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Abstract. Compressive Sensing (CS) allows for the sam-
pling of signals at well below the Nyquist rate but does so,
usually, at the cost of the suppression of lower amplitude sig-
nal components. Recent work suggests that important infor-
mation essential for recognizing targets in the radar context
is contained in the side-lobes as well, which are often sup-
pressed by CS. In this paper we extend existing techniques
and introduce new techniques both for improving the accu-
racy of CS reconstructions and for improving the separa-
bility of scenes reconstructed using CS. We investigate the
Discrete Wavelet Transform (DWT), and show how the use
of the DWT as a representation basis may improve the ac-
curacy of reconstruction generally. Moreover, we introduce
the concept of using multiple wavelet-based reconstructions
of a scene, given only a single physical observation, to derive
reconstructions that surpass even the best wavelet-based CS
reconstructions. Lastly, we specifically consider the effect
of the wavelet-based reconstruction on classification. This
is done indirectly by comparing outputs of different algo-
rithms using a variety of separability measures. We show
that various wavelet-based CS reconstructions are substan-
tially better than conventional CS approaches at inducing
(or preserving) separability, and hence may be more useful
in classification applications.
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1. Introduction
Compressive Sensing (CS) is a powerful new frame-

work that provides methods for approximate reconstruction
of signals using a number of samples far below that given by
the Nyquist criteria. The approximate reconstruction con-
tains only the highest energy components of the original
signal, with all other components effectively discarded. In
the radar domain, CS has been shown to be a useful tech-
nique for sensing different types of scenes that are often very
sparse, and in which low energy components (e.g. side-
lobes) are often undesirable. The use of CS in reducing
the sampling rate, and thus the associated hardware/software

complexity, of radars has been dealt with in many recent
publications (e.g. [1, 2]). CS has also been shown to be use-
ful in applications to other areas of radar, including speckle
reduction [3] and classification [4].

How effectively a given scene can be reconstructed us-
ing CS depends largely on two important choices, namely,
the choice of the sensing matrix, which determines the wave-
forms used to sense the scene, and the representation ba-
sis, the basis in which the scene is expressed. In particu-
lar, the accuracy of the CS reconstruction depends on choos-
ing a representation basis such that the scene is sparse when
expressed in that basis and is incoherent with the sensing
matrix (details on incoherence are included below). In this
paper we discuss the effectiveness of the Discrete Wavelet
Transform (DWT) as a representation basis.

It should be noted that the use of the DWT as a repre-
sentation basis for CS reconstruction is not a new idea. The
application of wavelet-based CS to Synthetic Aperture Radar
(SAR) has been discussed in other papers (e.g [5–8]) and
there has also been work done on the application of wavelet-
based CS to images (e.g. [9–11]). In this paper we take a dif-
ferent approach to studying wavelet-based CS, focusing on
a vastly different type of scene and considering classifica-
tion needs. We primarily work with scenes that consist of
only a single scattering center. We consider such a limita-
tion acceptable for the following three reasons. Firstly, such
scenes, or linear combinations of such scenes, are very com-
mon in practice (e.g. planes on a blank sky) and are often
used in to model SAR scenes, where the scene is modeled
using a few dominating scattering centers [12]. Secondly, as
discussed in recent work [13], classification of some SAR
targets, and many targets sensed using low-resolution radar,
is improved when we include side-lobe information usually
suppressed by CS. Thirdly, side-lobe information is partic-
ularly hard for CS to preserve, given that the importance of
a particular component of a scene for classification may not
be dependent on energy, and so may be suppressed by CS
despite its importance.

There are many novelties in the current work. First of
all, we test the effectiveness of CS and wavelet-based CS in
reconstructing such single-scatter scenes. We also introduce
the concept of combining wavelet-based CS reconstructions,
all of which can be built from a single observation, in or-
der to build a signal reconstruction more accurately than any
wavelet-based CS reconstruction. Lastly, we consider the ef-
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fect of CS and wavelet-based CS reconstruction on the clas-
sifiability of a scene, discussing how wavelet-based CS and
CS affect separability measures and general classification ef-
forts.

The rest of the paper is organized as follows. Section 2
gives a brief background to compressive sensing. Section 3
expounds the Radar model that we have used and some of
the implementation steps for our experiments. Section 4
describes the way we have simulated and reconstructed the
scenes. In Section 5, we describe the algorithm for using
multiple representations. Section 6 elaborates our exper-
iments on classification and the use of CS, and Section 7
concludes the work and discusses some open questions and
limitations of the current work.

2. Compressive Sensing Background
This section includes a brief introduction to CS as well

as some basic notations used in this paper. The CS intro-
duction included here is based on a tutorial by Candès [14].
We make use of some of the informal language found in [14].
For a more technical explanation of this language please read
the cited paper. For the sake of brevity, in this paper we
will refer to CS using the DWT with some wavelet as the
representation basis as ‘wavelet-based CS’ and CS using the
identity as just ‘CS’ or ‘identity CS’.

