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Abstract. This paper presents a novel diversity receiver of 
MPSK signal in fading channel in the presence of the car-
rier frequency offset. As a part of this receiver, a new algo-
rithm for the estimation of the combining coefficients (ECC 
algorithm) is introduced. Having in mind that the QPSK 
modulation is one of the most used modulation formats in 
many wireless communication standards (LTE, WiFi, 
WiMax), the performance of the proposed receiver is ana-
lyzed in more detail for the QPSK modulation. In the pres-
ence of Rayleigh fading, representing the most severe fad-
ing condition, this algorithm shows significantly better 
performance comparing to the same receiver structure that 
uses conventional constant modulus algorithm (CMA1 or 
CMA2). The proposed diversity receiver structure with 
ECC algorithm operates within a wide carrier frequency 
offset range with a very small variation of the perfor-
mance. For this reason, it can be applied in 4G mobile 
communication systems.  

Keywords 
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1. Introduction 
A presence of fading in the communication channel 

may significantly degrade performance of the wireless 
transmission. For this reason, a diversity receiver is often 
used to improve the transmission quality. There are three 
basic combining concepts available in the literature: maxi-
mum ratio combining (MRC) [1], [2], equal-gain combin-
ing (EGC) [3–7] or selection combining (SC) [1], [2] tech-
nique. In practice, the combining is often realized using the 
constant modulus algorithm (CMA) [8]. On the other hand, 
the important drawback of the CMA is its relatively slow 
convergence [9]. In order to improve some of the charac-
teristics of the conventional CMA, various modifications of 
this algorithm have been made. Also, the convergence 
characteristics of the existing low complexity stochastic 
gradient (SG) type of algorithms have been improved in 

order to ensure good tracking of channels and interferences 
in the wireless networks characterized by nonstationary 
environments. 

The normalized CMA (NCMA), presented in [10], 
employs the normalized step size which is proportional to 
the required one to achieve the desired modulus with the 
current data vector. The convergence behavior and the 
implementation cost of the normalized CMA algorithm are 
analogue to that of the normalized LMS algorithm. In [11], 
the modified CMA algorithm, which performs blind 
equalization and carrier phase recovery, is extrapolated to 
the fourth order and applied to the decision feedback 
equalizer. In comparison with the MCMA, the use of high 
order statistics reduces considerably the effect of Gaussian 
noise and leads to the lower residual MSE of the equalizer. 
In [12], the CMA algorithm with a variable step-size, 
which is based on the autocorrelation functions between N 
previous error functions, is proposed and verified using 
IEEE 802.16-2004 SC physical layer computer simula-
tions. In [13], [14] and [15], the low-complexity variable 
step size mechanisms are proposed for SG algorithms. The 
minimum variance [13] and code-constrained constant 
modulus [15] SG algorithms are used for multiple access 
interference and intersymbol interference suppression in 
CDMA systems, and in [14], the constrained constant 
modulus SG algorithms are proposed for adaptive beam-
forming. 

Besides the fading, the carrier frequency offset is also 
a very frequent disturbing effect that appears in wireless 
transmission channel. Receivers that show good perfor-
mance in wide range of frequency offsets have been pro-
posed in [16] and [17] for BPSK and MDPSK modulation 
formats, respectively.  

The M-ary phase shift keying (MPSK) diversity re-
ceiver presented in this paper is suitable for operation in 
fading channel and in the presence of carrier frequency 
offset. It is known that CMA is resistant to the carrier fre-
quency offset (its performance is negligibly changed in the 
presence of frequency offset). For this reason, CMA has 
been considered to be used for combining coefficient ad-
justment. However, its relatively slow convergence is quite 
a drawback in the receiver that operates in fading condi-
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tions. As a solution to this problem, a new algorithm for 
combining coefficient adjustment is introduced in this 
paper. In comparison to CMA, this new algorithm provides 
better performance in the above mentioned propagation 
conditions and it is also resistant to the carrier frequency 
offset. Considering good characteristics of the receiver 
described in [16] in the presence of the carrier frequency 
offset and its low complexity, the recursive filter of unitary 
length with remodulation [16] is chosen to be used for the 
detection process. In this way, the proposed MPSK re-
ceiver significantly improves system performance in the 
presence of fading and still retains a desirable feature to 
operate within a wider carrier frequency offset range with 
a very small variation of the performance. 

The paper is organized as follows. Section 2 describes 
the system model, and the selected numerical results are 
given in Sec. 3. Section 4 concludes the paper with some 
final remarks.  

