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Abstract. According to 16 nullor-mirror models of the 
current-controlled current conveyor transconductance 
amplifier (CCCCTA) and using nodal admittance matrix 
(NAM) expansion method, three different classes of the 
double-mode quadrature oscillators employed CCCCTAs 
and two grounded capacitors are synthesized. The class I 
oscillators have 32 different forms, the class II oscillators 
have 16 different forms, and the class III oscillators have 
four different forms. In all, 52 quadrature oscillators using 
CCCCTAs are obtained. Having used canonic number of 
components, the circuits are easy to be integrated and the 
condition for oscillation and the frequency of oscillation 
can be tuned by tuning bias currents of the CCCCTAs. The 
circuit analysis and simulation results have been included 
to support the generation method. 

Keywords 
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1. Introduction 
The NAM expansion method has found wide applica-

tions since it was proposed [1–15]. The literature on gyra-
tors, oscillators and filters has explained this viewpoint. 
However, most of the circuits mentioned in earlier works 
are based on current conveyor (CCII), inverting current 
conveyor (ICCII), operational transconductance amplifier 
(OTA), current differencing transconductance amplifier 
(CDTA), and current differencing buffered amplifier 
(CDBA). Very recently, this method has been used in the 
circuit design employing CCCCTAs [16], but the reported 
circuits include only gyrators. Because the CCCCTA has 
attracted considerable attention and a number of CCCCTA-
based filters and oscillators have been reported [17–24], it 
is necessary that using NAM expansion method synthe-
sizes CCCCTA-based circuits except gyrators. 

The paper aims at using NMA expansion method to 
synthesize the quadrature oscillators employing 
CCCCTAs. First, according to the different forms of the 

NAM stamp expanded, the oscillators are classified as 
three different classes. Next, using NAM expansion 
method and the nullor-mirror models of the CCCCTA, 
three different classes of the double-mode oscillators with 
two grounded capacitors are considered. The class I oscil-
lators, employing two CCCCTAs or two ICCCCTAs or 
one CCCCTA and ICCCCTA, have 32 different forms. 
The class II oscillators, employing one CCCCTA or one 
ICCCCTA with balance outputs and one CCCII or ICCCII, 
have 16 different forms. The class III oscillators employing 
one CCCCTA with balance outputs have four different 
forms. Since the circuits use fewer active elements and 
grounded capacitors, the circuits are easy to be integrated, 
and the class I oscillators also provide the attractive feature 
of linear, independent, and electronic control of the oscilla-
tion frequency and the condition for oscillation. Finally, 
the validity of the synthesized circuit is verified by means 
of circuit analysis and computer simulation. 

2. Basis of Circuit Synthesis 

2.1 Basic Concept of CCCCTA 

Fig. 1 shows the symbols of various CCCCTAs and 
(1) presents the terminal relations of the CCCCTAs [16]. 

      

         
Fig. 1. (a) Symbol of CCCCTA+. (b) Symbol of CCCCTA-. 

(c) Symbol of ICCCCTA+. (d) Symbol of ICCCCTA-. 
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  .,,0 zmxxzyxxxy VgIIIVIRVI    (1) 

Here, the “+” notation indicates CCCCTA+ and CCCCTA-, 
and the “–” notation indicates ICCCCTA+ and ICCCCTA-. 

For a CCCCTA implemented with bipolar technol-
ogy, the parasitic resistance and transconductance gain of 
the CCCCTA could respectively be expressed as   
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Here, IB1 and IB2 are the DC bias currents of the CCCCTA 
and VT is the thermal voltage.  

2.2 NAM of Quadrature Oscillators 

The quadrature oscillators to be synthesized in this 
paper belong to two integrator loop oscillators, whose the 
block diagram representation is shown in Fig. 2. Routine 
analysis of the circuit gives the following state equation: 

 
Fig. 2. Block diagram of two integrator loop oscillator. 
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The NAM equations of the oscillators are then 
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Hence, the condition and frequency for oscillation are 
given by 
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o  .   (5) 

What is even more important is that adjusting G3 or 
G1 can linearly turn the condition for oscillation, and trim-
ming G, if G2 = G4 = G, can linearly adjust the frequency of 
oscillation. This means that the circuits provide the attrac-
tive feature of independent control of the oscillation fre-
quency and the oscillation condition. 