Suppose some scene can be represented by some vector
x∈Rn. We note that for any representation basis (i.e. orthog-
onal matrix) Ψ, we may expand x in that basis by x = Ψθ,
where θ ∈ Rn. We say that x has a sparse representation if
the coefficient vector θ is sparse.

Suppose now we have N sensing waveforms φn, n =
1,2, . . . ,N, which can be rewritten in matrix notation as
Φ = [φ1,φ2, . . . ,φN ]

T such that Φ is an orthogonal matrix,
often refereed to as the sensing basis or sensing matrix. The
act of sensing x with this matrix can then be summarized as

y = Φx = ΦΨθ, (1)

where y is the output of the sensing process. In this sce-
nario reconstructing x from y is trivial, as we can simply in-
vert the orthogonal matrix Φ. In CS we instead do not use
all the sensing waveforms in order to sense the scene. In-
stead we choose some M waveforms from {φ1,φ2, . . . ,φN},
where M < N, and form an incomplete M×N sensing ma-
trix denoted by Φ̃. The act of sensing the scene can thus be
summarized by

y = Φ̃x = Φ̃Ψθ = Aθ, (2)

where y is now an M length vector and A = Φ̃Ψ. In this
case the inverse problem is ill-posed. The great insight of
CS theory is that despite this fact, the scene can be approxi-
mately reconstructed supposing that sensing and representa-
tion bases are sufficiently incoherent and that the representa-
tion basis induces a sufficiently sparse representation of our

scene x. We now explain these terms. We say that a scene x
has an S-sparse representation in Ψ if the coefficient vector θ

has at most S non-zero components. Furthermore, we define
the coherence between a sensing basis and a representation
basis µ(Φ,Ψ), as given by [14]

µ(Φ,Ψ) =
√

N · max
1≤k, j≤N

∣∣〈φk,ψ j
〉∣∣ , (3)

where φk is a row in Φ and ψ j is a column in Ψ. Informally,
we may understand coherence as a measure of the degree to
which the rows of Φ provide a sparse representation of the
columns of Ψ, and the other way around [15]. We say two
such bases are incoherent if their coherence is low (closer
to 1) and coherent if it is high (closer to

√
N).

2.1 Undersampling and Reconstruction
The degree to which these high sparsity and incoher-

ence properties are met, determine the level of undersam-
pling which will still result in accurate signal reconstruction.
The reconstruction of the signal is achieved by solving the
optimization problem:

min
θ̃∈RN

∥∥θ̃
∥∥
`1

subject to y = Φ̃Ψθ̃. (4)

The output of the optimization problem provides us some es-
timate for the vector θ, which we denote by θ̂. We retrieve
our estimate for the vector x, denoted by x̂, using:

x̂ = Ψθ̂. (5)

The required number of samples for accurate reconstruction,
M, is determined by the following inequality:

M ≥C ·µ(Φ,Ψ)2 ·S · log(N/δ), (6)

where µ denotes coherence, S denotes sparsity and δ denotes
a chosen constant to determine the chance of accurate recon-
struction (the chance of accurate reconstruction is given by
1−δ). The positive constant C can usually be taken to be less
then 10, estimations of this constant are included in [14].

2.2 Restricted Isometry Property and Noise
For practical purposes CS needs to remain effective

even if the signal is only approximately sparse or if noise
is introduced. In order to solve this problem we need to un-
derstand the Restricted Isometry Property (RIP) which is an
alternate condition for accurate signal recovery. We define
the RIP as follows: for each S ∈ {1,2...} we define the isom-
etry constant δS of a matrix A to be the smallest number such
that

(1−δS)‖θ‖2
`2
≤ ‖Aθ‖2

`2
≤ (1+δS)‖θ‖2

`2
(7)

holds for any arbitrary S-sparse vector θ. We may say,
loosely, that the RIP is obeyed for S if δS is not close to one.
We also note that the RIP offers a measure of how closely
A approximates an orthogonal matrix [14].
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Using the RIP we now consider the case when noise is
introduced into our system. In this we may think of the CS
sensing operation as being given by

y = Φ̃x+ z, (8)

where z represents a random variable introduced to account
for noise or system inaccuracies, and Φ̃ is our M×N CS
sensing matrix.

We consider then the adjusted optimization program:

min
θ̃∈RN

∥∥θ̃
∥∥
`1

subject to
∥∥y− Φ̃Ψθ̃

∥∥
`2
≤ ε, (9)

where the noise in the system is bounded by some ε. Simi-
larly the success of reconstruction using these relaxed opti-
mization constraints is determined by the restricted isometry
property, details can be found in [14].

We say that if A = Φ̃Ψ obeys the RIP and we have that
δ2S <

√
2−1, then we have that the solution to (9), denoted

by θ̂, obeys∥∥θ̂−θ
∥∥
`2
≤C0 ‖θ−θS‖`1

/
√

S+ εC1, (10)

where C0 and C1 are constants and θS is the signal θ but with
all but the S largest amplitude components set to zero.

