
RADIOENGINEERING, VOL. 24, NO. 3, SEPTEMBER 2015 749

DOI: 10.13164/re.2015.0749 APPLICATION OF WIRELESS COMMUNICATIONS

Split Distributed Computing
in Wireless Sensor Networks

Martin KENYERES 1, Jozef KENYERES 2, Vladislav SKORPIL 1
1 Dept. of Telecommunications, Brno University of Technology, Technická 12, 612 00 Brno, Czech Republic

2 Zelisko GmbH, Beethovengasse 43-45, A-2340 Mödling, Austria

kenyeres@phd.feec.vutbr.cz, Jozef.Kenyeres@knorr-bremse.com, skorpil@feec.vutbr.cz

Abstract. We have designed a novel method intended to
improve the performance of distributed computing in
wireless sensor networks. Our proposed method is de-
signed to rapidly increase the speed of distributed compu-
ting and decrease the number of the messages required for
a network to achieve the desired result. In our analysis, we
chose Average consensus algorithm. In this case, the de-
sired result is that every node achieves the average value
calculated from all the initial values in the reduced number
of iterations. Our method is based on the idea that a frag-
mentation of a network into small geographical structures
which execute the distributed calculations in parallel sig-
nificantly affects the performance.

Keywords
Wireless sensor networks, distributed computing,
improvement of distributed computing

1. Introduction
The main goal of this paper is to present a novel

method which improves the efficiency of distributed com-
puting in wireless sensor networks (WSN). WSN are de-
fined as networks consisting of spatially distributed devices
monitoring an environmental quantity [1], [2]. In general,
the devices are labeled as nodes. The nodes are assumed to
be limited in terms of their computing capabilities and
available energy. We implemented the Average consensus
algorithm, the distributed algorithm intended to calculate
the average value from the initial ones. Because of its sim-
plicity and an iterative manner, this algorithm is suitable
for the implementation in WSN, as shown in [3], [4]. On
the other hand, the performance of the algorithm may vary
[3]. In this paper, we have shown how significantly our
proposed method improves the performance of the algo-
rithm. It is based on the idea that a fragmentation of a net-
work into small geographical structures which perform
parallel distributed computing significantly affects the
performance. The longer computation is executed, the more
time nodes have to be in the active mode, which causes
higher energy consumption and that they have to either
send or receive more messages. This results in the signifi-

cant energy requirements. The authors of [5] described the
impacts of battery exhaustion on WSN and since our novel
method saves both time required to execute distributed
calculations and the number of transmitted messages, it
may be used in order to decrease energy consumption and
increase network’s lifetime (as described in [6]). As the
distribution of the inner states of nodes separated from each
other for a longer distance lasts for a long time, before
executing the numerical experiments, we expected our
novel method to significantly decrease both the number of
iterations necessary for the whole network to converge (i.e.
necessary time to converge) and the overall number of
messages in a network.

In the first part of this paper, the features of distrib-
uted computing in WSN and the method of splitting a net-
work into packs have been introduced. In the next chapter,
the terms 'the local' and the 'global consensus' have been
explained and the proposed mathematical tools to describe
our novel method have been introduced. In the numerical
experimental part, the performed numerical experiments
and analyzed the obtained results have been described.

2. Distributed Computing in WSN
In order to describe the properties of WSN, we use

a set of graph theory tools [7–10]. We assume that WSN is
an undirected graph defined as follows:

),(EV=NET . (1)

NET is a label of a network. Each vertex vi represents
a particular node [11] according to the identity number
varying from 1 to N. V represents the set of all vertices, i.e.
V = {v1, v2,…, vN}. Here, the index N also defines the
number of vertices; therefore, the size of a network. Some
vertices are connected to each other and this connection is
referred to as a path (the path is labeled as ei,j in the case of
vertices vi and vj). E forms a subset of the Cartesian multi-
plication E V × V. Since we use an indirect graph to
describe networks, the following statement is valid:

 EE ∈⇔∈ j,i,ji ee , . (2)

As mentioned above, we chose Average consensus as
the subject on which we demonstrated our proposed

750 M. KENYERES, J. KENYERES, V. SKORPIL, SPLIT DISTRIBUTED COMPUTING IN WIRELESS SENSOR NETWORKS

method. Average consensus is a distributed algorithm cal-
culating the average from a set of initial values [12]. This
means that every node forming the network converges to
xi(kl) defined as follows:

1

1() . () for 1, 1,2,..., .
N

i l j
j

x k x x k k i N
N =

= = = = (3)

Here, i and j represents the indices of corresponding verti-
ces, i.e. vi ∈ V and vj ∈ V. The value of kl represents the
last iteration in which a network achieves the consensus.
The vector x ∈ RN contains the inner values of nodes and is
updated for each k.

