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Abstract. In this research an advanced variable structure 
adaptive Multiple Sub-Filters (MSF) based algorithm for 
single channel Acoustic Echo Cancellation (AEC) is pro-
posed and analyzed. This work suggests a new and im-
proved direction to find the optimum tap-length of adaptive 
filter employed for AEC. The structure adaptation, sup-
ported by a tap-length based weight update approach helps 
the designed echo canceller to maintain a trade-off be-
tween the Mean Square Error (MSE) and time taken to 
attain the steady state MSE. The work done in this paper 
focuses on replacing the fixed length sub-filters in existing 
MSF based AEC algorithms which brings refinements in 
terms of convergence, steady state error and tracking over 
the single long filter, different error and common error 
algorithms. A dynamic structure selective coefficient up-
date approach to reduce the structural and computational 
cost of adaptive design is discussed in context with the 
proposed algorithm. Simulated results reveal a compara-
tive performance analysis over proposed variable structure 
multiple sub-filters designs and existing fixed tap-length 
sub-filters based acoustic echo cancellers. 
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1. Introduction 

Adaptive system identification designs fix the filter 
length at some compromise value which makes it ineffec-
tive in dynamic echo cancellation environments [1], [2]. 
The desired optimum tap-length best balances the com-
plexity and steady state performance of the adaptive filter 
in time-varying echoed environment [3-6]. In practice the 
length or order of the plant which is to be identified by the 
adaptive filter is not known previously and has to be esti-
mated from the knowledge of input and output signals. In 
Acoustic Echo Cancellation (AEC) the room impulse re-
sponse varies from a small room impulse response to 
a large room impulse response. All conversations whether 

face to face or over a communication network, generates 
echo. However, if the time delay corresponding to the 
acoustic loop is small then significant echo is not observed 
[2]. The problem is well defined in case of hands-free 
communication. The presence of large acoustic coupling 
between the loudspeaker and microphone would produce 
an echo that causes a reduction in the quality of the com-
munication. Hence, normally linear adaptive filters carry-
ing thousands of weights are employed to form an echo 
cancellation framework. This large order filters result in 
high complexity and adaptation noise [3-6]. The Least 
Mean Square (LMS) algorithm in general depicts slow 
convergence in AEC. This happens due to the long length 
and large response of the acoustic echo channel [7].  

In this research work a set of Variable Structure Mul-
tiple Sub-Filters (VS-MSF) algorithms are discussed where 
a Single Long Filter (SLF) is subdivided into number of 
sub-filters and order of each sub-filter is optimized as per 
the echoed environment [8-10]. The steady state Mean 
Square Error (MSE) accomplishment of adaptive Multiple 
Sub-Filters (MSF) Different Error Algorithm (DEA) is 
poor compared to MSF Common Error Algorithm (CEA) 
and adaptive SLF for AEC [9]. On the other hand the per-
formance degradation in MSE for DEA is compensated by 
a fast convergence due to individualistic contemplation of 
each error signal. Similarly the CEA results in better steady 
state error than SLF and DEA but the speed to achieve 
optimized MSE decreases [10-12].  

A combination of both the MSF DEA and MSF CEA 
is studied to come with an improved methodology for echo 
cancellation. It holds the benefits of both the existing MSF 
algorithms and as it is a combination of DEA as well as 
CEA has been mentioned as Combined Error Algorithm 
(COEA) [9]. In this paper this MSF COEA based acoustic 
echo canceller is implemented with a structure adaptation 
criterion to attain improved results with minimized struc-
tural and computational intricacy. The improvements of the 
proposed Variable Structure Multiple Sub-Filters based 
Combined Error Algorithm (VS-MSF-COEA) and its im-
plementation is compared with the Variable Structure Mul-
tiple Sub-Filters based Different Error Algorithm (VS-
MSF-DEA) and Variable Structure Multiple Sub-Filters 
based Common Error Algorithm (VS-MSF-CEA). This 
proposed design not only leads to significant improvement 
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in convergence rate but also brings refinement in steady 
state error. The rendition of these VS-MSF based echo 
cancellers is compared with regular echo cancellers in 
which a Variable Structure Single Long Filter (VS-SLF) is 
used to model the response of the acoustic channel [11].  

A way to diminish the computational entanglement of 
adaptive algorithms is shown in which only a particular sub 
set of all filter weights are updated that is known as Selec-
tive Coefficient Update (SCU) [13], [14]. The structure 
adaptation algorithm can be applied on this SCU adaptive 
filters that leads to the closest possible performance to the 
full update algorithm. This is mentioned as Variable 
Structure Selective Coefficient Update (VS-SCU) algo-
rithm in this paper. To evaluate the performance of the 
discussed adaptive algorithms under various noise envi-
ronments and time varying acoustic channel the Signal to 
Noise Ratio (SNR) is fixed at various values during simu-
lations. The main aim of this paper is to find an improved 
variable structure sub-filter based AEC performance in 
terms of echo removal, acoustic signal recovery, MSE 
improvement, faster convergence and reduced filter com-
plexity. 

