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Abstract. We have designed a novel method intended to 
improve the performance of distributed computing in 
wireless sensor networks. Our proposed method is de-
signed to rapidly increase the speed of distributed compu-
ting and decrease the number of the messages required for 
a network to achieve the desired result. In our analysis, we 
chose Average consensus algorithm. In this case, the de-
sired result is that every node achieves the average value 
calculated from all the initial values in the reduced number 
of iterations. Our method is based on the idea that a frag-
mentation of a network into small geographical structures 
which execute the distributed calculations in parallel sig-
nificantly affects the performance. 
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1. Introduction 
The main goal of this paper is to present a novel 

method which improves the efficiency of distributed com-
puting in wireless sensor networks (WSN). WSN are de-
fined as networks consisting of spatially distributed devices 
monitoring an environmental quantity [1], [2]. In general, 
the devices are labeled as nodes. The nodes are assumed to 
be limited in terms of their computing capabilities and 
available energy. We implemented the Average consensus 
algorithm, the distributed algorithm intended to calculate 
the average value from the initial ones. Because of its sim-
plicity and an iterative manner, this algorithm is suitable 
for the implementation in WSN, as shown in [3], [4]. On 
the other hand, the performance of the algorithm may vary 
[3]. In this paper, we have shown how significantly our 
proposed method improves the performance of the algo-
rithm. It is based on the idea that a fragmentation of a net-
work into small geographical structures which perform 
parallel distributed computing significantly affects the 
performance. The longer computation is executed, the more 
time nodes have to be in the active mode, which causes 
higher energy consumption and that they have to either 
send or receive more messages. This results in the signifi-

cant energy requirements. The authors of [5] described the 
impacts of battery exhaustion on WSN and since our novel 
method saves both time required to execute distributed 
calculations and the number of transmitted messages, it 
may be used in order to decrease energy consumption and 
increase network’s lifetime (as described in [6]). As the 
distribution of the inner states of nodes separated from each 
other for a longer distance lasts for a long time, before 
executing the numerical experiments, we expected our 
novel method to significantly decrease both the number of 
iterations necessary for the whole network to converge (i.e. 
necessary time to converge) and the overall number of 
messages in a network. 

In the first part of this paper, the features of distrib-
uted computing in WSN and the method of splitting a net-
work into packs have been introduced. In the next chapter, 
the terms 'the local' and the 'global consensus' have been 
explained and the proposed mathematical tools to describe 
our novel method have been introduced. In the numerical 
experimental part, the performed numerical experiments 
and analyzed the obtained results have been described.  

2. Distributed Computing in WSN 
In order to describe the properties of WSN, we use 

a set of graph theory tools [7–10]. We assume that WSN is 
an undirected graph defined as follows:  

 ),( EV=NET .  (1) 

NET is a label of a network. Each vertex vi represents 
a particular node [11] according to the identity number 
varying from 1 to N. V represents the set of all vertices, i.e. 
V = {v1, v2,…, vN}. Here, the index N also defines the 
number of vertices; therefore, the size of a network. Some 
vertices are connected to each other and this connection is 
referred to as a path (the path is labeled as ei,j in the case of 
vertices vi and vj). E forms a subset of the Cartesian multi-
plication E  V × V. Since we use an indirect graph to 
describe networks, the following statement is valid:  

 EE ∈⇔∈ j,i,ji ee , .  (2) 

As mentioned above, we chose Average consensus as 
the subject on which we demonstrated our proposed 
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method. Average consensus is a distributed algorithm cal-
culating the average from a set of initial values [12]. This 
means that every node forming the network converges to 
xi(kl) defined as follows: 

 
1

1( ) . ( ) for 1, 1,2,..., .
N

i l j
j

x k x x k k i N
N =

= = = =  (3) 

Here, i and j represents the indices of corresponding verti-
ces, i.e. vi ∈ V and vj ∈ V. The value of kl represents the 
last iteration in which a network achieves the consensus. 
The vector x ∈ RN contains the inner values of nodes and is 
updated for each k.  