The consensus is reached in an iterative, distributed
manner [12]. This means that every node converges to the
average according to [13]:

1

() (1) {[(1) (1)] }
N

i i j i ij
j

x k x k x k x k A
=

= − + ⋅ − − − ⋅ . (4)

Here, A ∈ {0, 1}N × N is the adjacent matrix [14],[15]. If vi
and vj are neighbors, then Aij, Aji = 1, otherwise, they are
equal to 0. Only inner value of a node and values sent by
adjacent nodes are locally available. The value of deter-
mines the speed of the convergence of the algorithm [16].
The convergence range is determined as follows:

}max{

10
w

≤< ε . (5)

Here wi is the weight of a node and represents the number
of i's adjacent nodes. For the node represented by the
vertex vi, it is defined as follows:

 T
Nijiw ,1×JA= . (6)

Here, J is an all-ones matrix [17].The parameter wi
determines the number of the nodes adjacent to node i.

Mathematically, the convergence can be explained as
follows [18]:

1

1lim () (1)
N

i jk j

x k x
N→∞

=

= ⋅ . (7)

It is not possible to fulfill this condition; therefore, we
have defined an event when a node is considered to be
converged. We used the distributed mechanism described
in [3], which allows every node to determine the event of
convergence (i.e. consensus) in a distributed manner. After
it reaches the consensus, it no longer upgrades its inner
value.

Fig. 1. Condition of distributed classification of reaching

consensus.

We defined the parameter d, whose value determines
the precision of the algorithm. A node compares its current
inner value with the one from the previous iteration. When
their difference is smaller than d during the three following
iterations, the node considers itself to be converged.

2.1 Split Distributed Computing
Split distributed computing is based on the idea that

nodes situated in a geographically close area are gathered
into a pack. The pack is an entity consisting of geograph-
ically proximate nodes. In case of the Average consensus,
each pack converges to the local average determined by the
initial values of the nodes forming this pack. Every pack
appoints a head, i.e. a node of the highest connectivity
within the pack. In this paper, a node’s connectivity is
defined according to the weight wi.

The node in a pack fulfilling this condition is ap-
pointed as the head:

 , : 1i j j i iv v w w H∃ ∈ ∃ ∈ > =/x xPK PK . (8)

PK defines the label of a pack. H is the vector which
contains 1 (when vi is a head) or 0 (when it is not). This
definition implies that the node whose weight is the highest
within a pack is appointed as the head. When there is not
another node (labeled as vj) in the pack with weight
larger than vi's, it results in choosing vi for the head of the
pack (therefore, the appertaining position within H matrix
is set to 1).

After the local consensus is reached within each pack,
the phase of reaching the global consensus begins and just
the heads of particular packs communicate together and
converge to the average. Each node has to fulfill this con-
dition:

, , : for .i x y i i yv v v x y∀ ∈ ∃ ∃ ∈ ∧ ∈ ≠/ xV PK PK PK PK (9)

This means that every node is included only in one
pack. The definition implies that every node affects the
average value of exactly one pack. If it were present in
more than one pack, the final result would differ from the
expected results defined by (3). Thus, splitting a network
into the packs has to fulfill these conditions:

 Q

x

Q

x 11 ==
/=∧= 0PKVPK xx . (10)

This means that the packs contain all nodes and there
is no node which is shared by any other packs. It implies
that every node is assigned to just one pack. If it were pre-
sent in either more than one or no one, the incorrect result
would be achieved. Only nodes forming a same pack com-
municate with one another in the phase of reaching the
local consensus. The messages from nodes forming other
packs are rejected and do not affect the pack's inner state.
The union of all the packs forms the whole set V. Their
conjunction results in an empty set because no pack shares
at least one node with any other pack.