2. Problem Formulation 
A simplified model for monophonic AEC with adap-

tive time varying filters is shown in Fig. 1. The trauma of 
acoustic echo because of the coupling between the loud 
speaker and microphone is disturbing to users and causes 
a reduction in speech quality in due course of communica-
tion [15]. In this framework when the near-end generates 
speech, the signal travels to the far-end room over commu-
nication channel. The far end speaker if used in hands-free 
mode loudly relays the voice and microphone at that par-
ticular end catches various reflections along the direct path. 
The near-end subscriber collects several delayed versions 
of his own speech [1], [16]. If the system has remarkable 
delay the direct path from microphone to loudspeaker is 
observed as an echo to the near-end, though this path is not 
due to an acoustic reflection.  

 
Fig. 1.  AEC setup for both far and near end subscribers. 

For error minimization, the filter impulse response 
must match acoustic response of the room environment. So 
the overall adaptive filter order has to dynamically vary 
and proceed towards a desired value in time varying envi-
ronment to escalate the capability of echo control [9]. The 
tap-length or number of weights of the adaptive filter 
impulse response based AEC setup affects the overall per-
formance of the echo cancellation. In many adaptive 
designs the tap-length is unfortunately set to a particular 
value creating the problem of unacceptable short and un-
wanted long filters. Less number of adaptive filter coeffi-
cients implicates shortage of taps for the system identifica-
tion design which is termed as under-modeling. Whereas 
degraded convergence rate is the major drawback of large 
number of coefficients. So the length of adaptive filter 
should proceed towards the optimum value in dynamic 
situations to perfectly approximate the AEC accomplish-
ment [10]. The requirement is to construct a suitable VS-
MSF based echo cancellation algorithm to reduce the 
acoustic echo as well as to minimize the structural and 
computational complexity of adaptive design in a dynamic 
room impulse response.  

3. Variable Structure MSF Based 
Acoustic Echo Canceller 

The LMS algorithm is basically used for adaptive 
weight update because of the intelligibility in execution 
and fewer calculations. However, when the input signal has 
large eigen value spread and the length of adaptive filter is 
large it converges slowly [14]. It is normally observed that 
LMS with fewer coefficients depicts improved conver-
gence rate. Moreover, the time varying acoustic channel 
leads to further deterioration in performance. One way to 
minimize the slow convergence and calculative intensive-
ness of large adaptive filter issue in time domain is to use 
decomposition or MSF instead of using SLF [8–10]. The 
idea is based on partitioning the SLF into MSF. The de-
composition technique allows efficient use of parallel 
processing which achieves increase in speed of the conver-
gence. The logic of subdividing the input signal and weight 
vector into sub-vectors is demonstrated in [8], [9]. The 
concept is that signal realized by each branch of the multi-
ple sub-filter cancels the signal in the corresponding echo 
path which results in fast convergence because the order of 
each sub-filter in MSF is much smaller as compared to 
order of SLF. Another way is to reduce the length of the 
fixed length adaptive filter to an optimum tap-length which 
reduces the structural complexity and due to reduced order 
increases the convergence [3].  

In this paper work is done to use the variable tap-
length adaptive filtering and the MSF based partitioning at 
a time in an acoustic echo canceller to improve the conver-
gence speed and to decrease the time as well as design 
complexity. The parallel MSF design dispenses the job of 
adjusting a long adaptive filter by one adaptive algorithm  
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into lower length sub-filters updated independently [11]. 
Further different adaptive algorithms can be constructed 
depending upon characteristics of the generation of error 
signal. The error signal used for weight adjustment of filter 
can be found out at each stage of the sub-filter or it can be 
a common error obtained at the final stage of calculation 
named different error and common error respectively. The 
variable structure adaptive filter can be used in both these 
cases to find the optimum tap-length of each sub-filter. As 
each sub-filter collectively forms the parent filter, the dy-
namic tap-length adaptation algorithm finds a perfect 
structure which can be varied automatically as the echoed 
environment changes. The most effective current algorithm 
appoints both of this variable tap-length approach and the 
MSF parallel design to form an advanced echo canceller by 
suggesting VS-MSF-DEA and VS-MSF-CEA. The tap-
length optimization algorithm employed in most of these 
situations is the Fractional Tap-Length LMS (FT-LMS) or 
any of its modifications. The pseudo fractional tap-length 
that dynamically carries out the structure adaptation in an 
automatic time varying scenario was attained by the algo-
rithm proposed in [3–5]. 