The consensus is reached in an iterative, distributed 
manner [12]. This means that every node converges to the 
average according to [13]: 

   
1

( ) ( 1) {[ ( 1) ( 1)] }
N

i i j i ij
j

x k x k x k x k A
=

= − + ⋅ − − − ⋅ .  (4) 

Here, A ∈ {0, 1}N × N is the adjacent matrix [14],[15]. If vi 
and vj are neighbors, then Aij, Aji = 1, otherwise, they are 
equal to 0. Only inner value of a node and values sent by 
adjacent nodes are locally available. The value of  deter-
mines the speed of the convergence of the algorithm [16]. 
The convergence range is determined as follows:  

 
}max{

10
w

≤< ε .  (5) 

Here wi is the weight of a node and represents the number 
of i's adjacent nodes. For the node represented by the 
vertex vi, it is defined as follows: 

 T
Nijiw ,1×JA= .  (6) 

Here, J is an all-ones matrix [17].The parameter wi 
determines the number of the nodes adjacent to node i. 

Mathematically, the convergence can be explained as 
follows [18]: 

 
1

1lim ( ) (1)
N

i jk j

x k x
N→∞

=

= ⋅ .  (7) 

It is not possible to fulfill this condition; therefore, we 
have defined an event when a node is considered to be 
converged. We used the distributed mechanism described 
in [3], which allows every node to determine the event of 
convergence (i.e. consensus) in a distributed manner. After 
it reaches the consensus, it no longer upgrades its inner 
value. 

 
Fig. 1. Condition of distributed classification of reaching 

consensus. 

We defined the parameter d, whose value determines 
the precision of the algorithm. A node compares its current 
inner value with the one from the previous iteration. When 
their difference is smaller than d during the three following 
iterations, the node considers itself to be converged.  

2.1 Split Distributed Computing 
Split distributed computing is based on the idea that 

nodes situated in a geographically close area are gathered 
into a pack. The pack is an entity consisting of geograph-
ically proximate nodes. In case of the Average consensus, 
each pack converges to the local average determined by the 
initial values of the nodes forming this pack. Every pack 
appoints a head, i.e. a node of the highest connectivity 
within the pack. In this paper, a node’s connectivity is 
defined according to the weight wi. 

The node in a pack fulfilling this condition is ap-
pointed as the head: 

 , : 1i j j i iv v w w H∃ ∈ ∃ ∈ > =/x xPK PK .  (8) 

PK defines the label of a pack. H is the vector which 
contains 1 (when vi is a head) or 0 (when it is not). This 
definition implies that the node whose weight is the highest 
within a pack is appointed as the head. When there is not 
another node (labeled as vj) in the pack  with weight 
larger than vi's, it results in choosing vi for the head of the 
pack (therefore, the appertaining position within H matrix 
is set to 1). 

After the local consensus is reached within each pack, 
the phase of reaching the global consensus begins and just 
the heads of particular packs communicate together and 
converge to the average. Each node has to fulfill this con-
dition: 

, , :  for .i x y i i yv v v x y∀ ∈ ∃ ∃ ∈ ∧ ∈ ≠/ xV PK PK PK PK   (9) 

This means that every node is included only in one 
pack. The definition implies that every node affects the 
average value of exactly one pack. If it were present in 
more than one pack, the final result would differ from the 
expected results defined by (3). Thus, splitting a network 
into the packs has to fulfill these conditions: 

 Q

x

Q

x 11 ==
/=∧= 0PKVPK xx .  (10) 

This means that the packs contain all nodes and there 
is no node which is shared by any other packs. It implies 
that every node is assigned to just one pack. If it were pre-
sent in either more than one or no one, the incorrect result 
would be achieved. Only nodes forming a same pack com-
municate with one another in the phase of reaching the 
local consensus. The messages from nodes forming other 
packs are rejected and do not affect the pack's inner state. 
The union of all the packs forms the whole set V. Their 
conjunction results in an empty set because no pack shares 
at least one node with any other pack. 
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2.2 Distributed Reaching the Local 
Consensus 
In this part, we focus on the reaching the local con-

sensus. This phase is executed independently and in paral-
lel in each pack. We assume that nodes acquaint just adja-
cent nodes forming the same pack with their inner value. 
Just nodes fulfilling the condition (11) communicate with 
the node labeled as vi: 

 { ( , ), ( , ) , 1}i i j j i ij jiv v v v v p p= ∈ ∈ ∧ =iNP V E .  (11) 

Here, p is the matrix determining whether two nodes are in 
the same pack (if they are, pij, pji = 1) and NP is a set con-
taining all nodes with which vi communicates during the 
phase of reaching the local consensus. 