RADIOENGINEERING, VOL. 24, NO. 3, SEPTEMBER 2015 751

2.2 Distributed Reaching the Local
Consensus
In this part, we focus on the reaching the local con-

sensus. This phase is executed independently and in paral-
lel in each pack. We assume that nodes acquaint just adja-
cent nodes forming the same pack with their inner value.
Just nodes fulfilling the condition (11) communicate with
the node labeled as vi:

 { (,), (,) , 1}i i j j i ij jiv v v v v p p= ∈ ∈ ∧ =iNP V E . (11)

Here, p is the matrix determining whether two nodes are in
the same pack (if they are, pij, pji = 1) and NP is a set con-
taining all nodes with which vi communicates during the
phase of reaching the local consensus.

Each node converges iteratively to the local average
determined as follows:

 1

1

{ [(1)] (1)} { × 1}
N

lci j ij i
j

y x p x −

=

= ⋅ + ⋅ +T
ij 1,Np J . (12)

The value closed to (12) is achieved in a distributed
manner as follows:

1

() (1) {[(1) (1)] }.
N

i i j i ij ij
j

x k x k x k x k A pε
=

= − + ⋅ − − − ⋅ ⋅ (13)

Let K ∈ NQ be the vector containing all the values of
k, i.e. the number of the iteration, in which a single pack
reaches a local consensus:

 },....,{ 21 Qkkk=K . (14)

The parameter Q is the number of packs in the
network:
 T

N1,JH×=Q . (15)

After all packs reach the local consensus, the network
as the whole converges to global consensus. This moment
of transmission is defined as follows:

 xyyx kkkk >∈∃/∈∃ :, KK . (16)

We label kx fulfilling the condition (16) as klc. All
packs reach the local consensus in parallel. After all the
packs reach the consensus, there are Q local consensuses.
Since the phase of reaching the global consensus can begin
after all the packs converge, the local consensus which
lasted for the longest time determines the length of this
phase. We insert all the durations within one process into
the set of K. The maximal value within this set determines
klc and therefore, the duration of the whole phase of reach-
ing the local consensuses. It determines the number of
iterations necessary for the slowest pack in a network to
reach the consensus. In this moment, all packs reached
their local averages.

2.3 Distributed Reaching the Global
Consensus
In this phase, just the heads continue to communicate

and send messages to each other. The initial value of each
head is determined by the particular local consensus. Each
head converges to the average calculated from all the local
consensuses:

11

1 1

{ [(1)] (1)} [(1)] }.

N

lci N N
i

j ij i
i j

y
y x p x Q

Q
−=

= =

= = ⋅ + ⋅ × + ⋅T
ij 1,Np J

 (17)

The heads converge to these values in such a way that
they update their inner value in a distributed manner, which
can be defined as follows:

1 1

() { (1)

{[(1) (1)] [1]}.

i i i
N N

j i ij j jq
j q

x k H x k

x k x k P H pε
= =

= ⋅ −

+ ⋅ − − − ⋅ ⋅ ⋅ +

 (18)

Here, P is a two dimensional matrix and determines
whether two packs' heads are adjacent. Mathematically, it
can be defined as follows:

, : , 1
, : , 1

i j ij ji

t l tl lt

v v A A
v v P P

∃ ∈ ∃ ∈ =

∀ ∈ ∀ ∈ =
x x

x y

PK PK
PK PK

 (19)

We assume that transmitting a message to an adjacent
head requires a single iteration. After this phase is com-
pleted, the whole process is completed and the network
reaches the consensus. The previous condition implies that
two heads are adjacent only if there is at least one node in
both these packs containing the respective adjacent heads
which is adjacent to the node in the other pack.

This formula means that if there is vi from the pack
PKx and vj from the pack PKy and they are adjacent, the
indices within P matrix belonging to all the nodes from
both these packs are set to 1.

3. Numerical Experiments
In this section, our method is verified using the nu-

merical experiments performed in Matlab.

3.1 Network with a Tree Topology
In the first numerical experiment, we presented our

method on the network whose topology was the tree with
the size of 15 nodes and step-by-step explained particular
steps. The topology of this network is shown in Fig. 4. We
can see that the network is formed by the nodes which have

752 M. KENYERES, J. KENYERES, V. SKORPIL, SPLIT DISTRIBUTED COMPUTING IN WIRELESS SENSOR NETWORKS

Fig. 2. The graphs depicting behavior of inner values within particular packs.

either three or just one neighbor. Nine of them have only
one neighbor and the rest of six have three neighbors. We
can see that the average number of neighbors equals just
1.8 neighbors per a node. Therefore, this topology is con-
sidered to be less connected.