The well-known variable structure FT-LMS algorithm 
and its improved variants suffers from the flaw of random 
selection of important parameters like leakage factor, step 
size for weight adaptation, error width , length update step-
size that suppresses its applicability. The variable structure 
MSF based DEA and CEA as mentioned in existing re-
search uses this length selection algorithm and depicts 
better performance compared to SLF [11]. Whereas both 
the DEA and CEA have their individual limitations of large 
steady state error and slower convergence respectively. In 
this manuscript research is carried out to design an im-
proved variable structure algorithm and a new combined 
approach that holds the advantages of both VS-MSF-DEA 
and VS-MSF-CEA while eliminating the drawbacks. The 
SCU approach is also exercised on the proposed algorithm 
and it exactly approximates the results of a full update filter 
while diminishing the structural intricacy up to a notable 
extent. 

4. Proposed Variable Structure Adap-
tive Acoustic Echo Cancellation 
Algorithms 
System identification is one of the most widely used 

applications of adaptive filters. In many identification 
frameworks the unknown plant impulse response varies 
dynamically according to the time varying environment. 
The old fashion of design suggests a fixed structure adap-
tive filter with predefined total number of weights to do the 
task of identification in these types of scenarios. The ran-
dom tap-length initialization is made at a higher value to 
avoid the under-modeling issue where designers fall short 
of coefficients but on the other hand it increases the struc 

tural as well as computational complexity of the adaptive 
filter. Sometimes it generates adaptation noise due to mis-
match of extra filter taps [4]. As the echoed enclosure can 
be varied for a person with a hands free mobile moving 
from a hall to inside the car, designing a fixed length filter 
for these types of issues cannot be considered as the best 
echo cancellation methodology. Hence, this motivates to 
design a variable structure adaptive filter where the tap-
length varies automatically and dynamically according to 
changing environment. In this paper an advanced algorithm 
is proposed which not only finds the dynamic structure 
more efficiently but also designs a better echo canceller 
with lower structural complexity, faster convergence and 
better tracing capabilities. The application of selective 
coefficient approach in context with the structure optimi-
zation algorithm results in the use of minimum filter coef-
ficients and decreases the complexity further.  

In the proposed variable structure algorithm the 
weight update of adaptive filter is not done with simple 
LMS or Normalized LMS (NLMS) algorithm. As the goal 
here is to search the optimized filter length hence, all the 
weight adaptation variables are made dependent on the in-
stantaneous variable adaptive filter tap-length P(n) ob-
tained from the proposed fractional order estimation algo-
rithm. In the existing algorithms the weight update is done 
with fixed parameters whereas on the other hand the filter 
length is made dynamic. It creates issues with stability of 
the overall system identification design and lowers the 
convergence. The modified NLMS based weight update 
algorithm mentioned in equation (1) provides inherent 
stability to the variable structure design [5], [12].   

( ) ( ) ( ) ( )
( ) ( )

( 1) ( ) ( ) ( )
( ) ( )[2 ( )]P n P n P n P nT

p n P n

W n W n X n e n
X n X n P n


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
  

                                                                                          (1) 

where 
( ) ( ),P n P nW X

 
are the weight and input vectors per-

taining to the tap-length P(n)   is a step-size constant, 
2

( ) ( )( ) ( )T
X p n P nX n X n 

 
is the variance of input signal. 

The desired signal ( )d n  as shown in Fig. 1 for a simple 

AEC arrangement can be obtained as follows: 

 
( ) ( ) ( ) ( )

opt opt

T
P Pd n W n X n t n   (2) 

where ( ), ( )
opt optP PW n X n  are the weight and input vector 

pertaining to optimum tap-length Popt 
and ( )t n  is the sys-

tem noise. Similarly the error signal with respect to tap-
length ( )P n  as shown in Fig. 1 is the difference between 

desired signal ( )d n  and the adaptive filter output ( )y n  

which is equal to ( ) ( ) ( )T
P n P nW X n , 

 ( ) ( ) ( ) ( )P ne n d n y n   (3) 

Now the tap-length dependent time varying step-size 
( )P n  can be mentioned as follows:  
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





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Substituting step-size ( )P n  in (1) the weight update 

equation is modified as follows:
 

( ) ( ) ( ) ( )( 1) ( ) ( ) ( ) ( )P n P n P P n P nW n W n n X n e n   . (5)
 

This forms a tap-length dependent variable step 
NLMS algorithm where the step size depends on the in-
stantaneous filter length. If the difference of the MSE out-
put of any two consecutive coefficients of the adaptive 
filter falls below a very small positive value on further 
addition of weights to the total order, then it can be con-
cluded that adding extra taps do not reduce the MSE.  

