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Abstract. The implementation of the generalized detector 
(GD) in cognitive radio (CR) systems allows us to improve 
the spectrum sensing performance in comparison with 
employment of the conventional detectors. We analyze the 
spectrum sensing performance for the uncorrelated and 
spatially correlated receive antenna array elements. Addi-
tionally, we consider a practical case when the noise 
power at the output of GD linear systems (the preliminary 
and additional filters) is differed by value. The choice of 
the optimal GD threshold based on the minimum total 
error rate criterion is also discussed. Simulation results 
demonstrate superiority of GD implementation in CR sys-
tem as spectrum sensor in comparison with the energy 
detector (ED), weighted ED (WED), maximum-minimum 
eigenvalue (MME) detector, and generalized likelihood 
ratio test (GLRT) detector. 
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1. Introduction 
Cognitive radio (CR) system is considered as a com-

ponent of wireless network. CR systems promise us to get 
the efficient spectrum utilization and other advantages, for 
instance, the cell throughput enhancement [1].The CR user 
equipment (UE) can utilize an idle spectrum of the primary 
user (PU) network (see Fig. 1). Thus, the spectrum sensing 
is needed to define the idle spectrum. The secondary user 
(SU) network compiles the frequency holes that are found 
by spectrum sensing in the licensed band and opportunisti-
cally exploits these frequency holes for CR use. The spec-
trum sensing should assure that the SU does not generate 
any interference to the PU network. Most of spectrum 
sensing approaches are based on implementation of the 
energy detector (ED) [2] and [3], matched filter [4] and [5], 
and cyclostationary detector [6] and [7]. Complete knowl-
edge about the PU signal is required in the case of the 
matched filter. The cyclostationary detector can exploit the 
PU signal features caused by periodicity. The ED does not 

need any a priori information about the PU signal and can 
be used for spectrum sensing even in the case when the 
sensing time is less than 1 ms [1]. On the other hand, the 
ED is sensitive with respect to the noise power uncertainty 
and spatial correlation between the antenna array elements 
that can cause a serious deterioration in the ED perform-
ance at the low signal-to-noise ratio (SNR). 

Many attempts to improve the ED spectrum sensing 
performance are made at the present time, for example, the 
ED with dynamic threshold [8], ED with two-step thresh-
old [9], weighted ED (WED) [10], cooperative spectrum 
sensing, i.e. sharing the sensing results between some sec-
ondary users [11], [12], and so on. Other spectrum sensing 
techniques are also investigated, for example, the general-
ized likelihood ratio test (GLRT) detector [13], maximum-
minimum eigenvalue (MME) detector [14], and spectrum 
sensing based on known PU signal pattern using the pre-
amble and midamble [1], the radio identification procedure 
[15], and the two phase algorithms for spectrum sensing 
and power/rate control of a SU [16]. Useful information 
about different spectrum sensing algorithms can be found 
in [1]. The ED is commonly used as a spectrum sensor 
owing to low computational cost, simplicity in implemen-
tation, and no a priori information about the PU signal is 
needed. Unfortunately, the ED detection performance deg-
radation is evident under the spatially correlated antenna 
array elements [10]. 

In this paper, we address the coarse spectrum sensing 
problem in the CR systems employing the generalized de-
tector (GD) constructed based on the generalized approach 

 
Fig. 1. The CR system and the SU with M antenna array 

elements. 
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to signal processing (GASP) in noise [17] under the unco-
rrelated (no spatial correlation) and spatially correlated 
antenna array elements. The GD formulates a test statistics 
based on definition of the jointly sufficient statistics of the 
likelihood ratio mean and variance [17–19]. The GD per-
formance in wireless communication and radar sensor 
systems is discussed in [19–27]. The first attempt to study 
the GD implementation as a spectrum sensor in CR net-
works is discussed in [28]. 

In the present paper, we compare the GD, ED, WED, 
GLRT detector, and MME detector by spectrum sensing 
performance. Comparing with [28], we investigate the case 
of inequality between the noise power at the outputs of GD 
input linear systems, namely, the preliminary filter (PF) 
and additional filter (AF). This case is very close to prac-
tice. Additionally, the GD optimal detection threshold is 
defined based on the minimum probability of error crite-
rion under two cases, namely, the noise powers or vari-
ances at the output of GD input linear systems (the PF and 
AF) are the same and different by value. Effect of the coef-
ficient of spatial correlation between the receive antenna 
array elements on the GD spectrum sensing performance is 
also investigated.  

The rest of the paper is divided into the following sec-
tions. The model of spatial correlation between the antenna 
array elements is discussed in Sec. 2. The GD main struc-
ture and the test statistics are presented in Sec. 3. Defini-
tion of the GD threshold and probability of false alarm 
under the independent (uncorrelated) and spatially corre-
lated antenna array elements are delivered in Sec. 4. The 
optimal detection threshold and probability of false alarm 
for ED are briefly discussed in Sec. 5. The GD optimal 
threshold selection is defined in Sec. 6. Simulation results 
are discussed in Sec. 7. The conclusions are delivered in 
Sec. 8. 

