should be found during 
the design process, in the following way. The parameter 
rmax should be found firstly. Based on (6) and (8), we can 
see that the total distortion D depends only on one un-
known parameter rmax. Optimal value of rmax is obtained by 
the minimization of the D, i.e. by numerical solving of the 
equation 0)/( max drdD . When rmax is found, we can 

calculate all other unknown parameters: L is calculated 
using (4); after that thresholds and representation levels are 
calculated as Lirri /max  and Lrimi /)2/1( max ; 

finally, values for iP , Li ,...,1  are calculated using (5).  

Numerical values for UUPQ are given in Tab. 1. 
Simulation of UUPQ is done in MATLAB. In Tab. 1 we 
present values of SQNR obtained by the theory (SQNRth) 
and by the simulation (SQNRsim). We can see that values of 
SQNR obtained by the theory and by the simulation are 
matched very well, which proves the previously developed 
theory.  
 

R [bps] 5 6 7 8 

rmax 3.55 4.00 4.42 4.82 
L  22 47 102 219 

 SQNRth [dB] 26.28 32.06 37.95 43.90 
 SQNRsim [dB] 26.25 32.05 37.92 43.89 

Tab. 1.  Numerical results for UUPQ. 
 

R [bps] 5 6 7 8 
SQNR [dB] 24.57 29.83 35.13 40.34 

Tab. 2.  SQNR for the scalar uniform quantizer [1]. 

For the purpose of comparison, values of SQNR for 
the scalar uniform quantizer for different values of R  are 
presented in Tab. 2. These values are taken from [1]. We 
can see that UUPQ has much better performances (i.e. 
much higher SQNR) than the corresponding uniform scalar 
quantizer, for the same bit-rate R . Due to its very good 
performances, UUPQ could be very important in many 
applications. However, UUPQ has one drawback: high 
complexity. Namely, due to the fact that the numbers of 
phase levels Pi are different for different magnitude levels, 
we have to calculate and store parameters Pi for all magni-
tude levels, which increases complexity and requires large 
memory space, both in transmitter and receiver. 

In the aim to decrease the complexity, but also to keep 
good performances in the same time, we will present the 
multiproduct uniform polar quantizer (MUPQ) in the next 
section.  

4. Multiproduct Uniform Polar 
Quantizer 
The meaning of parameters N , rmax, L , ir , im , and 

r  is the same as in UUPQ. In MUPQ, the uniform quan-

tization of the magnitude r  is performed (i.e. the magni-
tude range [0, rmax] is uniformly divided into L  magnitude 
intervals) and the uniform quantization of the phase  is 
done for each magnitude interval, as in the previously 
described UUPQ. But, in MUPQ, L0 consecutive magni-
tude intervals are joined into segments. There are K = L/L0 
segments. Within one segment, the product polar quantiza-
tion is performed, which means that all magnitude intervals 
within one segment have the same number of phase levels. 
Since this polar quantizer consists of K product uniform 
polar quantizers, it is called ‘multiproduct’. Let jM , 

Kj ,...,1 , denote the number of phase levels on magni-

tude intervals within the j-th segment. It holds that 
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Changing summation with integration, it follows that: 
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The expression for the granular distortion becomes gD  
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To find optimal values of jM , minimization of gD  will 
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Putting (14) into (12), it follows that:  
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The granular distortion gD  can be written as 
2

2
2

1 / LCLCDg  , where   2/exp1)24/( 2
max

2
max1 rrC   

and  3
1

3222
2 )6/(  


K

q qIKNC  . Solving the equation 

0)/(  LDg , it is obtained that: 

 
4 3

1
3

2/
max

4

2

1

2
max1

2










 



K

q q

r

I

eNKr

C

C
L


. (16) 

Putting (16) into (14), it follows that: 
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Putting 4
21 / CCL   into 2

2
2

1 / LCLCDg  , the 

following final expression for the granular distortion is 
obtained: 
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Based on (7), the overload distortion is defined as ovD  

  drrfMrrrr rr K )()3/()(
2

1
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2
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
  . Using (17) 

for KM , the following final expression for the overload 

distortion is obtained: 
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where X  and Y  are defined with (9).  