2. System Model 
A block diagram of the proposed MPSK signal re-

ceiver is presented in Fig. 1. For diversity receiver with Na 
antennas, the input signal at each antenna can be presented 
as: 

 ( ) ( ) ( ), 0,1,..., 1i i i ar t s t n t i N    , (1) 

where ni(t) is the white Gaussian noise, and si(t) is the 
MPSK signal with a rectangular symbol pulse shape: 

    2
ˆ( ) exp expi i c is t j d t j t

M
       

    . (2) 

The number of modulation levels is M. In (2), the symbol 
d(t) takes one of the following values: 

  ( ) 0,1..., 1 , ( 1) , 0,1,2...s sd t M kT t k T k       (3) 

Ts is the symbol interval, i is the delay at the i-th path, 
̂ c = c +  is the carrier frequency at the input of the 
receiver, c is the locally generated fixed reference carrier 
frequency and  is the frequency offset. 

The complex-valued baseband signal at the input of 
the combiner is obtained by multiplying the input signal in 
each diversity branch by the fixed frequency reference 
carrier and leading the resulting signal through the inte-
grating and dump circuit. This signal can be expressed as: 

 , ,( ) ( ) ( )i I i Q iX k x k jx k   (4) 

where its in-phase xI,i(k) and quadrature xQ,i(k) components 
are given by: 
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k denotes the discrete time corresponding to the output of 
the integrate and dump circuit. 

The signal at the output of the combiner is: 

 
1

0

( ) ( ) ( )
aN

i i
i

Z k X k V k




   (6) 

where Na is the number of diversity branches, Vi(k) is the 
weight of i-th branch. 

In this paper a new algorithm for estimation of com-
bining coefficients (ECC) in diversity combiner is pro-
posed. The performance of such a combiner converges to 
the performance of MRC combining. The optimal values of 
MRC weight coefficients can be presented as [18]: 

 *( ) ( )i SiV k C k  (7) 

where CSi(k) is a complex baseband channel coefficient 
corresponding to the i-th diversity branch, and (  )* is the 
complex conjugate of (  ). 

In order to explain the physical meaning of transfor-
mations that are introduced in the proposed algorithm, let 
us present the received signal Xi(k) in the i-th diversity 
branch as: 

 
 

( ) ( ) ( ) ( )

( ) exp ( ) ( )
2

i Si i

S Si i

X k S k C k n k

A k j d k C k n k

 

     
  (8) 

where AS(k) is the amplitude of the useful signal, d(k) is 
discrete form of d(t) from (3). ni(k) is additive White 
Gaussian Noise (AWGN) with variance σi

2.  

Substituting (8) in (6) one can obtain the signal at the 
output of the combiner: 
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where 
1

( ) ( ) ( )
aN

e i i
i

n k V k n k


   is AWGN with variance σe
2.  

The variable Ce(k), introduced in (9), is assumed to be 
slowly varying and can be written in a form: 

  
1

( ) ( ) ( ) ( ) exp
aN

e S i i e e
i

C k C k V k A k j k


      . (10) 

Now expression (9) becomes: 

   ( ) ( ) ( )exp exp ( )
2S e e eZ k A k A k j d k j k n k      
  . (11) 

Considering (7), it is necessary to determine channel 
coefficient CSi(k). In the first term of the summation (8), 
besides a desired channel coefficient, there is also a fast 
varying value e jd(k)π/2. The same value exists also in (11). 
In order to eliminate the fast-varying value, a new variable 
is introduced: 
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Fig. 1. Block diagram of the proposed receiver. 
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Substituting (11) and (8) in (12), it is obtained: 

  *( ) ( ) ( )exp ( )i Si s e eV k C k A k j k n k     . (13) 

It can be seen from (13) that the variable Ṽi(k) could 
be the solution for estimation of combining coefficients in 
diversity combiner, since it is proportional to the optimal 
value of MRC weight coefficients (Ṽi(k) ~ CSi

*(k)) in the 
presence of noise. The variable Ṽi(k) can be considered as 
an instantaneous estimated value of the coefficient in the i-
th diversity branch. Thus, its average value can be obtained 
applying low-pass filter (LPF). In that case, signal at the 
output of LPF has the form: 

 ( ) (1 ) ( 1) ( )i i iV k α V k αV k      (14) 

where α is the parameter (0 < α < 1) that represents the 
LPF smoothing factor. 