This result establishes that CS is a robust and practical
system capable of acting on noisy and imperfect signals, i.e.
those that appear in real-life application. Moreover, this re-
sult does not assume that θ is S-sparse, and tells us that if θ is
not S-sparse, then it is as though the algorithm knew ahead
of time which where the highest S components of the sig-
nal and measured those directly [14]. We utilize this result
in that we explicitly consider noisy and otherwise imperfect
signals in this paper.

2.3 Dantzig Selector
It has been shown that similar reconstruction algo-

rithms based on the Dantzig selector can also be very effec-
tive in the noisy case [16]. In particular, this Dantzig selector
based reconstruction has been shown to be quite effective in
Radar applications [3], and as such will be used in all exper-
iments in this paper unless stated otherwise. The Dantzig se-
lector based reconstruction uses the following optimization:

min
θ̃∈RN

∥∥θ̃
∥∥
`1

subject to
∥∥A∗(Aθ̃− y)

∥∥
`∞
≤ γ, (11)

where γ is a user-defined value and A∗(Ax̃− y) is a measure
of how well the residual and each column of A correlate [3].

3. Radar Model and Implementation
In this section we discuss our implementation of CS

and our choice of sensing matrix. We employ a very simi-
lar implementation and sensing matrix to the one outlined by
Ender for compatibility with pulse compression [1].

3.1 Radar and Sensing Basis
In order to conveniently apply CS-theory to a given

scene we have to first consider a quantization of the space
in that scene. We do this by assuming that all scatterers ap-
pear in some range interval [rmin,rmax] and then breaking that
interval up into N distinct points. It can be noted here that
this is not the most accurate model for radar targets. How-
ever this is an acceptable model which directly follows from
the scattering center model which is an often used model in
radar imaging. In this way we have that the ith element of
the length N scene vector corresponds to a distance of

ri = rmin +(i−1)
rmax− rmin

(N−1)
. (12)

In this section, whenever a distance is given, we assume that
the distance is given by one of these discrete points, i.e. if
we have some distance r then we have that r ∈ {r1,r2 . . .rN}.

Rather than using conventional radar sensing wave-
forms, e.g. a chirp, we instead construct our sensing basis
using N distinct frequencies represented by the wave num-
bers k1,k2 . . .kN . In order to enforce orthogonality of the
sensing waveforms used, we define this sequence of wave
numbers by

kl = k0 + j
4π

r2− r1
. (13)

It can be noted here that, this way of representation, even
though unconventional, is not novel. It resembles to the
stepped frequency type radar waveforms. Now, if we ig-
nore the Doppler effect, we have that the normalized return
signal of some target after being sensed with the frequency
associated with the wave number kl is given by

sl(r) = e− j2klr. (14)

We can now represent the arbitrary scene sensed with the
frequency associated with the wave number k j as

yl =
N

∑
i=1

aisl(ri) =
N

∑
i=1

aie− j2klri , (15)

where yl is the return, and ai is the complex amplitude as-
sociated with the scatterer at ri. From this equation, if we
think of (a1,a2, . . .aN) as our scene vector, we have that the
sensing waveforms are given by

φi =
1√
N
(s1(ri),s2(ri), . . . ,sN(ri) ∀i ∈ {1, . . .N} . (16)

We can now construct the sensing matrix by selecting just
M < N of these sensing waveforms. This matrix is given by

Φli = (sv(l)(ri)), ∀l ∈ {1 . . .M} , ∀i ∈ {1, . . .N} , (17)

where the function v selects the waves used in sensing, in
this paper we always use uniform selection. It is worth not-
ing that the matrix in (17) is of course a simplification over
a real world sensing matrix. A brief discussion of the extent
of this simplification and its relationship to real world sens-
ing matrices, as well as how much this simplification effects
CS testing, may be found in [1].
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(a) The first scene

(b) The second scene

(c) The third scene

Fig. 1. The three simulated scenes used in this paper.

3.2 Computing the Reconstruction
In order to compute the CS reconstruction we need to

be able to find a solution to a given optimization problem. In
this paper we have used the Dantzig selector, solving the op-
timization problem using the primal-dual algorithm. In our
implementation, this requires rewriting the (in general) com-
plex matrices and vectors used above in (8) in terms of real
entries. We denote these versions of the sensing matrix A,
the scene vector x and the noise vector z by A∗, x∗ and z∗ re-
spectively. A similar change is also introduced by Ender [1].
We define the real versions of these components by

A∗ =
[

ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]
x∗ =

[
ℜ(x)
ℑ(x)

]
z∗ =

[
ℜ(z)
ℑ(z)

]
. (18)

This gives us the vector y∗, where:

y∗ = A∗x∗+ z∗. (19)

The effect of considering these real versions is that all these
matrices have had their rows and column counts doubled,
and the vectors have had their row count doubled, which cor-
responds to a doubling of the effective M and N values used
for reconstruction. These matrices can now be used to com-
pute the signal reconstruction of x̂ using the Dantzig selector:

x̂∗ =
[

Re(x̂)
Im(x̂)

]
, (20)

from which we construct x̂, the complex reconstruction of x.
In other papers using `1 minimization as part of CS (see [1]
for an explicit construction) similar adjustments have been
made. However, since we are using the primal-dual algo-
rithm, rather than the simplex algorithm, there is no require-
ment that the reconstructed vector be positive, as in [1]. This
is a positive change as such a requirement would require us
to double the number of columns in the matrix use for re-
construction, thus reducing the effectiveness of CS. As it
stands, this implementation does require doubling the effec-
tive M and N values. However, given that the dependence
on N in Candès inequality (see (6)) is sub-linear, we expect
a doubling of N to require less than a doubling of the re-
quired M. As such, although we make these changes in order
to overcome difficulties with the reconstruction algorithm,
these changes should in fact result in a better reconstruction.