Let’s define 1( ) ( )P P PJ J      as the difference 

between the converged MSE when the tap-length is in-
creased from P – 1 to P. Now the optimum tap-length can 
be defined as Popt that satisfies  

 P           for all optP P  (6) 

where  is a very small positive number that is fixed as per 
the system requirement [5]. The cost function for tap-
length selection can be defined as 

1min{ | }P PP J J    . The issue of false optimum tap-

length sometimes creates confusion in the search of desired 
filter length. This pseudo-optimum tap-length can be one 
value or a set of values. Let there exist a positive integer V 
that satisfies, 

 optV P   and V    (7) 

where V is called the pseudo-optimum tap-length. If the 
above condition is satisfied by a group of concatenated 
integer V, V + 1, …, V – L + 1 then L + 1 is called the 
width of the pseudo-optimum filter order. This tap satisfies 
the optimality condition but cannot be treated as the opti-
mal filter length as it under-model the system. The issue of 
this pseudo-optimum tap-length can be removed by 
choosing a tap-length dependent variable error width 

( )P n  which is discussed further in this section. 

The steady state MSE is not available usually and can 
be found out by exponential averaging as follows: 

 2
( ) ( ) ( )( 1) (1 )( ) ( 1) ( )P n P n P nJ n H e n H J n       (8) 

where H is the smoothing constant which controls the 
effective memory of the iterative process.  

In this section an attempt is made to find a variable 
structure adaptive filter where the filter order or total 
number of adaptive weights P(n) is dynamically decided 
according to the nature of the AEC framework. To find out 
the tap-length adaptation at first a smoothed estimated error 
can be obtained from [4], [6] 

 
1

( )
0

( ) (1 ) ( ) ( ) , 0 1
opt

n
n i i

P n P
i

e n f f e i t i f f






       (9) 

where n is the time index, Popt 
is the optimum tap-length 

which is initialized at zero at the beginning of tap-length 
adaptation, 

optPe  is the error signal at Popt, t is the noise 

sample and f is a forgetting smoothing constant. The per-
formance of the squared smoothed estimated error can be 
simplified at the steady state as [6] 

 2 1 2
( )[ ( ) ] (1 )(1 )P tE e f f 
       (10) 

where P(∞) is the steady state tap-length and it is assumed 
that the expectation of the square of smoothed estimated 
error signal approximates to the noise sample at the steady 
state. Now the algorithm for tap-length adaptation in a time 
varying environment is defined as [4] 

2 2
( ) ( ) ( )( 1) ( ) [( ( )) ( ( )) ]

Pnf nf n P n P n n nP n P n K e n e n K        

  (11) 

where Pnf(n) is the filter length that can take fractional 
values, Kn 

is the leakage factor which prevents the tap-
length from increasing to an unexpectedly large value and 
factor 

nK is the step size for tap-length adaptation. The 

variable error width parameter ( )P n  with respect to tap-

length P(n) decides the bias between the unknown opti-
mum tap-length Popt  and the steady state tap-length P(∞) in 
a system identification framework. It removes the subopti-
mum values and finds the suitable best fit tap-length. 
A large value of ( )P n  produces large error width and 

brings heavy computational complexity whereas a small 
( )P n  slows down the convergence and makes it difficult 

to overcome the suboptimum values. The steady state tap-
length is approximately equal to ( )opt PP n   in order to 

maintain the trade-off between convergence and steady 
state error [4–6]. The variable error width ( )P n  depends 

on the smoothed estimated error variance 2
( ) ( )P ne n  which 

can be expressed as [4–6] 

 2 2 1 2
( ) ( ) ( )( ) ( 1) (1 ) ( 1)P n P n P ne n e n e n         , (12) 

 2
,max ( )( ) min( , ( ))P P P nn e n      (13) 

where ρ is the smoothing parameter and  is a constant set 
as per system requirements [4–6] and ,maxP  is the maxi-

mum permitted value of error spacing ( )P n . The steady 

state analysis of the proposed algorithm is given in this 
section. It also provides a general guideline for choice of 
error width parameter. 