3. Systematic Synthesis of Quadrature 
Oscillators 

3.1 Synthesis of Class I Oscillators 

On the basis of the NAM expansion method, starting 
from (4a), and taking into account the class I oscillators 
with six nodes, the first step in the NAM expansion is to 
add four blank rows and columns, and then use a first 
nullator to link columns 1 and 3 to move G1 to the position 
1, 3. The first norator is connected between rows 1 and 3 to 
move G1 to the position 3, 3. A second nullator is then 
connected columns 1 and 4 to move G2 to the position 2, 4. 
A second norator is connected between rows 2 and 4 to 
move G2 to the position 4, 4.  

A third nullator is connected between columns 1 and 
5 to move –G3 to the position 1, 5. A first current mirror is 
connected rows 1 and 5 to move –G3 to be G3 at the posi-
tion 5, 5. A four nullator is then connected columns 2 and 6 
to move –G4 to the position 1, 6. At last, a second current 
mirror is connected rows 1 and 6 to move  –G4 to be G4 at 
the position 6, 6. The NAM matrix with the added nullor-
mirror elements represented by bracket notation is shown 
in  (6). 

  (6) 

Here, G1, G2, G3, and G4  denote the admittances between 
nodes  3, 4, 5, 6 and ground, respectively. As (6) shows, 
this expanded matrix contains four different pairs of patho-
logical elements, two grounded capacitors, and four 
grounded admittances, namely G1, G2,  G3, and G4. 

The nullor-mirror equivalent circuit for the oscillator 
described by (6) is shown in Fig. 3. Using the nullor-mirror 
descriptions for CCCCTA [16] and keeping Fig. 3 in mind, 
four equivalent CCCCTA-based realizations can be 
achieved, as shown in Fig. 4.  

It is noteworthy that in Fig. 4(a), G1 = 1/Rx1 = 2IB11/VT, 
G3 =

 gm1 =
 IB12/2VT, G2 =

 1/Rx2 =
 2IB21/VT, G4 =

 gm2 = IB22/2VT; 
in Fig. 4(b), G3 = 1/Rx1 = 2IB11/VT, G1 = gm1 = IB12/2VT, 
G2 = 1/Rx2 = 2IB21/VT, G4 = gm2 = IB22/2VT; in Fig. 4(c), 
G3=

 1/Rx1=
 2IB11/VT, G1 =

 gm1=
 IB12/2VT, G4 =

 1/Rx2=
 2IB21/VT, 

G2 = gm2 = IB22/2VT; in Fig. 4(d), G1 = 1/Rx1 = 2IB11/VT, 
G3 =

 gm1 =
 IB12/2VT, G4 =

 1/Rx2 =
 2IB21/VT, G2 =

 gm2 = IB22/2VT. 
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Fig. 3.   Nullor-mirror equivalent model described by (6). 

 

 

 

 
Fig. 4.  Four of 32 equivalent realizations for type I oscillators. 

Likewise, starting from (4a) and (4b), and applying 
all possible combinations of the added nullor-mirror ele-
ments will yield 32 different forms of the expanded matri-
xes, resulting in 32 different forms of the equivalent nullor-
mirror models. 32 equivalent CCCCTA-based circuits are 
then synthesized. The remaining implementations are omit-
ted to limit the paper length. Of course, readers can also 
obtain them by changing local feedback polarity and ampli-
fier polarity with the aim to provide global positive feed-
back gain. 

3.2 Synthesis of Class II Oscillators  

In order to realize the class II oscillators using 
CCCCTAs, starting from (4a), adding four blank rows and 
and columns, and supposing G2 = G3 = G, G1 = G4 = G’, 
following successive NAM expansion steps with the added 
nullor-mirror elements represented by bracket notation will 
yield the matrix represented by (7).  

  (7) 

Here, G’ are the admittance between nodes 5 and 6, while 
the G are the admittance between nodes 3 and 4. It is easy 
to see that this expanded matrix contains four different 
pairs of pathological elements and two floating admittance, 
namely G and G’. The nullor-mirror equivalent model is 
shown in Fig. 5. 

 
Fig. 5.  Nullor-mirror equivalent model described by (7). 

Using the nullor-mirror descriptions for CCCCTA 
and keeping in mind of Fig. 5, one equivalent CCCCTA-
based realizations can be achieved, as shown in Fig. 6. It 
should be noted that in Fig. 6, G’ = 1/(Rx1 + Rx2) 
= 2(IB11 + IB21)/VT, G = gm1 = IB12/2VT. 

 
Fig. 6.  One of 16 equivalent realizations for type II oscillators. 