However, there is a potential negative effect which
should be noted. By decoupling the real and imaginary com-
ponents of a signal the possibility arises that the optimiza-
tion algorithm may negate only the real or imaginary part
of a signal at a particular index, thus distorting the recon-
struction [1]. Although this distortion is perhaps potentially
problematic, it has not been found to be noticeably damaging
in any of the experiments discussed in this paper. Ender [1]
uses a similar method, and also notes that this method is stan-
dard.

4. Simulation and Reconstruction
In this section we test the effectiveness of CS, that is

CS reconstruction using the identity matrix as the represen-
tation basis, and contrast it with wavelet-based CS, that is
CS reconstruction using the DWT with some wavelet as the
representation basis. As discussed above we have selected to
discuss scenes consisting of only a single scattering center.
The fact that such scenes, and sums of such scenes, are very
common both in lower resolution radar and SAR, combined
with the fact that information contained in the sidelobes in
such scenes have been shown to be important for classifica-
tion efforts, has made the study of means to preserve such
scenes important.

We now consider three simulations of such scenes, each
containing only a single target. In the first scene the target is
just a single metal plate, in the second scene the target con-
sists of two cylinders and two spheres and in the third scene
the target consists of three corner reflectors and a cylinder.
In each case the target is shrunk down until it is entirely con-
tained within a single resolution cell. The scenes are simu-
lated using an environment built using the parametric model
described in [12]. These scenes are complex and their very
sparse nature makes useful visualization challenging, how-
ever we have included a log graph of the absolute value of
each scene in Fig. 1.

With regard to the sensing matrix, we use the matrix in-
troduced in (17) as the sensing matrix in all CS and wavelet-
based CS reconstructions. It is worth noting that the (re-
quired) use of a particular sensing matrix separates our re-
sults from those that come from image-based tests, in which
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(a) Daubechies 4
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(b) Haar
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(c) Symlets 6
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(d) Coiflets 3

Fig. 2. Each graph shows the average euclidean distance over the three scenes between the wavelet-based CS reconstructions and the original
scenes for varying M values.

very convenient sensing matrices may be chosen. In all of
these experiments unless otherwise stated we use N = 1024
and M = 200. All DWT matrices were constructed using
Matlab’s single-level discrete wavelet transform.

4.1 Reconstruction with Wavelets
We took the scenes depicted in Fig. 1 and reconstructed

them using identity CS and wavelet-based CS. In particu-
lar, we reconstructed these scenes using wavelets from the
Daubechies, Symlets and Coiflets families as well as using
a number of Biorthogonal wavelets. In our experiments we
found that the Daubechies-4 DWT had the most effective
representation basis, followed by the Haar DWT. For more
detail on these wavelets the reader may wish to consult any
standard text on wavelet analysis, e.g. [17].

In Fig. 2 we have summarized representative results
from this experiment using four graphs, one for each of
a small number of wavelets, with each graph showing how
the accuracy of the identity based CS reconstruction com-
pares with the wavelet-based CS reconstruction as we vary
the M value.

Since the only signal information contained in these
scenes is contained in the side-lobes, Fig. 2 acts to demon-

strate just how much better the wavelet-based reconstruc-
tions are at preserving side-lobe information. As seen in the
figure, this is especially true as we increase the M value,
with the identity CS reconstruction converging considerably
slower than the wavelet reconstruction in each case.

There are two points we should make regarding these
simulations and experiments. Firstly, although Fig. 2 is con-
structed using averages over the three scenes, in fact almost
exactly the same set of graphs was produced when we con-
sidered each scene individually (rather than together, as an
average). Second, it is important to note that, excepting very
low M values, we do not see one wavelet-based reconstruc-
tion improving beyond another as we increase the M value;
a reconstructions stays either above or below as we increase
M. This note is needed in order to make sense of our conclu-
sion that Daubechies-4 DWT was the most ‘effective’ DWT
representation matrix tested.

It is important to note that Fig. 2 acts only to give
a cross-section of our results from this investigation into the
application of the DWT as a CS representation basis. Fur-
ther study was done on the Daubechies wavelet family and
the closely related Symlet family. We analyzed how the
effectiveness of the reconstruction is affected by the num-
ber of coefficients (and vanishing moments) of the given
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wavelet. The results of this investigation have been summa-
rized in Fig. 3, which shows the Euclidean distance between
the Daubechies reconstruction and the original scene for a
varying number of wavelet coefficients. From this figure we
can see that as we increase the number of coefficients (and
thus vanishing moments), the wavelet-based CS reconstruc-
tion decreases in accuracy substantially. Similar results were
found when investigating the Symlet family.
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Fig. 3. The average Euclidean distance (over the three scenes)
between the wavelet-based CS reconstruction and the
original scene using wavelets from the Daubechies series
with a varying number of wavelet coefficients.