2. CR System Model 
The spectrum sensing is performed by the SU in the 

CR network system with M receive antenna array elements 
Each i-th antenna array element receives N samples during 
the sensing time. The sensing problem can be described by 
the binary hypotheses: 
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where zi[k] is the discrete-time received signal at the SU 
input; s[k] is the discrete-time modulated transmitted signal 
with the same probability of transmission for all symbols 
(the PU signal); hi[k] is the channel coefficient obeying the 
circularly symmetric complex Gaussian distribution with 
zero mean and variance equal to σh

2, i.e. hi[k] ~ CN(0, σh
2); 

and wi[k] is the discrete-time circularly symmetric complex 
Gaussian noise with zero mean and variance σw

2, i.e. 
wi[k] ~ CN(0, σw

2).The channel parameters are not varied 
during the sensing time (coarse or fast sensing) and the 

channel coefficients hi[k] are spatially correlated between 
each other but independent over the time. The modulated 
signal s[k], channel coefficients hi[k], and AWGN wi[k] are 
independent between each other. The same channel model 
is widely used in [29–31]. 

Owing to its simplicity, the exponential matrix model 
is widely used to describe the spatial correlation between 
the adjacent antenna array elements [32]. The components 
of the MM ×  antenna array element correlation matrix C  
can be presented in the following form: 

   , ,...,1     ,    , }{ M ji,jiji
ij =≤= −ρC  (2) 

where ρ is the coefficient of spatial correlation between the 
adjacent antenna array elements (0 ≤ ρ ≤ 1, the real values). 
Applying the results presented in [32], the coefficient of 
spatial correlation ρ can be given as  

   }{ 22 )/(23exp λρ dΛ−=    (3) 

where Λ  is the angular spread, an important propagation 
parameter defining a distribution of multipath power of 
radio waves coming in at the receiver input from a number 
of azimuthal directions with respect to the horizon; λ  is 
the wavelength; and d is the distance between two adjacent 
antenna array elements (antenna array element spacing). 
The correlation matrix of antenna array elements C given 
by (2) is the symmetric Toeplitz matrix [29]. 

The 1×MN  signal vector Z  received by M receive 
antenna array elements consists of all the observed signals 
during the sensing time and can be defined using the fol-
lowing form: 

 [ ]T
MM NzNzzz

 
11 ]1[],...,1[,],0[],...,0[ −−= Z  (4) 

where T denotes a transpose. The received signal vector Z 
has a complex Gaussian distribution with the covariance 
matrices Cov0 and Cov1 under the hypotheses H0 and H1 
respectively. If zi[k] = wi[k], the received signals zi[k] are 
independent. Under the hypothesis H1, if zi[k] = hi[k]s[k] 
+ wi[k], the received signals are spatially correlated. The 
covariance matrices Cov0 and Cov1 are determined in [28].  

3. GD Flowchart and Decision 
Statistics 

3.1 Main Functioning Principles of GD and 
Test Statistics 

The GD is a linear combination of the correlation de-
tector, which is optimal in the Neyman-Pearson (NP) crite-
rion sense when a priori information about the PU signal 
parameters is known, and the energy detector, which is 
optimal in the NP criterion sense if the PU signal parame-
ters have a random character [17], [18]. As was discussed 
in detail in [18, Chapter 7, p. 685–692], the main function 
of the GD  energy  detector  (GD ED)  is to  detect  the  PU 
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Fig. 2. The GD structure. 

signal. The main function of the GD correlation detector is 
to define the detected PU signal parameters and make 
a decision: the detected signal is the expected and desired 
PU signal or not. A great difference between the GD ED 
and conventional ED employed by the classical signal 
detection theory is a presence of the additional filter (AF) 
at the GD front-end, i.e. the GD input linear system. 

The specific feature of GASP is introduction of addi-
tional noise source that does not carry any information 
about the signal with the purpose to improve a qualitative 
signal detection performance. This additional noise can be 
considered as the reference noise without any information 
about the signal to be detected. The jointly sufficient statis-
tics of the mean and variance of the likelihood ratio is 
obtained in the case of GASP implementation, while the 
classical and modern signal processing theories can deliver 
only a sufficient statistics of the mean or variance of the 
likelihood ratio (no the jointly sufficient statistics of the 
mean and variance of the likelihood function). Thus, the 
implementation of GASP allows us to obtain more infor-
mation about the input process or received information 
signal. Owing to this fact, an implementation of the receiv-
ers constructed based on GASP basis allows us to improve 
the spectrum sensing performance of CR networks in com-
parison with employment of other conventional receivers. 