Similarly, starting from (4a) and (4b), and applying 
all possible combinations of the added nullor-mirror ele-
ments will yield 32 different forms of the expanded matri-
xes, resulting in 32 different forms of the equivalent nullor-
mirror models. However, only 16 equivalent CCCCTA-
based circuits are synthesized. The remaining implementa-
tions are omitted. 
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3.3  Synthesis of Class III Oscillators 

In order to realize the class III oscillators using 
CCCCTAs, starting from (4a), adding three blank rows and 
columns, and supposing G1 = 0, G2 = G3 = G, following 
successive NAM expansion steps with the added nullor-
mirror elements represented by bracket notation will yield 
the matrix represented by (8). 

 (8) 

Here, G is the admittance between nodes 3 and 4, while G4 
is the admittance between node 5 and ground. It can be 
easily seen that this expanded matrix contains three differ-
ent pairs of pathological elements, one grounded admit-
tance G4, and one floating admittance G. 

The nullor-mirror equivalent model described by (8) 
is shown in Fig. 7. 

Using the nullor-mirror descriptions for CCCCTA 
and bearing in mind of Fig. 7, one equivalent CCCCTA-
based realizations can be achieved, as shown in Fig. 8(a).  

 
Fig. 7.  Nullor-mirror equivalent model described by (8). 

 

        
Fig. 8.  Four equivalent realizations for type III oscillators. 

Similarly, starting from (4a) and (4b), and applying 
all possible combinations of the added nullor-mirror ele-
ments will yield 16 different forms of the expanded matri-
xes, resulting in 16 different forms of the equivalent nullor-
mirror models. However, only four equivalent CCCCTA-
based circuits are synthesized, as shown in Fig. 8, (a)–(d), 
where G4 = 1/Rx = 2IB1/VT, G = gm = IB2/2VT. It can be rea-
dily seen that the class III oscillators, employed one 
CCCCTA with double outputs and two grounded capaci-
tors, possess four different forms. 

4. Circuit Analysis  

4.1 Analysis of Class I Oscillators 

As an example of class I oscillators analysis, consider 
only the circuit in Fig. 4(a) and add two current outputs, Io1 
and Io2, by the current source technique, as shown in Fig. 9. 
A routine analysis of the circuit in Fig. 9 yields the followi-
ng equations: 

 0/ 222  yxx VGIV , 0/ 111  yxx VGIV , 

 222 / sCIV x , 124311 /)( sCVGVGIV yx  , 

  221 VsCIo  , 242 VGI o  .   (9) 

Combining (11), one can obtain the characteristic equation 
and the transfer functions as follows 

 0
21

42

1

312 



CC

GG
s

C

GG
s ,   (10) 

  
41

22

2

1

GC

GC
j

I

I

o

o  ,   
21

42

2

1

GC

GC
j

V

V
 .  (11) 

 
Fig. 9.  One of type I oscillators with double-mode outputs. 

It can be seen that the oscillation condition and fre-
quency of the oscillator are the same as (5). As (11) shows, 
the circuit can provide not only two quadrature current out-
puts but also two quadrature voltage outputs. 

4.2 Analysis of Class II Oscillators 

For the circuit in Fig. 6, using the current source 
technique and adding one current output Io2 result in the 
circuit in Fig. 10. An analysis of Fig. 10 gives 
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Fig. 10.  One of type II oscillators with double-mode outputs. 

 212 / sCGVV  , 1111 /)( sCGVIV x  ,  

 22221111 VIRVVIRV xxxxxx  ,   

 21 xx II  ,   '
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Combining the above equations yields  
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From (13), the condition and frequency for oscillation are  
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From (15) it can be seen that the control for the oscil-
lation frequency and the oscillation condition is dependent. 
From (14), it can also be seen that the circuit can also pro-
vide two double-mode quadrature outputs. However, the 
current output, Io1, has no high output impedance. 

4.3 Analysis of Class III Oscillators 

Consider only the circuit in Fig. 8(a). Using the cur-
rent source technique and adding two current outputs, Io1 
and Io2, give the quadrature oscillator in Fig. 11.  

 
Fig. 11.  One of type III oscillators with double-mode outputs. 