4.2 Noise and Reliability
Since we are discussing the accurate reconstruction of

the side-lobes of point scatterers, which are often lower en-
ergy components, the adverse effect of noise may be partic-
ularly troubling. In Tab. 1 we compare the CS reconstruc-
tion and the Daubechies-4 wavelet-based CS reconstruction
for differing signal to noise ratios (SNR’s), using M = 150,
N = 1024 and the same three scenes as above.

SNR 10 dB 20 dB 30 dB 40 dB 50 dB
wavelet-based CS 8.81 3.54 1.32 0.60 0.24
CS 8.19 3.16 1.39 1.01 0.93

Tab. 1. The average Euclidean distance between each of the CS
reconstructions and the original scenes with noise for
different SNR values and the average Euclidean distance
between each of the Daubechies-4 based CS reconstruc-
tions and the original scenes with noise for different
SNR’s.

From the table we can see that Daubechies-4 is ro-
bust with respect to noise beyond 20 dB, below which the
wavelet-based reconstruction starts to degenerate and pro-
duces reconstructions less accurate than the those produced
by the identity CS reconstruction. The behavior of the
Daubechies-4 wavelet is not unusual with respect to noise,
and our experiments with other wavelet-based CS recon-
structions have produced very similar tables.

5. Combining Multiple Reconstruc-
tions
When reconstructing a signal using CS it is possible

to do it using multiple representation matrices. In this way
we may be able to, having only physically sensed a scene
once, construct multiple ‘views’ of the same scene. We now
make two observations, firstly, the noise and inaccuracies as
a result of the CS reconstruction vary for different sensing
matrices (this is easy to see and has been confirmed thor-
oughly in our own investigation) and secondly, the noise in
the scene is ‘moved around’ when we reconstruct using dif-
ferent representation bases.

These two observations suggest the possibility of pro-
ducing a better reconstruction by considering multiple views
of the same scene, each constructed with a different rep-
resentation matrix, and then using the different informa-
tion contained in each reconstruction to produce a final, im-
proved, scene reconstruction. We have summarized this gen-
eral approach in Fig. 4.

This method of reconstruction is very generally defined
so far, as clearly there are multiple ways a set of reconstruc-
tions may be combined or analyzed in order to produce an
improved final reconstruction. Moreover, the availability or
efficacy of such methods may depend on the sensing envi-
ronment or other practical limitations inherent in the sensing
context. Given the broad set of possible algorithms for com-
bining multiple wavelets, and the broad set of contexts in
which such methods could be applied, we have limited our-
selves to considering quite simple, but broadly applicable,
methods of combining reconstructions. Our introduction and
discussion of these methods should act to provide evidence
of the utility of the general approach and as a starting point
for further research on more sophisticated methods.

In this paper we consider two methods of recon-
struction: The Voting method and Deviation Thresholding
method. These methods are discussed in the following sec-
tions.

5.1 The Voting Method
In brief, the Voting algorithm constructs a final (or out-

put) reconstruction from multiple reconstructions by taking
some token reconstruction (hopefully one we know to be ac-
curate) and then removing those parts of the reconstruction
that fluctuate in sign between reconstructions (the thought
being that such components are most likely just noise).

More formally, given some scene vector of length n, we
begin by producing multiple reconstructions of that scene
using a number of different (sparsity inducing) represen-
tation matrices, as in Fig. 4. A particular reconstruction,
called the reference reconstruction vector, and a number V ,
called the voting threshold, are both chosen. For every
i∈{1, . . . ,n}, we construct a number Ci, which is the number
of reconstruction vectors with a positive ith element minus
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Fig. 4. An overview of the system for combining CS reconstructions.

the number of reconstructions with a negative ith element.
If |Ci| < V , then the ith of of the reference reconstruction is
set to be zero. If instead |Ci| ≥ V , then the ith element of
the reference reconstruction is unaltered. The output recon-
struction is the (now edited) reference reconstruction.

In order to test this method we used the same three
scenes discussed in earlier parts of this paper. We simu-
lated these scenes using N = 1024 and sensed them using
M = 150. We used fifteen different wavelets; including the
even Daubechies series, and a number of Symlet and Coiflet
wavelets. All DWT matrices were constructed using Mat-
lab’s single-level discrete wavelet transform.

We chose the Daubechies-4 wavelet-based CS recon-
struction to be the reference reconstruction, as it proved to
be the most accurate reconstruction in our trials, and imple-
mented the voting method using a voting threshold of 10 (i.e.
requiring a majority of 66% of the reconstructions to agree
on the sign of an element). The results of the simulation can
be seen in Tab. 2. For example the first entry in the table
shows that the Euclidean distance between the actual scene
and the reconstructed scene for the first example (Scene 1) is
0.32 when using Daubechies-4 wavelet based CS.