The total distortion D  is obtained by summation of 
(18) and (19). D depends on only one unknown parameter 
rmax. Optimal value of rmax is obtained by the numerical 
minimization of D , i.e. by solving the equation 

0)/( max drdD . The designing process of MUPQ will be 

summarized in the following algorithm (recall that values 
of N  and K  are given in advance): 

1. Optimal value of rmax is calculated by the numerical 
solving of the equation 0)/( max drdD . 

2. Based on (16), the optimal value of L  is calculated. 
For the practical realization, L is rounded to the 
nearest integer divisible with K . This rounding has 
negligible effect on performances, since K  takes 
small values (usually, 84  K ). 

3. Thresholds Lirri /max  and representation levels 

Lrimi /)2/1( max , Li ,...,1 , as well as borders 

between segments Kjrt j /max , Kj ,...,1  are 

calculated.  

4. Using (17), the optimal number of phase levels jM , 

Kj ,...,1  for each segment is calculated. For the 

practical realization, values of jM  should be rounded 

to the nearest integers. This rounding has negligible 
effect on performances.  

5. Thresholds jlj Ml /2,    and representation levels 

jlj Ml /2)2/1(,   , Kj ,...,1 , jMl ,...,1 , are 

calculated, for the quantization of the phase  . 

5. Numerical Results and Discussion  
In Tab. 3, numerical results for MUPQ are presented, 

for different values of N  and K . Simulation of this 
quantizer is done in MATLAB. Let SQNRth denote value 
of SQNR obtained by the theory and SQNRsim denote value 
of SQNR obtained by the simulation. We can see that  
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R  
[bps] 

K rmax L 
SQNRth 

[dB] 
SQNRsim 

[dB] 
3 3.87 45 31.65 31.65 
4 3.90 44 31.79 31.77 
5 3.92 45 31.87 31.85 
6 3.94 48 31.89 31.90 
7 3.95 49 31.90 31.87 

6 

8 3.96 48 31.95 31.93 
3 4.24 93 37.43 37.41 
4 4.28 96 37.60 37.58 
5 4.31 95 37.7 37.72 
6 4.33 96 37.76 37.74 
7 4.35 98 37.80 37.77 

 
7 

8 4.36 96 37.83 37.79 
3 4.59 195 43.28 43.25 
4 4.64 200 43.48 43.48 
5 4.67 205 43.60 43.62 
6 4.69 210 43.67 43.67 
7 4.71 210 43.72 43.71 

8 

8 4.73 208 43.75 43.77 

Tab. 3.  Numerical results for MUPQ. 

values of SQNR obtained by the theory and by the 
simulation are matched very well, which proves the 
previously developed theory. 

Comparison between MUPQ and UUPQ is presented 
in Tab. 4 (values of SQNRth for UUPQ are taken from 
Tab. 1). From Tab. 4 we can see that SQNR increases with 
the increasing of K, becoming closer to SQNR of UUPQ. 
On the other hand, the increasing of K leads to the in-
creasing of complexity. Therefore, optimal choice of K 
should be made, taking into account both SQNR and com-
plexity. We propose values K = 5, 6 and 7 as very good 
solutions.  

In the aim of completeness, the comparison between 
MUPQ and PUPQ (product uniform polar quantizer) is 
also presented in Tab. 4. PUPQ is well known in literature 
[5], [6]; this is the polar quantizer where the uniform quan-
tization of magnitude is performed (as well as in MUPQ 
and UUPQ), but in PUPQ the number of phase levels is the 
same for all magnitude levels, i.e. P1 = P2 = … = PL = P. 
PUPQ is the simplest of those three quantizers (PUPQ, 
UUPQ, MUPQ) since only one parameter P has to be 
stored and calculated, but it has the smallest SQNR. 
MUPQ is slightly more complex than PUPQ (since we 
have to calculate and store K parameters, but K is very 
small number, less than 8), but MUPQ achieves higher 
SQNR compared to PUPQ. Slight increase of complexity 
provides appreciable increasing of SQNR.  