3.1.1 Iterations Minimization

As the first step, we divided the network into the
small packs whose nodes then converged to the local con-
sensuses. (The local consensuses of these packs differ from
each other if the initial values of the nodes forming these
packs are not same). Following the pack description pre-
sented in Sec. 2, it was also necessary to choose the head of
each pack. We see can in Fig. 5 that choosing the head h
according to w parameter is clear for PK2, PK3, PK4 and
PK5. A small problem occurs when the nodes try to appoint
the head of PK1 because there are two nodes with maximal
w. In such a case, the node whose identity number is of the
lower value will become the head. This procedure allows
us to solve this ambiguity.

Fig. 3. The graphs depicting behavior of inner values when

the Standard method was used.

We executed the Average consensus algorithm twice
in this network. For the first time, we used the Standard
method and the algorithm converged the way described in
[3]. The network converges as the aggregate to the average
counted from the initial values. In this way, a node is able
to reach the average value just according to messages sent
by the adjacent nodes and inner state from previous itera-
tion. The values of particular node in every iteration are
shown in Fig. 2, parts #1–#5. Communication among the
nodes is depicted by solid lines in Fig. 5.

In the second case, we used the Partial method, where
every PK reached the local consensus according to (18).

After this phase is completed, the topology was in fact
changed to the one shown in Fig. 5 (communication among
the heads is depicted by dash lines) where each PK was
substituted by the corresponding head h whose initial value
was determined by a particular local consensus. The values
of particular heads varied during the iterations are shown in
Fig. 2, part #6 (each head obtains the value of the local
consensus).

We can see from the results shown in Tab. 1 that the
pack labeled as PK5 reached the local consensus as the last.
So, the phase of reaching the local consensus ends in 86th

iteration. Consequently, the second phase began and re-

Method k1 sm
Standard 860 12900

Partial
achieving the

consensus

k of packs kgc

27

k1
86
+
27
=

113

297 1422

PK1 83 249
PK2 71 213
PK3 69 207
PK4 66 198
PK5 86 258

Tab. 1. Table containing the results for the first numerical
experiment.

RADIOENGINEERING, VOL. 24, NO. 3, SEPTEMBER 2015 753

sulted in the global consensus – the average value counted
from the initial values of the nodes. We can see that this
phase lasted only for 27 iterations. Then the overall number
of the iterations kl is counted as addition:

 gclcl kkk += . (20)

Here, kgc represents the number of iterations required to
achieve the global consensus. The parameter klc determines
the number of iterations required by the phase of reaching
the local consensus. Obviously, the results from Tab. 1
show that our method rapidly decreased both the number of
iterations and the number of the sent messages. We saved
747 iterations using our proposed method and 11478 mes-
sages. In [19–20], the rate of algorithm reaches hundreds of
the iterations necessary for a network to reach the consen-
sus (therefore, kl) just like in our experiments (when the
Standard method was used). Comparing two networks with
significantly different attributes is ambiguous because of
the numerous aspects affecting kl such as the topology of
a network, the connectivity, the maximal hop distance etc.).
The deep analysis is shown in [21–22].

Messaging is explained in detail in the next section.

3.1.2 Analysis of Sent Messages

We assume that nodes send the broadcast messages in
order to transmit information about their inner state. There-
fore, in the Standard method, the overall number of mes-
sages sm is determined as follows:

 lsm N k= ⋅ . (21)

In our numerical experiment, sm value is calculated as
follows:
 15 860 12900sm = ⋅ = . (22)

In the Partial method, the way of determining the
number of messages differs. In the phase of reaching the
local consensus, the node sends messages until its pack
achieves the consensus. During the phase of reaching the
global consensus, the heads may not be mutually adjacent;
therefore, delivering a message could require sending more
than one message. When the head of PK1 (Head 1) wants
to inform other heads about its inner state, it sends a broad-
cast message to all its adjacent nodes (in our case, it is
Head 2, Head 3 and Node 1), by which it transmits infor-
mation to Heads 2 and 3. Subsequently, the message has to
be retransmitted by Node 1 to Node 3, which retransmits it
again in order to deliver that information to Head 4 and 5.
As we assume a broadcast transmission mode, just one
message is sufficient for information to be delivered to
both Head 4 and 5 from the Node 1. Thus, three messages
are necessary for Head 2 to send information about its inner
state to all the other heads. This procedure is shown in
Fig. 4.