Sc1 Sc2 Sc3
Daubechies-4 CS 0.32 0.44 0.30
Voting Method 0.39 0.48 0.37

Tab. 2. The Euclidean distance between the reconstruction of
each scene and the original scene using both the
Daubechies-4 wavelet-based CS reconstruction and the
voting method reconstruction.

From Tab. 2 we can see that by combining the wavelet
based reconstructions using the voting method we could im-
prove on the accuracy of the Daubechies-4 wavelet-based CS
reconstruction by an average of 15%. We again note that the
Daubechies-4 wavelet-based CS reconstruction is the most
accurate reconstruction we have found, and so this repre-

sents a substantial improvement. Moreover, we tested this
scenario using different noise levels. As expected, while the
accuracy of the reconstructions produced by both methods
deteriorated with the introduction of noise, the combined re-
construction deteriorated much slower, as some of the noise
was canceled by the voting method.

5.2 Deviation Thresholding
In brief, the Deviation Thresholding algorithm con-

structs a final (or output) reconstruction from multiple re-
constructions by taking some token reconstruction and then
removing all those components which vary ‘too much’ be-
tween reconstructions.

More formally, given some scene vector of length n, we
begin by producing multiple reconstructions of that scene us-
ing a number of different (sparsity inducing) representation
matrices. We again fix a reference vector and chose a value
T , known as the threshold.

This method is slightly more sophisticated than the vot-
ing method described above. We again begin reconstructing
a given scene vector by choosing a particular reconstruction
as our reference reconstruction and a threshold T . For ev-
ery i ∈ {1, . . . ,n}, we compute the standard deviation and
the mean of the set consisting of the ith elements of the re-
construction vectors, which we denote by σi, and µi respec-
tively. If |σi/µi| > T , then the ith element of the reference
reconstruction is set to zero, if |σi/µi| ≤ T , then ith element
of the reference reconstruction is unchanged. The output re-
construction is the (now edited) reference reconstruction.

We tested this method of combining reconstructions us-
ing the same experiment we used to test the Voting method.
The deviation method produced results that where not as
strong, improving on the Daubechies-4 reconstruction by an
average of 5%.
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Sc1 Sc2 Sc3
Sc1 0 1.63 2.71
Sc2 1.63 0 1.19
Sc3 2.71 1.19 0

1

Sc1 Sc2 Sc3
Sc1 0 1.93 2.41
Sc2 1.93 0 1.05
Sc3 2.41 1.05 0

1

Sc1 Sc2 Sc3
Sc1 0 4.32 7.28
Sc2 4.32 0 2.96
Sc3 7.28 2.96 0

1

Fig. 5. The effect of windowing on the euclidean distance between the scenes. We show the distances between the scenes without any windowing
effect (left) and the distances between the scenes after windowing with the Nuttall window (middle) and the Hamming window (right). In
each case we include a log graph of the amplitude of the first scene showing the effect of the window.

5.3 Choosing a Reference Reconstruction
In the above two methods we have made use of a ref-

erence reconstruction. The idea is that the reference recon-
struction acts as the ‘default’ reconstruction, that we then al-
ter using knowledge from the other reconstructions we have
available. We have used a reference reconstruction partly be-
cause it makes it easy to see the improvement that using mul-
tiple reconstructions has over just a single reconstruction.
While in some scenarios, e.g. when the properties of a likely
scene are known a priori, it may be possible to intelligently
select an appropriate reference reconstruction in practice. In
other cases it may not be known which representation matrix
corresponds to the most accurate reconstruction. In that case
the above methods may still be used, given some automatic
way of generating an ‘appropriate’ reference reconstruction.

As an aside, we investigated two methods for doing so,
one in which we took the reference reconstruction to be the
mean of the reconstructions and one in which we took the
reference vector to be that one with the lowest average dis-
tance to all other vectors. In both cases no significant dif-
ferences were observed in the results of either of the above
methods.

6. Signal Separability and Classifica-
tion
In conventional radar applications, e.g. airplanes

against a sky, it is not uncommon for a target to fit into a sin-
gle resolution cell. In that case, it may not be possible to
classify the target using only the high energy components
and it may be necessary to consider classification informa-
tion contained in the side-lobes [13]. We sought to test this
hypothesis and considered the same three scenes used in this
paper thus far, each containing one target in a single reso-
lution cell. We found that many standard schemes for sup-
pressing side-lobes, including various windowing functions,
have the effect of reducing the (Euclidean) distance between
scenes; thus making the scenes harder to distinguish and so
making classification more difficult. Results from this ex-
periment have been summarized in Fig. 5. We also found
that the Bhattacharyya Distance, details of which are in-
cluded below, also decreased with the suppression of side-
lobes, which indicated an increase in the upper bound on the

Bayes error. Further work on the effect of side-lobe suppres-
sion on classification has been discussed in [13], including
a discussion on how more sophisticated side-lobe reduction
schemes, including nonlinear apodization [18] and refined
nonlinear apodization [19], can also have a negative effect
on classification.