By inapection of Fig. 11, obtain the following 
equations: 
 212 / sCGVV  ,  111 /)( sCGVIV x  , 

 0/ 24  VGIV xx , xo II 1 , 12 GVIo  .  (16) 

Combining the above equations produces the following 
characteristic equation and transfer functions:  

 0
21

4

1

2 
CC

GG
s

C

G
s ,   (17) 

   
GC

GC
j

I

I

o

o

2

41

2

1  , 
GC

GC
j

V

V

1

42

2

1  .   (18) 

From (17), the condition and frequency for oscillation are  
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It is clear that the oscillation condition and frequency 
of the oscillator are the same as (5). (18) shows that the 
circuit provides two double-mode quadrature outputs.  

The above results have been tabulated, as shown in 
Tab. 1. It can be seen that the synthesized quadrature oscil-
lators employ grounded capacitors and enjoy low sensitivi-
ties. It can also be seen that the class III oscillators employ 
only one CCCCTA but they require matched conditions 
and the control for oscillation condition is not easily real-
ized, this is due to the fact that the BJTs in CCCCTA are 
not in the forward-active mode when G = 0. For the class II 
oscillators, although the oscillation condition and oscilla-
tion frequency can be electronically tuned, this control is 
not independent, and the oscillators also require the 
matched conditions. Therefore, the class I oscillators are 
the best because they employ two CCCCTAs and do not 
require the matched conditions, and their parameters can be 
linearly, independently, and electronically tuned by trim-
ming bias currents of the CCCCTAs. The class I oscillators 
are compared with several quadrature oscillators reported 
in the reference [25–31] and the results are given in Tab. 2. 

In the non-ideal case, to limit the paper length, only 
the circuit of Fig. 9 in the class I oscillators is considered. 
To highlight the main effects of the parasitic admittances, 
only the parasitic admittances at terminals o, y, and z are 
taken into account. Re-analysis of the circuit in Fig. 9 re-
sults in the following equations: 

0/ 222  yxx VGIV , 0/ 111  yxx VGIV , 

)/( 22222 ppx GsCsCIV  ,  

)/()( 11124311 ppyx GsCsCVGVGIV  , 

22221 )( VGsCsCI ppo  , 242 VGI o   (20) 

where Gp1 = GO1 + Gy1 + Gz1 + GO2 + Gy2, which are the 
parasitic conductances at terminals o, y, and z of the 
CCCCTA1 and at terminals o and y of the CCCCTA2, re-
spectively; Cp1 = CO1 + Cy1 + Cz1 + CO2 + Cy2, which respec-
tively denote the parasitic capacitances at terminals o, y, 
and z of the CCCCTA1 and at terminals o and y of the 
CCCCTA2; Gp2 = Gz2, which is the parasitic conductance at 
terminal z of the CCCCTA2; Cp2 = Cz2, which denotes the 
parasitic capacitance at terminal z of the CCCCTA2. 
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Class 
No. of  

oscillators 
No. of active 

devices 
OC OF 

Independent control for 
OC and OF 

 Output 
impedances 

Initial 
conditions 

I 32 Two CCCCTAs 13 GG   

21

42

CC

GG
 Yes High No 

II 16 
One CCCCTA 
and one CCCII 

'GG   
21

'

CC

GG
 No 

High except Io1 

output 
G2=G3=G 
G1=G4=G’ 

III 4 One CCCCTA 0G  
21

4

CC

GG
 No Nigh 

G1=0, 
G2=G3=G 

Tab.1.  Properties for the three different types of quadrature oscillators. 
 
 
 

Ref ABB 
No. of 
ABB 

No. of 
R+C 

Grounded C 
only 

Linear independent 
electronic tune for OC 

Linear independent 
electronic tune for OF 

Current 
mode 

Systematic  
synthesis 

[10] Op Amp 2 5+2 No No No No No 
[10] CFOA 2 3+2 Yes No No No Yes 
[7] CCⅡ 3 3+2 Yes No No Yes Yes 
[25] OTA 4 1+2 Yes Yes Yes No No 
[26] CDTA 2 1+2 Yes Yes No Yes No 
[27] MCDTA 1 0+2 Yes No Yes Yes No 
[28] MOCCCDTA 1 0+2 Yes No No Yes No 
[29] CCCDTA 2 0+2 Yes Yes Yes Yes No 
[30] CFTA 2 2+2 Yes Yes No Yes No 
[31] ZC-CFTA 4 0+2 Yes Yes Yes Yes No 
[17] CCTA 1 2+2 Yes No No No No 
[21] CCTA 2 0+2 Yes No No Yes No 
[22] MOCCCCTA 1 0+2 Yes No No Yes No 
[24] CCCCTA 2 0+2 Yes Yes Yes Yes No 
This 
work 

CCCCTA 2 0+2 Yes Yes Yes Yes Yes 

Tab.2.  Comparison between various quadrature oscillators. 