According to the previous description, we calculated
the overall number of the sent messages:

(3.8 3.71 3.69 3.86) 27 (3 1 1 3 3)
1422.

sm = + + + + ⋅ + + + +
=

 (23)

Fig. 4. Communication of Head 1 with other heads.

Fig. 5. Fragmentation of the network into packs.

3.2 Networks with a Random Topology
In the second numerical experiment, we used the gen-

erator described in [23] to generate a random topology
network. We set its size to 24 nodes and the size of the
network’s area and the nodes’ communication range were
set with such value that the network can be classified as an
average density network. The network topology is always
connected, i.e. every node is able to communicate (single-
hop or multi-hop) with any other node. The example is
shown in Fig. 6. We present the results achieved from
seven numerical experiments. For each numerical experi-
ment, we used the same topology and changed the sizes of
packs. The parameter was set to 0.08. The network’s
division into packs is shown in Fig. 7.

The scenario 1 is a case when the algorithm was exe-
cuted without splitting the network. The network in the
scenario 2 is divided into eight packs of the size of three
nodes per pack. In the scenario 3, we created six packs
consisting of four nodes. In the scenario 4, we used the net-
work consisting of five packs with varying sizes. There are

Fig. 6. Scenario 1 - the network was not split.

754 M. KENYERES, J. KENYERES, V. SKORPIL, SPLIT DISTRIBUTED COMPUTING IN WIRELESS SENSOR NETWORKS

Fig. 7. Figure containing each scenario executed in this paper.

four packs with the size of five nodes per pack and one
with four nodes. In the scenario 5, the network consisted of
four packs whose size was six nodes per pack. The network
in the scenario 6 has three packs with the size of eight
nodes per a pack. In the last scenario, the network consisted
of two packs, both containing twelve nodes.

From the results shown in Tab. 1, it is obvious that
our proposed method significantly decreases number of
iterations necessary for WSN to converge kl. Next, we can
see that in case when the network is divided into more
packs, reaching the local consensus requires less iterations.
However, the phase of reaching global consensus was
much faster for the networks containing a few numerous
packs. We can see that splitting distributed computing is
effective for a network divided into smaller packs. How-
ever, we are not able to claim which scenario is the best
because there are a lot of factors affecting kl. The best re-
sults were obtained for the scenario 2, where the network
needs by 72.09% less iterations compared with the case
when the network was not split. It is a significant im-
provement of distributed computing without negatively
affecting the result’s precision. In the networks containing
bigger packs, we decreased kl by approximately 50 %. For
the network formed by huge packs, the method is less ef-
fective. We saved just 15.72% of iterations. We repeated
this procedure for other 19 networks whose size and fea-
tures were both the same and calculated average saved kl
from all 20 networks. We can see from the results shown in
Tab. 3 that the method decreases kl regardless the number

Scenario Percentage of saved
iterations [%]

Percentage of
saved messages

[%]
2 71.42 83.25
3 66.58 81.79
4 54.92 74.05
5 50.59 73.45
6 43.8 72.62
7 13.54 38.47

Tab. 2. Table containing comparison of scenarios.

of packs, but the higher number the network is divided into,
the more effective the method is. We can see that the sce-
narios in which the network is formed by higher amount of
packs are more effective.

4. Conclusion
In this paper, we introduced a novel method to accel-

erate distributed computing in WSN and analyzed its per-
formance. The major idea is that a fragmented network
consisting of a group of smaller elements performs the
distributed computation much more efficiently. Thus, we
divided the network into the packs. We changed the num-
ber and the size of packs and compared the results obtained
using the well-known distributed algorithm. We depicted
a deep analysis for one network. Then we repeated same
procedures for other 19 networks and calculated the aver-
age of saved iterations. We can see from Tab. 2 that the
best results were achieved when the network was divided
into a larger number of smaller packs. In that case, we
achieved 71.42 % reduction of iterations in the average and
83.25 % reduction of the number of the sent messages.
With increase of the size of the packs, the reduction was
decreasing. We also see other important features of this
method: klc is the smallest for networks formed by lot of
packs, but kgc for networks formed by a small number of
packs. These results encourage us to try to improve also
this aspect.