Substituting (12) in (14), the ECC algorithm for 
estimation of combining coefficients in diversity combiner 
is obtained and it is described by the relation: 

 
( )

( ) (1 ) ( 1) ( )
( )

ii i

Z k
V k α V k α X k

Z k
    . (15) 

Results obtained using this algorithm will be com-
pared with the ones obtained using CMA1 and CMA2 
algorithms [19]. In the case of using CMA1 algorithm, 
Vi(k) can be written as [19]: 

 
1

( ) ( 1)

1
1 ( 1) ( 1)

| ( 1) |

i i

V i

V k V k

μ Z k X k
Z k



  

 
    

 (16) 

and in the case of CMA2 algorithm, the weight of the i-th 
branch is described by [19]: 

  2

2

( ) ( 1)

1 ( 1) ( 1) ( 1)

i i

V i

V k V k

μ Z k Z k X k

  

   
 (17) 

where V1 and V2 are the adaptation factors. 

Considering good performance of the receiver de-
scribed in [16] in the presence of carrier frequency offset, 
the recursive filter with remodulation is used for the detec-
tion process in the receiver that is proposed here. Since the 
influence of the recursive filter length on the error proba-
bility is negligible [16], we propose to use the transversal 
filter of unitary length in this block, due to its simplicity. In 
that case the signal Ẑ(k) may be written as: 

 ˆ ˆ( ) ( ) (1 ) ( ) ( 1)UZ k AZ k A W k Z k     (18) 

where A denotes the introduced constant parameter (A ≤ 1). 
The value (1  A) defines a part of the output signal that is 
returned to the input. We get Ẑ(k) after the remodulation: 

 ( ) ( ) ( )WZ k R k Z k  (19) 

where RW(k) is the remodulation weight. 

The adjustment of the weights WU(k) is performed by 
the normalized LMS algorithm [20], [21]: 

 
2

ˆ( ) ( 1)
( 1) ( )

ˆ| ( ) |

U
U U

μ E k Z k
W k W k

Z k

 
    (20) 

where U is the adaptation factor. 

The error signal is obtained as: 

 ( ) ( ) ( ) ( ) ( ) ( )WE k R k Z k Y k Z k Y k     (21) 
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where  ˆ( ) ( ) ( 1)UY k W k Z k  . (22) 

The detected symbol is obtained by the following 
minimization: 

 2

{0,1,..., 1}

2ˆ( ) arg min | exp ( ) ( ) |
r M

r
d k j Z k Y k

M 

    


. (23) 

The remodulation weight is: 

 
 ˆ2

( ) expW

d k
R k j

M

 
  

  


. (24) 

3. Numerical Results 
The results shown in the following figures are ob-

tained by the Monte-Carlo simulation with 10 million 
steps. The application is written in C++ and executed on 
an Intel® CoreTM i5-3470 CPU @ 3.20 GHz. The simula-
tion time is 30 minutes per curve. Carrier frequency is 
fc = 2.44 GHz and bit rate is Vt = Tb

–1 = 100 kbs–1. The 
detection of MPSK signals in non-selective Rayleigh and 
Rician fading channel or AWGN channel in the presence 
of carrier frequency offset is considered. The Rayleigh 
fading consists only of the diffuse component that is mod-
eled by using 10 equal power virtual sources of the trans-
mitted signal. These sources are randomly placed around 
the mobile unit. In case of Rician fading, besides the dif-
fuse, there is the direct component from another source. 
The direct to the diffuse component power ratio is given by 
parameter K. A diversity system with four branches 
(Na = 4) is applied at the reception. The optimized system 
parameters are: A = 0.2, U = 0.05, α = 0.05, V1 = 10–3 and 
V2 = 5 × 10–3. 

Table 1 shows the comparative values of the error 
probability for the three observed combiner coefficients 
adjustment algorithms (ECC, CMA1, and CMA2) in the 
Rayleigh fading channel. Different modulation formats 
BPSK (M = 2), QPSK (M = 4) and 8PSK and different 
velocities of the mobile unit are considered. For the con-
sidered modulation formats (BPSK, QPSK and 8PSK) 
different signal to noise ratio (SNR) values are chosen 
(4 dB, 7 dB, and 10 dB) in order to achieve a similar error 
probability. 
 

Velocity 
[kmh-1] 

Modulation 
format 

ECC CMA1 CMA2 

0 
BPSK 0.000011 0.000013 0.000012 
QPSK 0.000015 0.000022 0.000021 
8PSK 0.0009186 0.0008950 0.0009219 

50 
BPSK 0.0009287 0.0078234 0.0026852 
QPSK 0.0019331 0.0204117 0.0051332 
8PSK 0.0178139 0.115171 0.0385318 

100 
BPSK 0.0010801 0.0057136 0.0022814 
QPSK 0.0021501 0.0139157 0.0044921 
8PSK 0.0169559 0.0822456 0.0357827 

Tab. 1. Error probability for different modulation formats and 
different values of mobile unit velocity in AWGN and 
Rayleigh fading channel. 