 
Combining the above equations yields the modified 

oscillation condition and oscillation frequency: 
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Therefore, it can be seen that adjusting G1 or G3 can 
turn the oscillation condition, but this affects the oscillation 
frequency, whereas trimming G2 or G4 can adjusted the 
oscillation frequency without affecting the oscillation con-
dition. Ignoring the second-order infinitesimal Gp1Gp2 and 
Cp1Cp2, and applying 2/11 xx  , for |x| << 1, (21) 
simplifies to 
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Therefore, taking into account non-ideal factors, the  

modified oscillation condition shows that G3 must be 
slightly greater than G1. The modified oscillation frequency 
shows that the oscillation frequency becomes smaller. For 
sinusoidal steady state, using (21) and ignoring the second-
order infinitesimal, the transfer functions can be derived as  
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It is clear that the phase differences for two output 
signals are not 90o due to non-ideal factors. 

It is desired to minimize the distortion in an oscillator, 
a circuit with precise auto-compensating AGC systems is 
necessary, as shown in the literature [32–33]. V1 acts as the 
input of the AGC, IB11 acts as the output of the AGC. As 
the oscillation grows, the amplitude of Io2 would increase 
and the output of the AGC, IB11, would also increase. From 
(22), the amplitude would decrease as the oscillation be-
comes weak. At last, the amplitude will automatically sta-
bilize at some intermediate level. 



RADIOENGINEERING, VOL. 24, NO. 2, JUNE 2015 541 

 

5. Computer Verification 
In order to test the performances of the proposed 

circuits, the sub-circuit for CCCCTA was created by using 
the transistor model of PR200N and NR200N [16], [23]. 
Then only the circuit in Fig. 9 was simulated by means of 
NI MULTISIM 11.0 software. When IB12 = 163 µA, 
IB11 = 40 µA, then G3 > G1. Imposing C1 = C2 = 1 nF, and 
G2 = G4, namely IB22 = 4IB21 = IB = 163 µA, from (2), (5), 
and (11), the design value for fo is 0.5 MHz and Io1/Io2 = –j. 
The simulation result is shown in Fig. 12. 

To illustrate the controllability of fo by adjusting IB, 
IB12 and IB11 are kept as before. When IB is 652 µA, the 
design value for fo is 2 MHz. The responses simulation re-
sult is shown in Fig. 13. When IB is tuned from 163 µA to 
652 µA, the design value for fo is changed from 500 kHz to 
2 MHz, as shown in Fig. 14.  

 
Fig. 12.  Simulated results of the oscillator for the design value 

of 0.5 MHz. 

 
Fig. 13.  Simulated results of the oscillator for the design value 

of 2 MHz 

 
Fig. 14.  Simulated dependence of FO on IB values, (a) ideal,  

(b) simulated by (5), (c) simulated by (22) with 
Cp1 = Cp2 = 10 pF. 

From Fig.12 and Fig.13, during the tuning process, 
the change of output current levels is maximally about 7%. 

From (23), imposing Cp1 = Cp2 = 10 pF, 
Rz = 1/Gz2 = 123 kΩ [23], and tuning IB from 163 µA to 
652 µA, the phase difference for the two output signals is 
shown in Fig. 15. 

The total harmonic distortions for Io2 and Io1 are 
1.32% and 1.21%, respectively. Fig. 16 shows only the 
simulated output spectrum for Io1. Consequently, the oscil-
lator can sustain two quadrature output signals with small 
distortion. 

It is noted that the results of circuit simulations are in 
agreement with theory. 

 
Fig. 15. Simulated dependence of phase difference on IB values. 

 
Fig.16.  Simulation result of the output spectrum for the design 

value of 0.5 MHz. 

6. Conclusions 
Even though other synthesis approaches are also used 

to obtain quadrature oscillators, the approach presented in 
this paper is simple, systematic, and powerful. The main 
feature of the paper is making use of systematic design 
method to obtain 52 voltage-mode/current-mode quadra-
ture oscillators. The synthesized double-mode quadrature 
oscillators also enjoy many advantages, such as electronic 
control of the oscillation frequency and the oscillation 
condition, use of grounded capacitors, no externally con-
nected resistors, and so on. The results of circuit analysis 
and simulation have verified the theory involved. 
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