Acknowledgments
Research described in this paper was financed by the

National Sustainability Program under grant LO1401. For
the research, infrastructure of the SIX Centre was used.
This work was also supported by the project FEKT-S-14-
2352 Research of electronic, communication and infor-
mation systems.

RADIOENGINEERING, VOL. 24, NO. 3, SEPTEMBER 2015 755

Pack #1 - 37 27 117 241 351 614
Pack #2 - 102 53 25 238 71 330
Pack #3 - 38 53 208 107 311 -
Pack #4 - 91 24 190 356 - -
Pack #5 - 33 190 297 - - -
Pack #6 - 35 179 - - - -
Pack #7 - 108 - - - - -
Pack #8 - 83 - - - - -

klc - 108 190 297 356 351 614
kgc - 98 30 49 26 10 8
kl 738 206 220 346 382 361 622

Comparison kl
with 1 scenario 0 532 518 392 356 377 116
Percentage of

saved iterations
[%]

- 72.09 70.19 53.12 48.24 51.08 15.72

Comparison klc
with minimum - 0 82 189 248 243 506

Comparison kgc
with minimum - 90 22 41 18 2 0
Number of sent

messages 17712 2953 2524 4436 5730 5884 11344

Tab. 3. Table containing results for each scenario and pack.

References
[1] FERRI, R., KIM, M., YEE, E. Wireless Sensor Network. U.S.

Patent Application 10/856,684.

[2] YANG, S.-H. Wireless Sensor Networks. London Springer, 2014.
DOI: 10.1007/978-1-4471-5505-8

[3] KENYERES, J., KENYERES, M., RUPP, M., et al. WSN
implementation of the average consensus algorithm. In 11th
European Wireless Conference 2011-Sustainable Wireless
Technologies (European Wireless). Vienna (Austria), 2011, p. 1–8.
ISBN: 978-3-8007-3343-9

[4] CONTRERAS, R., RESTREPO, S. E., PEZOA, J. E.
Implementing the distributed consensus-based estimation of
environmental variables in unattended wireless sensor networks. In
SPIE Proceedings, Vol. 9248. Amsterdam (Netherland), Oct.
2014, p. 321–329. DOI: 10.1117/12.2069822

[5] YUGANDHAR, B., KRISHNAIAH, P. Enhancing the life time of
sensor node in a wireless sensor network. International Journal of
Scientific Engineering and Technology Research, 2014, vol. 3,
no. 43, p. 8631–8635. ISSN: 2319-8885

[6] BAKR, B. A., LILIEN, L. T. Extending lifetime of wireless Sensor
networks by management of spare nodes. Procedia Computer
Science, 2014, vol. 34, no. 1, p. 493–498. DOI:
10.1016/j.procs.2014.07.053

[7] BIGGS, N. Algebraic Graph Theory. 2nd ed., rev. Cambridge
(UK): Cambridge University Press, 1993. DOI:
10.1017/cbo9780511608704

[8] ANDRÁSFAI, B. Graph Theory: Flows, Matrices. 1st ed. Boca
Raton (FL, USA): CRC Press, 1991. ISBN: 0852742223.

[9] FOULDS, L. R. Graph Theory Applications. 1st ed. New York
(USA): Springer Verlag, 1992. DOI: 10.1007/978-1-4612-0933-1

[10] BENJAMIN, A., CHARTRAND, G., ZHANG, P. The Fascinating
World of Graph Theory. Princeton (NJ, USA): Princeton
University Press, 2015. ISBN: 9780691163819

[11] SWAMI, A., ZHAO, Q., HONG, Y., et al. Wireless Sensor Net-
works: Signal Processing and Communications. 1st ed. Hoboken
(NJ, USA): John Wiley & Sons, 2007. ISBN: 9780470035573

[12] BÉNÉZIT, F. Distributed average consensus for wireless sensor
networks. PhD Thesis. École Polytechnique Fédérale de Lausanne,
Switzerland, 2009.

[13] PRIOLO, A., GASPARRI, A., MONTIJANO, E., et al.