The GD flowchart is presented in Fig. 2. As we can 
see from Fig. 2, the GD consists of three channels: 

• the GD correlation detector channel– the PF, multipli-
ers 1 and 2, model signal generator (MSG); 

• the GD ED channel – the PF, AF, multiplier 3 and 4, 
summator 1; 

• the compensation channel – the summators 2 and 3 
and the accumulator. 

For description of the GD flowchart we consider the 
discrete-time processes without loss of any generality. The 
main purpose of the GD compensation channel is to cancel 
the GD correlation detector channel noise component 

smodi[k]ξi[k] and the GD ED channel random component 
si[k]ξi[k] between each other based on the same nature of 
the noise ξi[k]. Evidently, this cancelation is possible only 
based on the same nature of the noise ξi[k] satisfying the 
condition of equality between the signal model smodi[k] and 
incoming signal si[k] over the whole range of parameters, 
i.e. 
 ][][mod ksks ii

=     (5) 

that is the GD main functioning condition. To satisfy (5), 
we are able to define the incoming signal parameters. Natu-
rally, in practice, the signal parameters are random. The 
condition (5) is important for complete compensation in the 
statistical sense between the noise component of the GD 
correlation detector channel 2smodi[k]ξi[k], caused by inter-
action between the model signal smodi[k] and noise ξi[k], 
and the random component of the GD ED channel 
2si[k]ξi[k], caused by interaction between the signal si[k] 
and noise ξi[k] [17] and [18, Chapter 3]. The complete 
matching between the model signal smodi[k] and the incom-
ing signal si[k], especially by amplitude, is a very hard 
problem in practice and only in the ideal case the complete 
matching is possible. How the GR detection performance 
can be deteriorated under mismatching between the model 
signal smodi[k] and the incoming signal si[k] is discussed in 
[33]. How we can satisfy (5) in practice is discussed in 
detail in [17] and [18, Chapter 7, p. 631–695] when there is 
no a priori information about the signal si[k]. 

The practical implementation of the GD decision sta-
tistics requires an estimation of the noise variance σw

2 using 
the reference noise ηi[k] at the AF output. The AF is the 
reference noise source. The PF bandwidth is matched with 
the bandwidth of the information signal si[k] to be detected. 
The threshold apparatus (THRA) device defines the GD 
threshold. 

The PF and AF can be considered as the bandpass fil-
ters with the impulse responses hPF[m] and hAF[m], respec-
tively. For simplicity of analysis, we assume that these 
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filters have the same amplitude-frequency characteristics or 
impulse responses by shape. Moreover, the AF central 
frequency is detuned with respect to the PF central fre-
quency on such a value that the information signal cannot 
pass through the AF. If a value of detuning between the AF 
and PF central frequencies is more than 4 or 5Δfs, where 
Δfs is the signal bandwidth, the processes at the AF and PF 
outputs can be considered as the uncorrelated and inde-
pendent processes and, in practice, under this condition, the 
coefficient of correlation between the PF and AF output 
processes is not more than 0.05 that was confirmed experi-
mentally in [34], [35]. 

If the noise w[k] at the PF and AF inputs is Gaussian, 
the noise at the PF and AF outputs is Gaussian, too, be-
cause the PF and AF are the linear systems that do not 
change the statistical parameters of the input process. 
A detailed discussion of the AF and PF can be found in 
[36]. The noise at the PF and AF outputs can be presented 
in the following form:  
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Under the hypothesis H1 the signal at the PF output 
can be defined as xi[k] = si[k] + ξi[k] (see Fig. 2), where 
ξi[k] is the observed noise at the PF output and 

 ][][][ kskhks ii ×= ;   (7) 

hi[k] is the channel coefficient. Under the hypothesis H0 
and for all i and k, the process xi[k] = ξi[k] at the PF output 
is subjected to the complex Gaussian distribution and can 
be considered as the independent and identically distrib-
uted (i.i.d.) process. The process at the AF output is the 
reference noise ηi[k] with the same statistical parameters as 
the noise ξi[k] in the ideal case. In practice, the statistical 
parameters of the noise ξi[k] and ηi[k] can be differed. 

The decision statistics at the GD output presented in 
[17], [18] is extended to the case of antenna array employ-
ment and can be presented in the following form: 
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is the vector of PF output random process; THRGD is the 
detection threshold of GD. We can rewrite (8) using the 
vector form: 

 GDGD THRT
0
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is the 1×M  vector of the random process at the PF output 
with elements defined as 

 Tkxkxk M ][ ][,],[][ 1 =x ;   (12) 

 )]1(,),0([ modmodmod −= NssS    (13) 

is the 1×M  vector of the process at the MSG output with 
the elements defined as 

 Tksksk
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is the 1×M  vector of the random process at the AF output 
with the elements defined as 

 T
M kkk ][ ][,],[][ 1 ηη =η    (16) 

and THRGD is the GD detection threshold. 