The steady-state Excess MSE (EMSE) of LMS can be 
defined as [5] 
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( )

2 ( ) ( )
x t

ex
x

P
J

P

  
 
 

 
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  (14) 

where ( )   is the steady state step-size at steady state 

tap-length ( )P  , 2
x  

the variance of input signal and 2
t  

is the noise variance which can be estimated in advance 
from noise sample ( )t n . Again there is a need to search 

the steady state value of variable error width ( )p   as 

follows:  

 
2

2
2

2
( ) ( ( ) )

2 ( ) ( )
t

P ex t
x

J
P

 
 

     
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 . (15) 

Fixing the filter weights at the optimum value produces the 
minimum error output as follows: 

 min ( ) ( ) ( ) ( )T
opte n t n d n W x n   .  (16) 

Corresponding minimum output power is the minimum 
MSE (MMSE); 

  2 2
min min min[ ( )] tJ E e n       (17) 

where parameter min is obtained as, 

 2
min

T
d optW   .  (18) 

Here Wopt is the optimum set of filter weights, 
2 2[ ( )]d E d n   is the variance of the desired signal, 

[ ( ) ( )]B E X n d n  is the cross-correlation between input 

and desired signal. For arbitrary values of the weights, the 
total output error power consists of two components i.e. 
obtained as follows:  

  2 2
min[ ( )] ( )e exE e n J J n       (19) 

where Jmin is the MMSE and Jex(n) is the Excess MSE 
(EMSE). Applying (17) error variance 2

e  can be modified 

as follows, 

  2 2
min ( )e t exJ n       (20) 

Now     
2 2

2

2 2
( )

22 ( )
[ ( ) 2]

t t
P

xP
P

 
 

     
 

   (21) 

Although ΔP(n) is needed for different applications, 
whereas for a certain application it can be easily decided in 
advance according to the noise conditions. But the tap-
length which is assumed to be a fractional value in (11) 
should be rounded to nearest integer value. Hence, the 
optimized dynamic instantaneous filter length can be 
obtained as,  

 ( 1) ( ) if ( ) ( )

( ) otherwise

n
nf nf

n

K
P n P n P n P n

K

P n

      (22) 

where   operator signifies approximation of fractional 
order to the nearest integer value. In existing research 
works the value of leakage factor and adaptation step-size 
are based on setting a random leaky factor which limits its 
applicability to highly time varying environments. The 
parameters ( , )n nK K  should be set such that at the steady 

state it is close to zero to avoid under-modeling and large 
enough at the time of adaptation to avoid wandering issues. 
Thus there exists a need of variable leakage factor and 
adaptation step-size. In this work a unique method is im-
plemented for setting these parameters. 

 ,maxmin( , ( 1))n n nK K K n    (23) 

where 
,maxnK  is the maximum value of leakage factor. 

Again, 

 2 2 1( 1) ( 1)( ( 1) ( ))n P P pK n e n e n n         (24) 

  ( ) ( ) min( 1) ( ) (1 ) ( 1)P n P ne n f e n f e n     
  

(25) 

where 
( ) ( )P ne n  is the smoothed estimated error with re-

spect to P(n). Similarly the adaptation step size depends on 
the bias between MSE values with a ( )p n

 
difference and 

f is a forgetting smoothing constant. If the difference is 
more, then adaptation should be slow and vice versa. Again 
the adaptation step-size 

nK  can be obtained from its maxi-

mum limit with the help of a mathematical multiplicative 
smoothing parameter  as follows [4], [5] 

 
,max ,maxmin( , )n n nK K K   (26) 

where 

 
2 2

( ) ( ) ( )

2 2 2 1
( ) ( ) ( ) ( )

[ ( )) ( ( )) ]

[( ( )) [ ( )) ( ( )) ]

P

opt P

P n P n n

P n P n P n n

e n e n

e n f e n e n

 




 

 

 

  
 (27) 

4.1 Variable Structure-MSF Based Different 
Error Algorithm 

Schematic for different error algorithm for AEC is 
given in Fig. 2. Each sub-filter shown in Fig. 2 has a dy-
namic structure with automatic tap-length varying ability 
instead of fixed structure. The sub-filters used in DEA, 
originate different error signals for adaptation which yields 
minimized coupling and enhances convergence speed [9]. 
Here, the error signals are independent on each other. In 
this case as the number of sub-filters increases there is 
a revamp in convergence but the steady state error behavior 
deviates from its ideal characteristics.  

Let  ( ) ( ), ( 1),...............X n x n x n   be the input 

vector. The ith dynamic sub-filter input vector can be 
represented as: 

  ( ), ( ) ( )  0,1,2,..., 1P n iX n X iP n n i S        (28) 
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where S is the total number of sub-filters used in the de-
sign. The different error signals in case of VS-DEA for 
each sub-filter can be found out as follows: 

 
( ),0 ( ),0 ( ),0( ) ( ) ( ) ( )T

P n P n P ne n d n X n W n  ,   (29) 

 
( ), ( ) 1 ( ), ( ),( ) ( ) ( ) ( )T

P n i P n i P n i P n ie n e n X n W n    (30) 

where P(n) is the dynamic tap-length of each sub-filter that 
is decided as per the variable structure algorithm, d(n) is 
the channel output, 