Since side-lobes are often suppressed in the prepro-
cessing stage [13], an apparent advantage of CS is its sup-
pression of low-energy components, and thus side-lobes. As
such, this approach of preserving side-lobe information may
seem fundamentally counterproductive to a major advantage
of the CS reconstruction. In this section we present evi-
dence supporting the effectiveness of CS, and, in particular
wavelet-based CS, in preserving side-lobe information and
hence improving classification. In particular we show how,
given a choice of wavelet, the use of the DWT helps preserve
the separability of the scenes with respect to the Euclidean
metric and, furthermore, that it lowers the upper bound on
classification error.

6.1 Classification Using a Single Wavelet
In order to show how well the wavelet-based CS recon-

struction preserves side-lobe information we simulated three
scenes and applied appropriate classification measures. We
used the same three scenes as in the previous parts of this
paper. These scenes were sensed and reconstructed using
N = 512, M = 80 and SNR = 30 dB. We rotated the targets
in each of these scenes through 15 degrees in both direc-
tions in increments of 0.06 degrees, creating three clusters of
observations, each representing a particular class. We then
sensed and reconstructed these scenes using wavelet-based
CS and identity CS. These two reconstruction schemes sim-
ilarly produced three clusters of observations, and similarly
we estimated the distributions associated with these classes.
We then compared these classes for the original scenes, the
CS reconstruction and the wavelet-based CS reconstruction,
using two different measures of separability.

First, we used the average Euclidean distance between
scenes. This measure is given in (21) for two clusters of ob-
servations A and B, where all observations are vectors in RN .

dist(A,B) =
1
|A| |B| ∑

a∈A,b∈B
dE(a,b). (21)
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This Euclidean measure, although somewhat simplistic, con-
veys some information regarding the separability of the clus-
ters and indicates the effectiveness of the nearest neighbor
classification algorithms. In Tab. 3 we have included the
average Euclidean distance between the original scenes, the
CS reconstructed scenes and the wavelet-based CS recon-
structed scenes.

Sc1 vs. Sc2 Sc2 vs. Sc3 Sc1 vs. Sc3
Perfect 21.64 10.57 24.35
Identity CS 20.54 9.85 22.34
Haar CS 20.76 10.18 23.46

Tab. 3. The average euclidean distance between each pair of
clusters (one cluster for each scene) supposing perfect
reconstruction, CS reconstruction using the identity rep-
resentation matrix and CS reconstruction using the Haar
wavelet.

From Tab. 3 we can see that indeed the Haar wavelet based
CS reconstruction is more effective at inducing separabil-
ity than conventional CS with respect to this measure. It is
worth noting that the DWT is an orthogonal transform and
so an isometry in Euclidean space. Thus it would make no
difference if we were to consider the output of the CS op-
timization algorithm, denoted by θ̂ in (5), or the complete
wavelet-based CS reconstruction, denoted by x̂ in (5), the
distance between the clusters would still be the same.

The Euclidean metric does not do a good job of taking
into account the variance (or covariance, for more than one
dimension) of each of these distributions, which is important
when considering classifiability. As such, we use the Bhat-
tacharyya distance, which does take into account covariance
and acts as an important statistical measure of the separabil-
ity of two distributions [20, 21]. If we assumed that each of
our three classes can be modeled as a multivariate normal
distribution, we may estimate the covariance matrices and
means of the distributions associated with the classes. The
Bhattacharyya distance can then be calculated using (22),
where X1 and X2 are two classes or distributions with the
means given by X1 and X2 and covariance matrices given by
Σ1 and Σ2.

DB(X1,X2) =
1
8
(
X1−X2

)T
(

Σ1 +Σ2

2

)−1 (
X1−X2

)
+

1
2

log

 det
(

Σ1+Σ2
2

)
√

det(Σ1)det(Σ2)

 . (22)

The Bhattacharyya distance is equal to the optimum Cher-
noff distance when Σ1 = Σ2 [20]. The Bhattacharyya dis-
tance is particularly important as it can be used to calculate
the Bhattacharyya bound. For simplicity, we only consider
the Bhattacharyya bound between two classes. The Bhat-
tacharyya bound is denoted by εµ, and is defined in (23).

εµ(X1,X2) = 0.5e−DB(X1,X2) (23)

We note that the covariance matrices of any two classes in
this simulation are approximately equal. As such, the Bhat-
tacharyya distance is approximately equal to the optimum
Chernoff distance, and the Bhattacharyya bound is approx-
imately equal to the Chernoff bound [20]. Thus the Bhat-
tacharyya bound gives us an estimate for an upper bound
on the Bayes error between any two classes. In Tab. 4 we
show the Bhattacharyya bound for each pair of classes given
perfect reconstruction, CS reconstruction and wavelet-based
(Haar) CS reconstruction.

Sc1 vs. Sc2 Sc2 vs. Sc3 Sc1 vs. Sc3
Perfect 0.058 0.032 0.031
Identity CS 0.056 0.039 0.041
Haar CS 0.057 0.032 0.031

Tab. 4. The Bhattacharyya bound calculated for each pair of
classes supposing perfect reconstruction, identity CS re-
construction and Haar wavelet CS reconstruction.