According to GASP and GD structure shown in 
Fig. 2, the GD test statistics takes the following form under 
the hypotheses H1 and H0, respectively: 
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the background noise at the GD output that is a difference 
between the noise power at the PF and AF outputs. 

3.2 Moment Generation Function of the GD 
Partial Test Statistics )( kGRT X  

To analyze the GD performance as a spectrum sensor, 
there is a need to define the moment generating function 
(MGF) of the partial test statistics TGR(Xk)  
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under the main GD functioning condition (5) and the hypo-
thesis H1.We say that the random variable x has a chi-
square distribution with υ degree of freedom if its probabil-
ity density function (pdf) is determined as 

   )5.0exp()( 15.0 xcxxp −= −υ   (19) 

where c is a constant given by [37] 

 ,  
)5.0(2

1
5.0 υυ Γ

=c    (20) 

Γ(·) is the gamma function. The MGF general form for the 
chi-square distributed random variable x is given by 
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At υ = 1, the constant can be presented given by 
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pdfs for the random variables iz1 and iz2  are defined by 

the chi-square χ2 distribution law with one degree of free-
dom [18]: 
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Introduce a new random variable iii zzz 21 −= . MGF of 

the random variable zi is given using the following for-
mula: 
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MGF of the random variable z1 is defined in the following 
form: 
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Based on definition of the gamma function [38] 
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Finally, the MGF of the random variable z1i is defined as 
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The mean and variance of the random variables z1i 
can be determined in the following form: 
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By analogous way, we can find that the MGF of the 
random variable iz2 takes the following form: 
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Since M
ii ks 1]}[{ =  are spatially correlated for i-th antenna 

array elements, according to [36] the MGF of  =
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where iβ is the eigenvalue of the i-th spatial channel of the 

correlation matrix C given by (2). Based on (18), (21), and 
(22) the MGF of the GD partial decision statistics TGD(Xk) 
is determined in the following form: 
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4. GD Spectrum Sensing 

4.1 Spatially Correlated Antenna Array 
Elements 

The GD defines the total received PU signal energy 
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during the sensing time and compares it with the detection 
threshold THRGD to make a decision about the PU signal 
presence or absence at the SU input. Under the hypothesis 
H0 according to the initial conditions, the mean and vari-
ance of the test statistics TGD(X) at the GD output are given 
by [18, Chapter 3]: 
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where N is the number of samples and M is the number of 
antenna array elements. 

Applying the central limit theorem, the GD test statis-
tics under the hypothesis H0 can be approximated by the 
normal Gaussian distribution as N →∞: 
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Based on (35), the mean and the variance of the test statis-
tics TGD(X) under the hypothesis H1 take the following 
form, respectively: 
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As N →∞, applying the central limit theorem, the pdf 
of the GD test statistics TGD(X) under the hypothesis H1 
takes the following form: 
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Thus, as N →∞, based on the central limit theorem, we can 
apply the approximation by the normal Gaussian pdf for 
the GD test statistics to define the probability of false alarm 

GD
FAP and the probability of detection GD

DP . In [18] and 

[36], the probability of false alarm GD
FAP  and the probability 

of miss GD
missP  are defined in the following form: 
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where [38] 
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is the integral of probability and  

  −=
x

dttx
0

2 )exp()(erf   (44) 

is the error function; GDm
0H  is the mean of the test statistics 

TGD(X) under the hypothesis H0; GDVar
0H is the variance of 

the test statistics TGD(X) under the hypothesis H0; GDm
1H is 

the mean of the test statistics TGD(X) under the hypothesis 

H1; and GDVar
1H is the variance of the test statistics TGD(X) 

under the hypothesis H1. Alternatively, the probability of 

false alarm GD
FAP  and the probability of detection GD

DP  can 

be defined as: 
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where 

  GD
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and )(xQ is the Gaussian Q-function given by 
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To avoid a generation of interference for PU, it is im-
portant to define a lower bound for the probability of de-
tection PD. In this case, the sensing performance is evalu-
ated according to the probability of false alarm PFA while 
maintaining the predetermined lower bound of the prob-
ability of detection PD. For this purpose, there is a need to 
define the GD threshold THRGD as a function of the prob-
ability of detection PD applying the required lower bound, 
i.e. GD

DP  ≥ α, where α is the constraint. 