Let’s consider three quantizers: UUPQ, PUPQ and 
MUPQ with K = 7 segments, for the same bit-rate of R = 8 
bps. UUPQ achieves SQNR of 43.90 dB and it requires 
calculation and storage of L = 219 different values of Pi 
(see Tab. 1). PUPQ achieves SQNR of 42.80 dB and it 
requires calculation and storage of one value P. MUPQ 
achieves SQNR of 43.72 dB and it requires calculation and 
storage of only K = 7 different values of Mj. We can see 
that MUPQ achieves SQNR which is very close to SQNR 
of UUPQ  (decreasing of  SQNR  is  only  0.18 dB),  while 

 

MUPQ UUPQ PUPQ 
R 

[bps] K
SQNRth 

[dB] 
SQNRe 

[dB] 
SQNRth 

[dB] 
SQNRe 

[dB] 
SQNRth 

[dB] 
SQNRe 

[dB] 
3 31.65 31.75 
4 31.79 31.86 
5 31.87 31.96 
6 31.89 32.04 
7 31.90 32.13 

6 

8 31.95 32.10 

32.06 32.21 31.37 31.27 

3 37.43 37.40 
4 37.60 37.69 
5 37.70 37.73 
6 37.76 37.83 
7 37.80 37.90 

7 

8 37.83 37.88 

37.95 38.10 37.06 36.83 

3 43.28 43.28 
4 43.48 43.65 
5 43.60 43.80 
6 43.67 43.90 
7 43.72 43.94 

8 

8 43.75 43.93 

43.90 44.21 42.80 42.58 

Tab. 4.  Comparison of MUPQ with UUPQ and PUPQ and 
experimental results. 

MUPQ is much simpler for realization since it requires 
calculation and storage of drastically smaller number of 
parameters (7 instead of 219). Therefore, MUPQ is much 
better solution than UUPQ. On the other hand, MUPQ is 
slightly more complex than PUPQ (7 parameters are cal-
culated and stored instead of 1) but SQNR of MUPQ is 
appreciable higher (for 0.92 dB) than SQNR of PUPQ. 
Therefore, MUPQ is better solution than PUPQ. 

One application scenario is also considered, i.e. 
an experiment is performed applying developed theory on 
the speech signal. We choose the speech signal since it can 
be modeled very well with the Gaussian distribution [1]. 
Experimentally obtained values of SQNR are presented in 
Tab. 4 (SQNRe). We can see two things. Firstly, experi-
mental results are matched well with the theoretical results, 
which proves the developed theory. Secondly, experimen-
tal results confirm our previous conclusion: SQNR of 
MUPQ is very close to SQNR of UUPQ; on the other 
hand, SQNR of MUPQ is appreciable higher than SQNR 
of PUPQ. 

MUPQ can be considered as a generalized uniform 
polar quantizer, whose special cases are UUPQ (for K = L) 
and PUPQ (for K = 1). The aim of MUPQ is to achieve the 
best ratio between SQNR and complexity, i.e. to achieve 
SQNR near to SQNR of UUPQ and to achieve complexity 
near to complexity of PUPQ.   

6. Conclusion 
The main goal of this paper is the design of the multi-

product uniform polar quantizer (MUPQ), using the 
asymptotic analysis. It has been known from the literature 
that the unrestricted uniform polar quantizer (UUPQ) could 
achieve very good performances, much better than the 
scalar uniform quantizer, but it is very complex for realiza-
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tion since large number of parameters should be calculated 
and stored in memory. Therefore, in this paper we pro-
posed the multiproduct uniform polar quantizer which can 
achieve performances very close to performances of 
UUPQ, while it is much simpler for realization than 
UUPQ. It was shown that MUPQ is also better solution 
than PUPQ. The aim of MUPQ is to achieve the best ratio 
between SQNR and complexity. MUPQ can be used for 
any signal with the Gaussian distribution (a lot of real 
signals belong to this category).  
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