From Tab. 4 we can see that the Haar wavelet-based
CS reconstruction results in a Bhattacharyya bounds very
similar to those expected if we had perfect reconstruction,
and actually slightly improves upon the perfect reconstruc-
tion in some cases. Furthermore, the comparing identity
and Haar CS reconstructions in Tab. 4, we can see that
the wavelet-based CS reconstruction results in lower Bhat-
tacharyya bounds than those produced using the CS recon-
structed scenes.

It is interesting to note the contrast in behavior between
the Bhattacharyya bound and the average Euclidean distance
as measures of separation. Comparing Tab. 3, for the Eu-
clidean measure, with Tab. 4, for the Bhattacharyya bounds,
we can see that that the wavelet-based CS reconstructed
classes appear less separable than the original scene classes.
However, when we begin to consider the covariance matrices
associated with each class, the classifiability of the wavelet-
based reconstruction improves dramatically when compared
with the classes constructed from the original scenes. Com-
bined with the fact that the wavelet-based reconstruction is
also inaccurate, we can conclude that although the wavelet
reconstruction moves the clusters closer together and pro-
duces less than perfect reconstructions, the wavelet recon-
structions are less scattered, which makes up for the accu-
racy loss and thus produces Bhattacharyya bounds compara-
ble to those for the original scene classes.

It is worth noting an important difference between clas-
sification and reconstruction. When testing reconstruction
we found that the Daubechies-4 wavelet-based CS produced
the most accurate reconstruction. Naturally, the ability to re-
construct accurately is related to our ability to classify the
scene. However, we note that the Haar wavelet-based recon-
struction, which we found to be only the second most accu-
rate wavelet for CS reconstruction wavelet, in fact outper-
forms the Daubechies-4 with respect to the above two clas-
sification measures.
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7. Conclusions
In this paper we discussed the importance of the

wavelet transform based CS in three important respects:
firstly, as a representation basis for increasing the accuracy
of CS reconstructions for a particularly important and com-
mon class of scene; secondly, for developing new tools with
which to even further increase the accuracy of CS recon-
struction and, thirdly, to improve the ability of CS to retain
important classification information found in side-lobes.

Scenes consisting of some number of point scatters are
common, both in low resolution radar and when modeling
SAR images. It has been shown, both here and in cited
works, that the classification of such scenes depends on our
ability to accurately sense the side-lobes. This poses a po-
tential problem for CS, a recent discovery in sensing which
has the dubious advantage of suppressing side-lobes. In this
paper we have discussed the DWT as a potential solution to
this problem. We have shown that the DWT, particularly the
Daubechies-4 DWT, can be very effective in accurately re-
constructing such scenes. We have briefly discussed how the
wavelet-based CS reconstruction begins to deteriorate as we
increase the number of coefficients/vanishing points. Given
the susceptibility of side-lobes to even low levels SNR’s, we
tested our wavelet-based CS reconstruction with differing
noise levels, finding it deteriorated reasonably quickly but
remained more accurate than CS until deteriorating at SNR
at around 20 dB.

In this paper we also introduced a novel idea for im-
proving CS reconstructions by taking multiple reconstruc-
tions with respect to differing representation bases. We in-
troduced two different methods of combining these multiple
reconstructions, the Vote Method and the Deviation Thresh-
olding method. We tested these methods and found that, us-
ing the DWT for a number of different wavelets as our set
of representation bases, that we could further improve upon
the best wavelet-based CS reconstructions by more than 15%
using only the simplest, unoptimized methods.

Lastly, we discussed how the use of the DWT as a rep-
resentation basis can greatly improve the ability of CS to
preserve classification information contained in side-lobes.
In order to judge classifiability we considered two measures
of separability between classes: a measure based on the av-
erage Euclidean distance between members of classes and
the Bhattacharyya bound. We found that the Haar wavelet-
based reconstruction was very effective, lowering the Bhat-
tacharyya bound to slightly below what we would expect if
we had perfect reconstruction.

7.1 Limitations and Open Questions
In this paper no serious attempts where made to opti-

mize the selection of a wavelet for wavelet-based CS recon-
struction. There is work here in constructing wavelets, or
showing no construction possible, that may dramatically im-
prove upon the constructions using these standard wavelets.

Further work needs to be done on the effect of separating the
imaginary and real components.

The approach of combining multiple CS reconstruc-
tions remains largely unexplored. Can we infer a good
reconstruction from its relationship with other reconstruc-
tions? For example, a good reconstruction may have a lower
average Euclidean distance to the other reconstructions. Can
we use parts of different reconstructions by looking for
pieces which appear natural (e.g. do not have sharp edges)
and combine those pieces to form an improved reconstruc-
tion? Similarly in the Voting method the voting threshold is
heuristically chosen. However it can be noted that changing
the threshold will make the reconstruction better at the cost
of more demanding computation.

In classifiability there are a number of interesting ques-
tions. Can multiple reconstructions produce better results for
classification? Could we, for instance, combine the probabil-
ities of a number of probabilistic classifiers, each of which
is run on a different reconstruction of the same scene, and
improve results?

The above discussions will be our future research di-
rections.
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