In practice, the noise variance can be estimated by the 
noise power estimator (NPE, see Fig. 2) using the reference 
noise at the AF output. Based on (46), the GD threshold 
THRGD can be determined at the probability of detection 
constraint in the following form: 
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As follows from (38)–(40), the GD threshold THRGD  
given by (49) can be rewritten in the following form: 
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Defining the SNR at the SU input as 

 22 / whsE σσγ =    (51) 

we can rewrite (50) as 
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Based on (45), taking into consideration the probabil-
ity of detection constraint, we can find that the probability 

of false alarm GD
FAP  under the spatially correlated antenna 

array elements takes the following form: 
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Using (51), we can represent the probability of false 

alarm corGD
FAP  in the following form: 
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4.2 Uncorrelated Antenna Array Elements 

In general, the antenna array elements can be consid-
ered as independent or uncorrelated (ρ = 0) when the ratio 
d/λ is high by value and the angular spread Λ tends to ap-
proach π. Under this condition, the correlation matrix C  
given by (2) becomes the MM × identity matrix, i.e. IM×M. 
In this case, taking into consideration the probability of 
detection constraint, the probability of false alarm for in-
dependent or uncorrelated antenna array elements uncor

FAP  

can be defined based on the probability of false alarm for 
the spatially correlated antenna array elements cor

FAP  as 

given by [29] and [30]: 
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Based on (54) and (55), taking into consideration the 
probability of detection constraint, the probability of false 
alarm GD

FAP  under independent or uncorrelated antenna 

array elements can be determined as 
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For any values of N, M, and γ we can see that: 
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since Q(x) is the monotonically decreasing function of x 
and Q–1(α) is the negative value. Thus, (57) is the lower 
bound of the probability of false alarm GD

FAP  for GD. 

4.3 Unequal Power at the PF and AF Outputs  

Before, we made assumption that the power or vari-
ance σξ

2 of the noise ξi[k] at the PF output is equal to the 
power or variance ση

2 of the reference noise ηi[k] at the AF 
output, i.e., σξ

2 = ση
2 = σw

2. Based on this assumption, we 
could define the noise power estimation using only the 
noise sample ηi[k] at the AF output with the purpose to 
define the variance of the background noise 
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Naturally, in practice (see subsection 3.1), the 
equality between the variances of the noise ξi[k] and ηi[k] is 
impossible, i.e. σξ

2 ≠ ση
2 , owing to many reasons, for 

example, the instability of PF and AF parameters, 
nonuniform environment, nonhomogeneous noise, etc. By 
this reason, there is a need to consider the condition closed 
to practice when σξ

2 ≠ ση
2 . Assume that 
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where μ is a factor of proportionality. Thus, the variance of 
the GD background noise can be presented using the 
following form: 
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The mean GDm
0H and variance GDVar

0H  of the test statis-

tics TGD(X) under the hypothesis H0 are determined as: 
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Under the hypothesis H1, the mean GDm
1H  and variance 

GDVar
1H  of GD test statistics TGD(X) take the following 

form: 
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Based on (62), we can define the GD threshold in the 
following form: 
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The general form of the GD probability of false alarm 
is determined as 
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Note if μ = 1, (64) becomes (56). 

5. ED as a Spectrum Sensor 
Under the initial conditions discussed in Sec. 2, the 

energy of the received PU signal is combined with the 
equal gain at different antenna array elements. The test 
statistics at the ED output can be defined as  
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According to [29], applying the central limit theorem 
the ED test statistics under the hypotheses H0 and H1 obeys 
the following distributions: 
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Under spatially correlated antenna array elements, the ED 

probability of false alarm ED
FAP  can be written as [31]: 
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For the uncorrelated antenna array elements case, the ED 

probability of false alarm ED
FAP  takes the form [29]: 
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In the case of correlated antenna array elements, the 
implementation of the WED proposed in [10] allows us to 
improve the detection performance in comparison with the 
ED and other detectors constructed based on eigenvalues 
of the correlation matrix C such as the MME and GLRT 
detectors. If the noise variance σw

2 is known, applying the 
Neyman-Pearson theorem [3], the likelihood ratio test is 
defined as 
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where 2
1( , )wp H σZ  and 2

0( , )wp H σZ  are the likelihood 

functions under the hypothesis 1H  and ,0H respectively. 

WED decision statistic is determined in the following form 
[10]: 
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where THRED is the ED threshold; Li[k] is the linear trans-
formation of observed data zi[k] given by L[k] = VHz[k] 
with the vi eigenvector of the correlation matrix C given by 
(2). The transformed signal component Li[k] corresponding 
to the large eigenvalue βi is weighted more heavily [10]. 
When the antenna array elements are uncorrelated, all the 
eigenvalues βi will be the same and the WED may be con-
sidered as the ED. 

6. Definition of Optimal GD Threshold 

6.1 The case 22
ηξ σσ =  

The detection threshold is a parameter used to define 
the probability of false alarm PFA and the probability of 
detection PD or the probability of miss Pmiss. It is always 
preferable to achieve the high probability of detection PD 
and the low probability of false alarm PFA. Sometimes, in 
practice, it is impossible to define the optimal threshold 
satisfying these requirements. This problem can be consid-
ered as the optimization problem [40] similar to the optimal 
sensing time selection problem [41]. 