( ), ( )P n ie n ,
( ), ( )P n iX n  and 

( ), ( )P n iW n  are 

the error, input and weight vectors respectively pertaining 
to variable tap-length P(n) for the ith dynamic sub-filter. 
The weight adaptation algorithm for VS-MSF-DEA can be 
shown as: 

      ( ), ( ), ( ), ( ),( ),( 1) ( ) ( ) ( ) 

 0,1,2,..., 1

P n i P n i P n i i P n iP nn W n e n X nW

i S

  

  
 (31) 

where 
( ),P n i  is the ith dynamic sub-filter step-size 

pertaining to variable tap-length P(n). 

4.2 Variable Structure-MSF Based Common 
Error Algorithm 

The VS-MSF-CEA does exactly the reverse operation 
of different error variant discussed earlier. It uses only one 
common error for weight update of each sub-filter used in 
MSF division. It achieves better MSE compared to DEA 
but convergence slows down because of the coupling of 
weight update equations. The error signal in this case is 
dependent on all other errors. The common error signal 
updates each sub-filter individually by an adaptive algo-
rithm [9–11]. The steady state error is less here and the 
sub-filters used in the structure find their optimum tap-
length employing the dynamic tap-length selection algo-
rithm. The dynamic structure of common error schematic is 
shown in Fig. 3. The adaptation algorithm for VS-MSF-
CEA can be obtained as mentioned below: 

For each instant of time n = 0,1,2,… and desired 
signal d(n), the common error signal e(n) is obtained as 
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4.3 Variable Structure-MSF Based Combined 
Error Algorithm 

The aim of a researcher is to invariably find an effi-
cient echo canceller that results in better convergence and 
MSE outcomes under various noise conditions. But practi-
cally it is not possible to frame such MSF design that is 
completely different form VS-MSF-DEA and VS-MSF-  

 
Fig. 2.  Variable structure MSF based DEA design for AEC. 

 
Fig. 3.  Variable structure MSF based CEA design for AEC. 

 
Fig. 4.  Proposed variable structure MSF based COEA design 

for AEC. 

CEA. A combination of both of these algorithms can be 
obtained which provides a trade-off between the conver-
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gence rate and the steady state error according to require-
ment. The combined error MSF based structure is shown in 
Fig. 4. A trade-off parameter alpha α is set appropriately to 
achieve nearly optimized results. To attain appropriate 
performance parameter selection plays an important role. 
This decides the contribution of each algorithm i.e. VS-
MSF-DEA and VS-MSF-CEA in overall performance of 
the echo canceller. The trade-off can adjust both conver-
gence and steady-state error but it is application specific 
[9], [11]. The value of α lies between 0 and 1. The trade-
off α contributes to the adaptation of VS-MSF-DEA and 
1 - α to the adaptation of VS-MSF-CEA in the combined 
algorithm. Hence, in those applications where convergence 
is the requirement over steady state error α selection goes 
close to 1 and for better steady state error requirement α 
selection approximates to 0 or << 1. In this paper it is fixed 
at 0.5 as per the simulation framework to get a perfect 
adjustment between MSE and convergence rate. Hence, 
a user by following the proposed structure can fulfill the 
needs of echo cancellation application by varying the 
trade-off as per the required specification. The adaptation 
algorithm for Combined Error AEC is obtained as follows: 

 ( ), ( ), ( ), ( ), ( ),( 1) ( ) ( ) ( ) 1 ( )

0 1,  0,1, 2,..., 1

P n i P n i P n i P n i P n iW n W n X n e n e n

i S

   



      
    

                                                                                        (34) 

where ( ), ( )P n ie n is the different error signal for the ith 

dynamic sub-filter pertaining to its optimum tap-length 
P(n) and e(n) is the common error signal.  

4.4 Variable Structure-MSF Based Selective 
Coefficient Update 

In AEC applications the computational complexity of 
adaptive algorithm and structural complexity of overall 
filter design increases. This happens as a result of high 
requirement of filter coefficients. The total number of 
adaptive weights contributes to the computational intricacy 
of adaptive algorithms. They are found to be directly pro-
posed in AEC applications. This motivates research on the 
selective coefficient adaptive algorithm which decreases 
the weight requirement up to a great extent by employing 
a selection matrix [13].  