The value of the normalized frequency offset is set to 
Δf × Ts = 0.06. Table shows that for the mobile unit veloc-
ity V = 0 kmh–1 all three combiner coefficients adjustment 
algorithms provide similar results, regardless of the modu-
lation format. It can also be concluded that for moving 
mobile unit, the ECC algorithm always produces the best 
results, regardless of the modulation format and velocity. 

Table 2 refers to the Rician fading channel. The ratio 
of direct and diffuse component power, in this case, is 
K = 3 dB. Other parameters retain the same numerical 
values as for Table 1. Again, the best results are achieved 
by the ECC algorithm, regardless of the modulation format 
and the mobile unit velocity. 
 

Velocity 
[kmh-1] 

Modulation 
format 

ECC CMA1 CMA2 

0 
BPSK 0.000012 0.000013 0.000012 
QPSK 0.0000151 0.000015 0.000015 
8PSK 0.0007672 0.00072009 0.0007503 

50 
BPSK 0.00023218 0.00042398 0.00025237 
QPSK 0.00037855 0.00118614 0.00072177 
8PSK 0.00499356 0.0271516 0.00785038 

100 
BPSK 0.00019180 0.00053502 0.00024227 
QPSK 0.00033312 0.00256912 0.00057540 
8PSK 0.00533678 0.0314284 0.00769559 

Tab. 2. Error probability for different modulation formats and 
different values of mobile unit velocity in AWGN and 
Rice fading channel. 

Bearing in mind that the QPSK modulation is one of 
the most used modulation formats in many wireless com-
munication standards (LTE, WiFi, WiMax), the perfor-
mance of the proposed receiver will be analyzed in the 
remaining of the paper only for QPSK modulation. Also, 
the analysis in the remainder of the paper will be per-
formed in the Rayleigh fading channel, because it repre-
sents the case of the most severe fading condition. 

The dependence of error probability on the SNR is 
shown for QPSK modulation scheme in Fig. 2. The value 
of normalized frequency offset is set to Δf × Ts = 0.05. 
Curves denoted as Group a correspond to the transmission 
over AWGN channel. In that case all three previously 
mentioned algorithms for combining coefficient adjustment 
(the one that is proposed here, CMA1 and CMA2) give 
approximately the same results, regardless of SNR value. 
Curves denoted as Group b correspond to the case of 
transmission over Rayleigh fading channel. For all SNR 
values the receiver with combiner based on the ECC algo-
rithm shows the best results. The worst results are obtained 
for the receiver with combiner based on CMA1. With the 
increase of SNR, the difference in performance for those 
two border cases becomes more emphasized.  

In Fig. 3 the dependence of error probability on the 
carrier frequency offset, for QPSK modulation scheme, is 
presented for the case of Rayleigh fading channel. The 
velocity of the mobile unit is V = 50 kmh-1. The value of 
SNR is set to be: SNR = 8 dB. One can notice that in these 
operating conditions diversity receiver that uses the ECC 
algorithm for combining coefficient adjustment gives the 
best results. 
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Fig. 2. Error probability as a function of signal to noise ratio: 

a - AWGN channel, b - Rayleigh fading channel. 
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Fig. 3. Error probability as a function of carrier frequency 

offset in Rayleigh fading channel. 
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Fig. 4. Error probability as a function of carrier frequency 

offset in AWGN channel. 

Also, it can be seen that for all three algorithms the 
frequency offset range, in which receiver performance 
shows only small variations, is approximately the same.  

Fig. 4 illustrates the performance of the proposed di-
versity receiver in AWGN channel (the velocity of the 
mobile unit is V = 0 kmh–1) for QPSK modulation scheme. 
The value of SNR is set to be: SNR = 4 dB. In this case, all 
three considered algorithms for combining coefficient 
adjustment (ECC, CMA1 and CMA2) show similar results 
in wide range of carrier frequency offset values. 

4. Conclusion 
This paper proposes the MPSK diversity receiver for 

operation in fading channel in the presence of carrier fre-
quency offset. The receiver performance is analyzed in 
more detail for the QPSK modulation, as it is one of the 
most widely used modulation formats in wireless commu-
nications. The proposed receiver uses the ECC algorithm 
for the adjustment of the combining coefficients and in the 
above mentioned propagation conditions shows signifi-
cantly better performance in comparison with the same 
receiver structure that uses conventional constant modulus 
algorithm (CMA1 or CMA2).  

It is also shown that the proposed diversity receiver 
can operate within a wide carrier frequency offset range 
with a very small variation of the performance using either 
the ECC algorithm or the conventional constant modulus 
algorithm.  
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