The optimal detection threshold can be derived based 
on the minimal probability of error Per. The probability of 
error Per can be presented in the following form: 

 , 10  PpPpP missFAer +=  (71) 

where p0 and p1 = 1 – p0 are the a priori probabilities of the 
PU signal absence and presence, respectively. For simplic-
ity of analysis, we assume that these a priori probabilities 
are known and equal between each other p0 = p1 = 0.5. In 
the GD case, it is possible to minimize the probability of 
error Per by appropriate choice of the GD detection thresh-
old THRGD. Thus, the optimal GD detection threshold 

op
GDTHR  can be defined as 
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As follows from Appendix (see (96)), the optimal GD 
threshold is defined in a very simple form: 
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Thus, the normalized optimal GD threshold 
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is only a function of the noise variance at the GD input. 
The optimal ED threshold is defined in [42] as 

  . 2
w

op
EDTHR σ=    (75) 



566 M. SHBAT, V. TUZLUKOV, GENERALIZED DETECTOR AS SPECTRUM SENSOR IN COGNITIVE RADIO NETWORKS 

 

6.2 The case 22
ηξ σσ ≠  

The GD optimal threshold op
GDTHR

22
ησξσ ≠

 if the noise 

power at the PF and AF outputs are differed by the factor 
of proportionality μ is given by (see Appendix, (95)): 
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The normalized optimal GD threshold is determined in the 
following form: 
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In this analysis we consider the additive white Gaus-
sian noise (AWGN) channel. The same analysis steps can 
be applied to other kind of fading channels such as the 
Nakagami-m fading channel and Rayleigh fading channel. 

7. Simulation Results 
Comparison between the GD spectrum sensing per-

formance under the spatially correlated antenna array ele-
ments with other detectors, namely, ED, WED, MME 
detector, and GLRT detector is carried out using MATLAB 
following the standard simulation environment and pa-
rameters (IEEE 802.22). We assume that the GD input 
noise power or variance σw

2 is known. We use the same 
main simulation parameters as in [29], where the angular 
spread Λ = 0.5° in the case of spatially correlated antenna 
array elements with d = λ/8 and Λ = 180° for independent 
or uncorrelated antenna array elements with d = λ/2, where 
d is the distance between two adjacent antenna array ele-
ments (antenna array element spacing) and λ is the wave-
length; the channel parameter σh

2 = 1; and the probability of 
detection constraint α = 0.99. 

 
Fig. 3. Comparison of spectrum sensing performance between 

the ED and GD. 

The ED and GD performances are compared in Fig. 3 
under the independent (uncorrelated) and spatially corre-
lated antenna array elements with the coefficient of correla-
tion ρ equal to 1 and 0.75; M = 6 and N = 20. The GD 
demonstrates the better spectrum sensing performance in 
comparison with the ED for all cases. For example, under 
the spatially correlated antenna array elements at the coef-
ficient of correlation ρ  = 1 and the probability of false 
alarm PFA = 0.5, the SNR gain in favor of GD is approxi-
mately equal to 2.5 dB in comparison with the ED. When 
the antenna array elements are independent (uncorrelated), 
the SNR gain is about 3 dB in favor of GD comparing with 
the ED at the probability of false alarm PFA = 0.5. In gen-
eral, as we can see from Fig. 3, the probability of false 
alarm PFA for the spatially correlated antenna array ele-
ments both for the ED and GD is high in comparison with 
the case when the antenna array elements are independent 
(uncorrelated) and the probability of false alarm PFA in-
creases with increase in the coefficient of correlation ρ. 

The curves characterizing the probability of miss as 
a function of the probability of false alarm, the comple-
mentary receiver operating characteristic (ROC) for the 
GD and ED are presented in Fig. 4 if the antenna array ele-
ments are both uncorrelated and spatially correlated at 
M = 6, N = 20, SNR = –5 dB (Fig. 4a), and SNR = –10 dB 
(Fig. 4b). The GD demonstrates superiority in sensing 
performance in comparison with the ED. For example, in 
the case of uncorrelated antenna array elements at the prob-
ability of false alarm PPA = 10–2 and SNR = –5 dB (Fig. 4a), 
in the case of ED, the probability of miss ED

missP  is approxi-

mately equal to 0.18, while in the case of GD, the probabil-
ity of miss GD

missP  is equal to 0.05. Under the spatially corre-

lated antenna array elements with the coefficient of correla-
tion ρ equal to 1, SNR = –5 dB (Fig. 4a), and the probabil-
ity of false alarm PFA equal to 10–2, the probability of miss 

ED
missP  is equal to 0.28, and the probability of miss GD

missP  is 

approximately equal to 0.11.  