Updating the entire set of weights in an adaptive filter 
is exorbitant in terms of storage and calculative require-
ments hence, the computational complexity needs to be 
reduced. The work of a researcher in this case is to lessen 
the entanglement in filter design. There are basically two 
strategies to optimize the set of filter coefficients. One is 
variable structure algorithm which has been already dis-
cussed in the previous section and another strategy is to 
adapt selected set of filter weights rather than all at a time. 
In this manuscript both the strategies are used together to 
lessen the weight requirement to the maximum extent 
without substantial reduction in MSE performance. The 
adaptive filter can find a better convergence and taper 
computational cost if the total number of weights is por-

tioned into smaller selected blocks of coefficients each 
updated by applying the variable tap-length dynamic algo-
rithm which is referred as VS-SCU in this paper.  

It is perceived that the number of weights adapted in 
each and every iteration is amortized in SCU approach but 
it comes at the cost of performance mortification. Hence, 
the VS-SCU approach has to find a method in which it can 
reduce total number of weights updated per iteration with 
performance deterioration as small as possible. VS-SCU 
enables the computational cost for modifying the weights 
of an adaptive filter to be decreased without necessarily 
lowering the filter length. In VS-SCU, let Q weights out of 

( )P n  optimum weights are updated. From a set of 

( ) ( )P n by P n   coefficients selection matrix M is chosen 

such that only Q values will have 1’s as diagonal element 
where weights are needed to be updated. The weight up-
date equation for VS-SCU is obtained as follows:  

( ) ( ) ( ) ( ) ( )( 1) ( ) ( ) ( ); 0,1,2.....P n P n P n P n P nW n W n M X n e n n     

                                                                                        (35) 

The criterion for finding the selection matrix M is 
based on [13], [14]. The above equation shows SCU for 
variable structure single long filters. The same can be done 
for each sub-filter in MSF based designs. The main motive 
of this selective coefficient approach is to identify and 
update with those selected coefficients which result in 
nearly same accomplishment as that of full update. But this 
should occur with minimized performance loss in terms of 
MSE and echo cancellation.  

5. Simulation and Results 
The Matrix Laboratory (MATLAB) platform has 

been chosen for simulation purpose. For better comparison 
with the existing research work the simulation of the room 
impulse response is done nearly same as that of [3–5], [9], 
[11]. The room impulse response is measured for an enclo-
sure of dimension 12 × 12 × 8 ft3 using an ordinary loud-
speaker and an omnidirectional microphone kept at a dis-
tance of 1 feet. It has been sampled at 8 kHZ. The channel 
response is obtained by applying a stationary Gaussian 
stochastic signal with zero mean and unit variance as input 
on the measured impulse response. The tap-length of SLF 
is fixed at 2000 and the length of each sub-filter for S = 5 is 
400. The adaptation step size is chosen to be 0.0004 for 
SLF and 0.00055 for each sub-filter. The value of trade-off 
parameter α is fixed at 0.5.  

The FT-LMS algorithm with fixed error width 
achieves the optimum tap-length for each sub-filter as 
shown in Fig. 5 over 200 Monte-Carlo runs and 10,000 
iterations but results in under-modeling the system. On the 
other hand the proposed variable structure algorithm best 
adjusts the system performance in comparison to the VT-
VSLMS [4] and FT-LMS algorithm [3]. It reduces the 
overall weight requirement to nearly 1500 instead of 
a fixed selection of 2000 as each sub-filter carries optimum  
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Fig. 5. Comparison of proposed VS tap-length selection 

algorithm with FT-LMS and VT-VSLMS. 

tap-length of 300 with the application of proposed structure 
adaptation algorithm. The simulation is carried out for both 
low and high noise environments to judge the dynamic 
capability of the algorithm.  

In Fig. 6 for low noise environment SNR is kept at 
30 dB. It can be observed that the VS-MSF-DEA based 
AEC shows better convergence speed over all the other 
variable structure AEC algorithms but it lacks in MSE 
performance. Similarly the VS-MSF-CEA improves the 

 
Fig. 6.  Comparison of MSE between proposed VS echo 

cancellation algorithms at SNR = 30 dB (low noise). 

 
Fig. 7.  Comparison of MSE between proposed VS echo 

cancellation algorithms at SNR = 0 dB (high noise). 

MSE performance but has a slow convergence. Hence, the 
proposed VS-MSF-COEA maintains perfect trade-off 
between the two algorithms proposed in [9], [11] and out-
performs the VS-SLF also. The same result is obtained as 
shown in Fig. 7 when SNR is kept at 0 dB for high noise 
case over 30000 iterations and 200 independent runs. The 
SCU algorithm is applied to SLF and VS-MSF-COEA with 
a 30% of the full update coefficients and the results are 
shown in Fig. 8. It exactly replicates the full-update filter 
performance while reducing the structural complexity up to 
a great extent. 

 
Fig. 8.  Comparison of MSE between SCU based VS-SLF and 

proposed algorithm at SNR = 40 dB. 