Each node converges iteratively to the local average 
determined as follows: 

 1

1

{ [ (1) ] (1)} { × 1}
N

lci j ij i
j

y x p x −

=

= ⋅ + ⋅ +T
ij 1,Np J .  (12) 

The value closed to (12) is achieved in a distributed 
manner as follows: 

1

( ) ( 1) {[ ( 1) ( 1)] }.
N

i i j i ij ij
j

x k x k x k x k A pε
=

= − + ⋅ − − − ⋅ ⋅  (13) 

Let K ∈ NQ  be the vector containing all the values of 
k, i.e. the number of the iteration, in which a single pack 
reaches a local consensus: 

 },....,{ 21 Qkkk=K .  (14) 

The parameter Q is the number of packs in the 
network: 
 T

N1,JH×=Q .  (15) 

After all packs reach the local consensus, the network 
as the whole converges to global consensus. This moment 
of transmission is defined as follows: 

 xyyx kkkk >∈∃/∈∃ :, KK .  (16) 

We label kx fulfilling the condition (16) as klc. All 
packs reach the local consensus in parallel. After all the 
packs reach the consensus, there are Q local consensuses. 
Since the phase of reaching the global consensus can begin 
after all the packs converge, the local consensus which 
lasted for the longest time determines the length of this 
phase. We insert all the durations within one process into 
the set of K. The maximal value within this set determines 
klc and therefore, the duration of the whole phase of reach-
ing the local consensuses. It determines the number of 
iterations necessary for the slowest pack in a network to 
reach the consensus. In this moment, all packs reached 
their local averages. 

2.3 Distributed Reaching the Global 
Consensus 
In this phase, just the heads continue to communicate 

and send messages to each other. The initial value of each 
head is determined by the particular local consensus. Each 
head converges to the average calculated from all the local 
consensuses: 

11
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   (17) 

The heads converge to these values in such a way that 
they update their inner value in a distributed manner, which 
can be defined as follows: 

1 1

( ) { ( 1)

{[ ( 1) ( 1)] [ 1]}.

i i i
N N

j i ij j jq
j q

x k H x k

x k x k P H pε
= =

= ⋅ −

+ ⋅ − − − ⋅ ⋅ ⋅ +
 

  (18) 

Here, P is a two dimensional matrix and determines 
whether two packs' heads are adjacent. Mathematically, it 
can be defined as follows: 

 
, : , 1
, : , 1

i j ij ji

t l tl lt

v v A A
v v P P

∃ ∈ ∃ ∈ =

∀ ∈ ∀ ∈ =
x x

x y

PK PK
PK PK

 (19) 

We assume that transmitting a message to an adjacent 
head requires a single iteration. After this phase is com-
pleted, the whole process is completed and the network 
reaches the consensus. The previous condition implies that 
two heads are adjacent only if there is at least one node in 
both these packs containing the respective adjacent heads 
which is adjacent to the node in the other pack. 

This formula means that if there is vi from the pack 
PKx and vj from the pack PKy and they are adjacent, the 
indices within P matrix belonging to all the nodes from 
both these packs are set to 1. 

3. Numerical Experiments 
In this section, our method is verified using the nu-

merical experiments performed in Matlab. 

3.1 Network with a Tree Topology 
In the first numerical experiment, we presented our 

method on the network whose topology was the tree with 
the size of 15 nodes and step-by-step explained particular 
steps. The topology of this network is shown in Fig. 4. We 
can see that the network is formed by the nodes which have  
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Fig. 2. The graphs depicting behavior of inner values within particular packs. 

 

either three or just one neighbor. Nine of them have only 
one neighbor and the rest of six have three neighbors. We 
can see that the average number of neighbors equals just 
1.8 neighbors per a node. Therefore, this topology is con-
sidered to be less connected.  

3.1.1 Iterations Minimization 

As the first step, we divided the network into the 
small packs whose nodes then converged to the local con-
sensuses. (The local consensuses of these packs differ from 
each other if the initial values of the nodes forming these 
packs are not same). Following the pack description pre-
sented in Sec. 2, it was also necessary to choose the head of 
each pack. We see can in Fig. 5 that choosing the head h 
according to w parameter is clear for PK2, PK3, PK4 and 
PK5. A small problem occurs when the nodes try to appoint 
the head of PK1 because there are two nodes with maximal 
w. In such a case, the node whose identity number is of the 
lower value will become the head. This procedure allows 
us to solve this ambiguity. 

 
Fig. 3. The graphs depicting behavior of inner values when 

the Standard method was used. 