 
Fig. 4. Complementary ROC for ED and GD: a) SNR = –5 dB 

and b) SNR = –10dB. 
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The composite hypothesis testing with the GLRT is 
used when there is an uncertainty with respect to one or 
more parameters in the likelihood functions, for instance, 
when the noise variance σw

2 or/and the received PU signal 
covariance matrix Rz are unknown. In this case, we should 
obtain the maximum likelihood estimate (MLE) of the 
unknown parameter under the hypotheses 0H and 1H [13]: 
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Thus, the GLRT decision statistics can be presented in the 
following form: 
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More information about the GLRT detector and its 
spectrum sensing performance can be found in [10] and 
[13]. In the case of MME detector [13], [14], the maximum  
βmax and minimum βmin eigenvalues of the PU signal covari-
ance matrix Ry are used to define the related MME deci-
sion statistics as follows [14]: 
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MMET

β
β

=)(X  .  (80) 

Thus, if there is no PU signal βmax/βmin = 1, otherwise, we 
obtain βmax/βmin > 1. 

Figure 5 demonstrates a comparison of the spectrum 
sensing performance for the WED, GLRT detector, MME 
detector, and GD under the spatially correlated antenna 
array elements with the coefficient of correlation ρ equal to 
1 at M = 6 and N = 20. As we can see from Fig. 5, the 
spectrum sensing performances of the WED and GD are 
close to each other at SNR < –14 dB with slightly vantage 
to the GD. At SNR > –14 dB, the GD performance is evi-
dently better in comparison with WED one. If the probabil-
ity of false  alarm PFA is equal to 0.5, the GD  achieves the 

 
Fig. 5. Comparison of spectrum sensing performance between 

the WED, GLRT detector, MME detector, and GD. 

SNR gain equal approximately to 1.5 dB, 3.2 dB, and 
4.0 dB in comparison with the WED, GLRT detector, and 
MME detector, respectively. 

The ED and GD spectrum sensing performances (the 
complementary ROC curves) obtained at SNR = –10 dB, 
M = 6, N = 20 are presented in Fig. 6 for the case σξ

2 ≠ ση
2 

i.e. ση
2 = μσξ

2 = μσw
2 (59) at μ = 0.5; 0.9; 1.5. As we can see 

from Fig. 6, the case μ ≠ 1, i.e. σξ
2 ≠ ση

2, affects negatively 
on the GD performance and we can observe performance 
degradation in comparison with the case μ = 1, σξ

2 = ση
2. 

The GD stability to variations of μ is observed at low SNR 
values. This observation becomes clear from (64) at γ << 1 
when the approximation )1(2)1(2 222 μμγ +≈++  leading 

us to reduction of the μ effect on the GD performance can 
be applied.  

Figure 7 represents the probability of false alarm PFA 
as a function of SNR for the ED and GD. The curves are 
shown at 6=M  and 20=N . In the GD case, the spectrum 
sensing performance is presented both for the case of 
σξ

2 = ση
2 and the case of σξ

2 ≠ ση
2 at μ = 0.5; 0.9; 1.5. 

Naturally, we observe the best GD performance at μ = 1 or 

 
Fig. 6. Complementary ROC of ED and GD for the case 

σξ
2 ≠ ση

2. 

 
Fig. 7. ED and GD spectrum sensing performance when 

σξ
2 = ση

2 and  σξ
2 ≠ ση

2. 
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σξ
2 = ση

2. As we can see from Fig. 7, a superiority of GD 
employment in CR networks in comparison with ED is 
evident both for the ideal case, σξ

2 = ση
2 and for the practi-

cal situation, σξ
2 ≠ ση

2. Thus, the GD performance presented 
in Fig. 6 is confirmed by the simulation results presented in 
Fig. 7. 

Figure 8 demonstrates the probabilities of false alarm 
ED

FAP  and GD
FAP  as a function of the number M of spatially 

correlated antenna array elements. The number M is varied 
from 1 to 10. The coefficient ρ of spatial correlation be-
tween the antenna array elements takes a value within the 
limits of the interval [0.1, 1.0]. 

The ED and GD spectrum sensing performances are 
presented at SNR = –5 dB; –10 dB; –15 dB. As we can see 
from Fig. 8, the probability of false alarm PFA increases 
monotonically with increase in the coefficient of correla-
tion ρ. The large number of antenna array elements M 
allows us to reduce the negative effect of the coefficient of 
spatial correlation ρ on the probability of false alarm PFA 
for both detectors. The ED and GD performances have 
similar character under the spatial correlation between the 
antenna array elements, but it is evident that the GD has the 
better performance in comparison with the ED. 