A distributed algorithm for average consensus on strongly
connected weighted digraphs. Automatica, 2014, vol. 50, no. 3,
p. 946–951. DOI: 10.1016/j.automatica.2013.12.026

[14] GIBBONS, A. Algorithmic Graph Theory. 5th ed., rev. New York
(USA): Cambridge University Press, 1985. ISBN: 0521288819

[15] BAPAT, R. B. Graphs and Matrices. New York (NY): Springer,
2010. DOI: 10.1007/978-1-84882-981-7

[16] KENYERES, J., KENYERES, M., RUPP, M. Experimental node
failure analysis in WSNs. In IEEE 18th International Conference
on Systems, Signals and Image Processing (IWSSIP) 2011.
Sarajevo (BH), 2011, p. 1–5. ISBN: 9781457700743

[17] HORN, R., JOHNSON, CH. Matrix Analysis. 2nd ed., rev. New
York (NY): Cambridge University Press, 2012. ISBN:
9780521839402

[18] XIAO, L., BOYD, S., KIM, S.-J. Distributed average consensus
with least-mean-square deviation. Journal of Parallel and
Distributed Computing, 2007, vol. 67, no. 1, p. 215–233. DOI:
10.1016/j.jpdc.2006.08.010

[19] KENYERES, M., KENYERES, J., ŠKORPIL, V. Effect of the
Speed of the Algorithm's Convergence on the Quality of Distrib-
uted Computing in WSN. 5 pages. [Online] Cited 2015-06-26.
Available at: http://access.feld.cvut.cz/view.php?nazevclanku=
effect-of-the-speed-of-the-algorithms-convergence-on-the-quality-
of-distributed-computing-in-wsn&cisloclanku=2015040001

[20] SLU IAK, O., HILAIRE, T., RUPP, M. A general formalism for
the analysis of distributed algorithms. In IEEE International Conf.
on Acoustics Speech and Signal Processing (ICASSP). Dallas (TX,
USA), 2010, p. 2890–2893. DOI: 10.1109/icassp.2010.5496169

[21] KENYERES, M., KENYERES, J., ŠKORPIL, V. Effects of System
Topologies’ Attributes on Average Consensus Algorithm - part I.
10 pages. [Online] Cited 2015-07-01. Available at:
http://access.feld.cvut.cz/view.php?nazevclanku=effects-of-
system-topologies%E2%80%99-attributes-on-average-consensus-
algorithm-part-i&cisloclanku=2015060002

[22] KENYERES, M., KENYERES, J., ŠKORPIL, V. Effects of System
Topologies’ Attributes on Average Consensus Algorithm - part 2.
7 pages. [Online] Cited 2015-07-01. Available at:
http://access.feld.cvut.cz/view.php?nazevclanku=effects-of-
system-topologies%E2%80%99-attributes-on-average-consensus-
algorithm-part-ii&cisloclanku=2015060003

[23] KENYERES, J., KENYERES, M., RUPP, M., et al. Connectivity-
based self-localization in WSNs. Radioengineering, 2013, vol. 22,
no. 3, p. 818–827.

756 M. KENYERES, J. KENYERES, V. SKORPIL, SPLIT DISTRIBUTED COMPUTING IN WIRELESS SENSOR NETWORKS

About the Authors …
Martin KENYERES was born in Bratislava, Slovakia. He
received his M.Sc. from the Slovak University of Technol-
ogy in Bratislava in 2013. His research interests include
distributed computing and wireless sensor networks. In
2013, he was with TU Vienna, Austria, where he partici-
pated in NFN SISE project under Professor Markus Rupp's
supervision. Since 2014, he has been with Brno University
of Technology, where he works towards his PhD thesis.

Jozef KENYERES was born in Bratislava, Slovakia. He
received his Ph.D. from the Slovak University of Technol-
ogy in Bratislava in 2014. His research interests include

embedded systems and wireless sensor networks. From
2006 to 2009, he was with Slovak Telecom, from 2009 to
2013, he worked as a project assistant at TU Vienna and
since 2014 he has been with Zelisko GmbH, where he
works as a software developer.

Vladislav ŠKORPIL was born in Brno, Czech Republic.
He attended Brno University of Technology, Faculty of
Electrical Engineering, Dept. of Telecommunications.
From 1980 to 1982 he worked as a designer for the tele-
communication design office. Since 1982, he has been with
BUT. His research interests include modern telecommuni-
cation systems. He has published more than 110 interna-
tional scientific papers.