 
Fig. 9.  MSE performance comparison of all SCU (30%) based 

VS echo cancellation algorithms at SNR = 40 dB. 

In Fig. 9 the plot shows the SCU with 30% coeffi-
cient update that is applied to all variants of VS-MSF algo-
rithms for echo cancellation. In this case the full-update 
tap-length can be considered as 1500 instead of 2000 as the 
structure adaptation algorithm has already been applied 
before the application of SCU method. It can be noticed 
that the SCU variant of the proposed VS-MSF-COEA 
depicts improved performance than its counterparts. The 
filter design is done with a mere 500 coefficients rather 
than 2000 filter weights. This claims that the proposed 
algorithm reduces the structural complexity up to a great 
extent and overcomes the drawback of VS-SLF, VS-MSF-
DEA and VS-MSF-CEA. 
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Tracking is a steady state phenomenon which means 
the ability to follow statistical variations in a non-stationary 
environment. The tracking behavior indicates how effi-
ciently the adaptive filter can follow the changes in the 
room impulse response. In case of AEC, the echo canceller 
scrutinizes the changing impulse response of the echo path. 
The movements of the local speaker lead to large changes 
of the room impulse response. 

The acoustic echo canceller has to adapt the changing 
channel condition. The tracking effect is examined by 
switching from one room impulse response to other. If the 
length of the filter is small it is able to change the disloca-
tion but if the filter length is larger it takes more time to 
track. In this paper the proposed dynamic length adaptation 
adaptive algorithms offers improved tracking capability in 
a non-stationary environment.  

The tracking effect can be judged by enclosure dislo-
cation after starting the MSE adaptation for some itera-
tions. The result shown in Fig. 10 depicts the system model 
of tracking for all the discussed echo cancellation algo-
rithms. It can be observed that the tracking capability of 
DEA and CEA is better in comparison to SLF while ana-
lyzing with a variable structure but the convergence per-
formance of proposed algorithm is better than all its prede-
cessors. The tracking performance of the VS-MSF-COEA 
and VS-MSF-COEA-SCU (40%) are compared as shown 

 
Fig. 10.  Tracking performance comparison of VS echo 

cancellation algorithms at SNR = 40 dB. 

 
Fig. 11.  Tracking performance comparison of proposed 

algorithm with its SCU (40%) based counterpart at 
SNR = 40 dB. 

 

Fig. 12.  Performance comparison of fixed tap-length MSF and 
VS-MSF acoustic echo cancellation algorithms at 
SNR = 0 dB. 

in Fig. 11. The results are obtained by averaging over 100 
independent runs. The SCU is used for adaptive filter 
where only 800 weights of adaptive filter is being updated 
in each iteration which corresponds to 40% of the long 
filter having 2000 coefficients. It nearly replicates the full 
update performance with 1200 fewer filter weights. 

In Fig. 12 the performances of all available MSF 
based algorithms along with their proposed variable struc-
ture variants are studied at a high noise environment where 
SNR is fixed at 0 dB. The variable structure approach 
improves the convergence speed for MSF-DEA, MSF-
CEA and MSF-COEA but depicts little compromise in 
MSE performance in different and common error designs. 
This occurs due to a reduction in total number of weights 
for the overall design and unavailability of trade-off pa-
rameter to monitor the performance. On the other hand the 
proposed VS-MSF-COEA design best adjusts the system 
execution compared to all its counterparts.  

The VS-MSF-COEA comes out as the most efficient 
echo cancellation algorithm because it achieves optimum 
performance with a less cost of construction due to mini-
mum requirement of optimum filter weights as decided by 
the variable structure algorithm. The SCU approach can be 
applied on this design to reduce the complexity further. 
A proper selection of percentage of coefficients in VS-
MSF-COEA-SCU can make it a better choice.  

6. Conclusion 
The VS-MSF-COEA algorithm introduced in this pa-

per and its SCU variant has lower complexity, faster con-
vergence rate and good tracking capabilities. The proposed 
VS-MSF-COEA algorithm is analyzed to find the steady 
state performance and to set variable parameters for struc-
ture adaptation. The proposed algorithm has shown con-
sistently superior performance over the existing VS-MSF-
DEA, VS-MSF-CEA algorithms in terms of convergence 
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speed, steady state error, tracking and achieves all of this 
with a minimized structural complexity with less number 
of optimized selected coefficients. The algorithm may 
further be analyzed for applications like channel equaliza-
tion, noise reduction etc. A different analysis with notable 
performance escalation can also be carried for applications 
severely affected by high noise elements. Further research 
can be carried out on the selective update of filter weights 
based VS-MSF-COEA-SCU algorithm for AEC as there is 
an issue about the percentage of coefficient selection for 
time varying applications.  
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