Comparison of the probability of error Per for the ED 
and GD is presented in Fig. 9 in the case of independent or 
uncorrelated antenna array elements. The probability of 
error Per as a function of the normalized optimal detection 
threshold, the normalization factor is taken as NM, is 
evaluated for the GD and ED at SNR = –5 dB; –10 dB. The 
GD achieves the low probability of error Per equal to 0.38 
at the normalized threshold equal to 0.43; SNR = –5 dB. 
The minimal ED probability of error Per = 0.63 is achieved 
at the normalized threshold equal to 0.105; SNR = –5 dB. 
Based on the observed GD and ED performances we con-
clude that the GD can achieve the lower probability of 
error Per in comparison with the ED at the same SNR. In-
creasing in the SNR allows us to minimize the probability 

 

Fig. 8. The probabilities of false alarm ED

FAP and GD

FAP  versus 

the number of antenna array elements M. 

of error Per for both detectors. For example, an increase in 
the SNR from –10 dB to –5 dB reduces the probability of 
error Per from 0.88 to 0.63 in the ED case and from 0.74 to 
0.38 in the GD case. 

The probability of error Per for GD as a function of 
the normalized optimal threshold given by (77) (the nor-
malization factor is equal to NM) is shown in Fig. 10 for 
the case σξ

2 ≠ ση
2, μ = 0.5; 0.9; 1.5 (the case in practice). As 

it follows from Fig. 10, we can observe that the GD per-
formance degradation is caused by the negative effect of 
inequality between the variances, i.e. σξ

2 ≠ ση
2, in compari-

son with the ideal case σξ
2 = ση

2. In spite of this fact, the 
GD presents the better performance comparing with the ED 
one and demonstrates robustness against the noise variance 
inequality problem, σξ

2 ≠ ση
2. 

The noise variance inequality problem can be consid-
ered as a kind of limitation for the GD employment in CR 
networks. Another kind of limitation can be the interfering 

 
Fig. 9. The probability of error Per for ED and GD as a func-

tion of the normalized threshold. 

 
Fig. 10. The probability of error Per for GD as a function of the 

normalized threshold at μ ≠ 1 (σξ
2 ≠ ση

2). 
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signals within the limits of GD AF bandwidth affecting the 
GD performance [26] and the problem of complete match-
ing in all parameters between the model signal smodi[k] and 
the incoming PU signal si[k] [33]. For example, the match-
ing in amplitudes is possible only in the ideal case. 

8. Conclusions 
In this paper, the GD implementation in CR network 

as a spectrum sensor is investigated. The GD demonstrates 
the better spectrum sensing performance in comparison 
with the ED, WED, GLRT detector, and MME detector 
under the spatially correlated and independent or uncorre-
lated antenna array elements. In general, both for the GD 
and ED, the probability of false alarm PFA are low bounded 
if the antenna array elements are independent or uncorre-
lated. The GD performance character as a function of the 
coefficient of correlation between the antenna array ele-
ments is similar with the ED one while the use of the large 
number of antenna array elements allows us to reduce 
a negative effect of spatial correlation. The GD achieves 
the lower probability of error in comparison with the ED at 
the same SNR. The GD spectrum sensing performance is 
estimated in the case of equal variances of the noise at the 
PF and AF outputs, i.e. σξ

2 = ση
2 (μ = 1, the ideal case) and 

in the case of unequal variances, σξ
2 ≠ ση

2 (μ ≠ 1, the case in 
practice). As a result, we observe a superiority of GD im-
plementation in CR network in comparison with the ED for 
both cases. Thus, we can conclude that even if we believe 
that the noise power at the GD PF and GD AF outputs are 
differed, the GD can still maintain the better spectrum 
sensing performance in comparison with ED. 

Appendix 

In the case of independent or uncorrelated antenna ar-
ray elements, taking into consideration (59)–(62), (70), and 
(71), the GD optimal threshold op

GDTHR  can be derived 

using the factor of proportionality μ  if the noise power at 

the PF and AF outputs is not the same in the following 
form: 
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We obtain (81) by the aid of  
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is the complementary error function. We can determine the 

GD optimal threshold op
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to define a minimum of (81). Using the following equation 
[43] 
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where A and B are the arbitrary constants, and taking into 
consideration (81) and the condition (84) we can write 
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We can rewrite (86) in the following form: 
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We can rewrite (88) as 
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Taking the natural logarithm, we obtain 
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Taking into consideration that SNR in cognitive radio 

networks is very small, i.e. 12 >>wσ  we can think that 
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. After 

some mathematical transformations we obtain 
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Solution of the quadratic equation (92) is well-known 
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Substituting (94) into (93) and taking into consideration 
that the GD threshold is defined by the absolute value as it 
is discussed in [18, Chapter 7, p. 679–685], we obtain 

 )1(2 22
22

μσ
ησξσ

+=
≠

w
op
GD NMTHR  .  (95) 

As follows from (95), if 1=μ  we obtain the optimal GD 

detection threshold in the following form 

 22
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