We executed the Average consensus algorithm twice 
in this network. For the first time, we used the Standard 
method and the algorithm converged the way described in 
[3]. The network converges as the aggregate to the average 
counted from the initial values. In this way, a node is able 
to reach the average value just according to messages sent 
by the adjacent nodes and inner state from previous itera-
tion. The values of particular node in every iteration are 
shown in Fig. 2, parts #1–#5. Communication among the 
nodes is depicted by solid lines in Fig. 5. 

In the second case, we used the Partial method, where 
every PK reached the local consensus according to (18).  

After this phase is completed, the topology was in fact 
changed to the one shown in Fig. 5 (communication among 
the heads is depicted by dash lines) where each PK was 
substituted by the corresponding head h whose initial value 
was determined by a particular local consensus. The values 
of particular heads varied during the iterations are shown in 
Fig. 2, part #6 (each head obtains the value of the local 
consensus).  

We can see from the results shown in Tab. 1 that the 
pack labeled as PK5 reached the local consensus as the last. 
So, the phase of reaching the local consensus ends in 86th 

iteration.  Consequently,  the  second  phase  began  and re- 
 

Method k1 sm 
Standard 860 12900 

Partial 
achieving the 

consensus 

k of packs kgc 
 
 

27 

k1 
86  
+  
27  
= 

113 

 

297 1422 

PK1 83 249 
PK2 71 213 
PK3 69 207 
PK4 66 198 
PK5 86 258 

Tab. 1. Table containing the results for the first numerical 
experiment. 
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sulted in the global consensus – the average value counted 
from the initial values of the nodes. We can see that this 
phase lasted only for 27 iterations. Then the overall number 
of the iterations kl is counted as addition: 

 gclcl kkk += .  (20) 

Here, kgc represents the number of iterations required to 
achieve the global consensus. The parameter klc determines 
the number of iterations required by the phase of reaching 
the local consensus. Obviously, the results from Tab. 1 
show that our method rapidly decreased both the number of 
iterations and the number of the sent messages. We saved 
747 iterations using our proposed method and 11478 mes-
sages. In [19–20], the rate of algorithm reaches hundreds of 
the iterations necessary for a network to reach the consen-
sus (therefore, kl) just like in our experiments (when the 
Standard method was used). Comparing two networks with 
significantly different attributes is ambiguous because of 
the numerous aspects affecting kl such as the topology of 
a network, the connectivity, the maximal hop distance etc.). 
The deep analysis is shown in [21–22]. 

Messaging is explained in detail in the next section. 

3.1.2 Analysis of Sent Messages 

We assume that nodes send the broadcast messages in 
order to transmit information about their inner state. There-
fore, in the Standard method, the overall number of mes-
sages sm is determined as follows: 

 lsm N k= ⋅ .  (21) 

In our numerical experiment, sm value is calculated as 
follows: 
 15 860 12900sm = ⋅ = .  (22) 

In the Partial method, the way of determining the 
number of messages differs. In the phase of reaching the 
local consensus, the node sends messages until its pack 
achieves the consensus. During the phase of reaching the 
global consensus, the heads may not be mutually adjacent; 
therefore, delivering a message could require sending more 
than one message. When the head of PK1 (Head 1) wants 
to inform other heads about its inner state, it sends a broad-
cast message to all its adjacent nodes (in our case, it is 
Head 2, Head 3 and Node 1), by which it transmits infor-
mation to Heads 2 and 3. Subsequently, the message has to 
be retransmitted by Node 1 to Node 3, which retransmits it 
again in order to deliver that information to Head 4 and 5. 
As we assume a broadcast transmission mode, just one 
message is sufficient for information to be delivered to 
both Head 4 and 5 from the Node 1. Thus, three messages 
are necessary for Head 2 to send information about its inner 
state to all the other heads. This procedure is shown in 
Fig. 4. 

According to the previous description, we calculated 
the overall number of the sent messages:  

(3.8 3.71 3.69 3.86) 27 (3 1 1 3 3)
1422.

sm = + + + + ⋅ + + + +
=

  (23) 

 
Fig. 4. Communication of Head 1 with other heads. 

 
Fig. 5. Fragmentation of the network into packs. 

3.2 Networks with a Random Topology 
In the second numerical experiment, we used the gen-

erator described in [23] to generate a random topology 
network. We set its size to 24 nodes and the size of the 
network’s area and the nodes’ communication range were 
set with such value that the network can be classified as an 
average density network. The network topology is always 
connected, i.e. every node is able to communicate (single-
hop or multi-hop) with any other node. The example is 
shown in Fig. 6. We present the results achieved from 
seven numerical experiments. For each numerical experi-
ment, we used the same topology and changed the sizes of 
packs. The parameter  was set to 0.08. The network’s 
division into packs is shown in Fig. 7.  

The scenario 1 is a case when the algorithm was exe-
cuted without splitting the network. The network in the 
scenario 2 is divided into eight packs of the size of three 
nodes per pack. In the scenario 3, we created six packs 
consisting of four nodes. In the scenario 4, we used the net- 
work consisting of five packs with varying sizes. There are 

 
Fig. 6. Scenario 1 - the network was not split. 
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Fig. 7. Figure containing each scenario executed in this paper. 

 
four packs with the size of five nodes per pack and one 
with four nodes. In the scenario 5, the network consisted of 
four packs whose size was six nodes per pack. The network 
in the scenario 6 has three packs with the size of eight 
nodes per a pack. In the last scenario, the network consisted 
of two packs, both containing twelve nodes. 

From the results shown in Tab. 1, it is obvious that 
our proposed method significantly decreases number of 
iterations necessary for WSN to converge kl. Next, we can 
see that in case when the network is divided into more 
packs, reaching the local consensus requires less iterations. 
However, the phase of reaching global consensus was 
much faster for the networks containing a few numerous 
packs. We can see that splitting distributed computing is 
effective for a network divided into smaller packs. How-
ever, we are not able to claim which scenario is the best 
because there are a lot of factors affecting kl. The best re-
sults were obtained for the scenario 2, where the network 
needs by 72.09% less iterations compared with the case 
when the network was not split. It is a significant im-
provement of distributed computing without negatively 
affecting the result’s precision. In the networks containing 
bigger packs, we decreased kl by approximately 50 %. For 
the network formed by huge packs, the method is less ef-
fective. We saved just 15.72% of iterations. We repeated 
this procedure for other 19 networks whose size and fea-
tures were both the same and calculated average saved kl 
from all 20 networks. We can see from the results shown in 
Tab. 3 that the method decreases kl regardless the number 
 

Scenario Percentage of saved 
iterations [%] 

Percentage of 
saved messages 

[%] 
2 71.42  83.25 
3 66.58 81.79 
4 54.92 74.05 
5 50.59 73.45 
6 43.8 72.62 
7 13.54 38.47 

Tab. 2. Table containing comparison of scenarios. 

of packs, but the higher number the network is divided into, 
the more effective the method is. We can see that the sce-
narios in which the network is formed by higher amount of 
packs are more effective. 

4. Conclusion 
In this paper, we introduced a novel method to accel-

erate distributed computing in WSN and analyzed its per-
formance. The major idea is that a fragmented network 
consisting of a group of smaller elements performs the 
distributed computation much more efficiently. Thus, we 
divided the network into the packs. We changed the num-
ber and the size of packs and compared the results obtained 
using the well-known distributed algorithm. We depicted 
a deep analysis for one network. Then we repeated same 
procedures for other 19 networks and calculated the aver-
age of saved iterations. We can see from Tab. 2 that the 
best results were achieved when the network was divided 
into a larger number of smaller packs. In that case, we 
achieved 71.42 % reduction of iterations in the average and 
83.25 % reduction of the number of the sent messages. 
With increase of the size of the packs, the reduction was 
decreasing. We also see other important features of this 
method: klc is the smallest for networks formed by lot of 
packs, but kgc for networks formed by a small number of 
packs. These results encourage us to try to improve also 
this aspect. 
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Pack #1 - 37 27 117 241 351 614 
Pack #2 - 102 53 25 238 71 330 
Pack #3 - 38 53 208 107 311 - 
Pack #4 - 91 24 190 356 - - 
Pack #5 - 33 190 297 - - - 
Pack #6 - 35 179 - - - - 
Pack #7 - 108 - - - - - 
Pack #8 - 83 - - - - - 

klc - 108 190 297 356 351 614 
kgc - 98 30 49 26 10 8 
kl 738 206 220 346 382 361 622 

Comparison kl 
with 1 scenario 0 532 518 392 356 377 116 
Percentage of 

saved iterations 
[%] 

- 72.09 70.19 53.12 48.24 51.08 15.72 

Comparison klc 
with minimum - 0 82 189 248 243 506 

Comparison kgc 
with minimum - 90 22 41 18 2 0 
Number of sent 

messages 17712 2953 2524 4436 5730 5884 11344 

Tab. 3.  Table containing results for each scenario and pack. 
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