
1002 P. SOONTORNWONG, S. CHIVAPREECHA, PASCAL-INTERPOLATION-BASED NONINTEGER DELAY FILTER …

DOI: 10.13164/re.2015.1002 SIGNALS

Pascal-Interpolation-Based Noninteger Delay Filter
and Low-Complexity Realization

Parinya SOONTORNWONG, Sorawat CHIVAPREECHA

Dept. of Telecommunication Engineering, Faculty of Engineering,
King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand

s4610104@kmitl.ac.th, sorawat@telecom.kmitl.ac.th

Abstract. This paper proposes a new method for designing
the polynomial-interpolation-type noninteger-delay filter
with a new structure formulation. Since the design formu-
lation and the new realization structure are based on the
discrete Pascal transform (DPT) and Pascal interpolation,
we call the resulting filter Pascal noninteger-delay filter.
The kth-order Pascal polynomial is used to pass through
the given (k + 1) data points in achieving the kth-order
Pascal filter. The Pascal noninteger-delay filter is a real-
time filter that consists of two sections, which can be real-
ized into the front-section and the back-section. The front-
section contains multiplication-free digital filters, and the
number of multiplications in the back-section just linearly
increases as order becomes high. Since the new Pascal
filter has low complexity and structure can adjust non-
integer delay online, it is more suited for fast delay tuning.
Consequently, the polynomial-interpolation-type delay
filter can be achieved by using the Pascal approach with
high efficiency and low-complexity structure.

Keywords
Low-complexity filter structure, noninteger-delay fil-
ter, discrete Pascal transform (DPT), polynomial-in-
terpolation-type delay filter, Pascal noninteger-delay
filter

1. Introduction
Since the tunable noninteger-delay filter can change

its non-integer group delay or phase delay, it can be ap-
plied to many fields of signal processing like one dimen-
sional signal interpolation, sampling-rate conversion and
image interpolation. So far, many design methods have
been developed in the literature [1–19]. Among those ex-
isting filters, the polynomial-interpolation-type noninteger-
delay filter has simple and unique features. Its amplitude
response is the maximally flat for zero frequency. The
derivation and realization of the polynomial-interpolation-
type noninteger-delay filter have been dealt with in [9–13].
The most straightforward realization of the polynomial-
interpolation-type noninteger-delay filter is to use the di-

rect-form Farrow structure [1]. In practical applications,
because low frequency components dominate, employing
the polynomial-interpolation-type noninteger-delay filter
can achieve sufficiently satisfactory interpolations as de-
scribed in [15].

The direct-form Farrow structure for realizing the
polynomial-interpolation-type noninteger-delay filter re-
quires a large number of multiplications, but non-causal
ones can be symmetrically realized by exploiting symmetry
transformations. After symmetry transformations, the
structures need much fewer multiplications. In order to
perform real-time filtering, causal filters are needed, but
the direct-form Farrow structure of the causal polynomial-
interpolation-type noninteger-delay filters does not possess
symmetric or anti-symmetric structures, which cannot
exploit symmetries for reducing the number of multiplica-
tion operations. In [11–13], transformation matrices have
been proposed for transforming causal filters to have low-
complexity structures.

This paper develops a new design method and a new
realization structure for the causal polynomial-interpola-
tion-type delay filter with very low hardware complexity in
order to achieve high-speed filtering for real-time applica-
tions. As compared with the methods proposed in [10–13],
the method proposed in this paper requires much less mul-
tiplications. The resulting filter structures from the methods
in [10–13] require more multiplications than the Pascal
structure proposed in this paper. As compared with the
existing methods for deriving and realizing the causal
polynomial-interpolation-type delay filters, we develop
a novel design method and a new filter structure using dif-
ferent procedures, but the resulting structure has much
lower complexity.

The proposed design method is related to a kind of
discrete polynomial transform called discrete Pascal trans-
form (DPT) that was first proposed in [20], and later the
DPT is applied to the so-called Pascal interpolation in [21].
The new design method and the new filter structure for the
polynomial-interpolation-type delay filter is based on the
Pascal interpolation, and the Lagrange polynomial is
changed to Pascal polynomial for fitting the data points.
Therefore, this new type of filter is called Pascal nonin-
teger-delay filter. The Pascal noninteger-delay filter can

RADIOENGINEERING, VOL. 24, NO. 4, DECEMBER 2015 1003

adjust the delay parameter online with high processing
speed because it uses a reduced number of multiplications,
where the number linearly increases as the filter order
increases. Although the coefficient-symmetry techniques in
[10–13] can reduce the multiplication operations by about
50%, the techniques still require more multiplications as
compared with the Pascal noninteger-delay filter because
the numbers of multiplications in [10–13] are not linear
functions of the filter order. Consequently, the low-cost
and high-speed causal polynomial-interpolation-type filter
can be obtained by using the Pascal approach and the filter
order can take both odd and even numbers. The Pascal
noninteger-delay filter makes online tuning with very low
hardware realization and high-speed operation possible,
which is the major progress for the polynomial-interpola-
tion-type delay filter.

2. Direct-Form Structure and
Transformed Structure
This section briefly reviews the polynomial-interpo-

lation-type noninteger-delay filter realized using the direct-
form Farrow structure [1] and the Farrow structures using
symmetry transformations [11–13]. The polynomial-type
noninteger-delay filter is also termed Lagrange-type non-
integer-delay filter as it stems from the interpolation using
the Lagrange interpolating polynomial [9], [11–13].

The output of the polynomial-interpolation-type non-
integer-delay digital filter is

 



k

i
i inxDhny

0

)()()((1)

where

 

 




k

il

l
i li

lD
Dh

0

)((2)

are the coefficients, and D is the fractional delay. Also, k is
the filter order. The time-domain expression in (1) corre-
sponds to the frequency-domain transfer function

 



k

i

i
i zDhDzH

0

.)(),((3)

By employing the Farrow structure, H(z, D) can be realized
as Fig. 1, where Vi(z), i = 0, 1, …, k, are called subfilters.
For example, if the filter order k = 2, then

)()()(),(2
2

10 zVDzDVzVDzH 

with

0

1 2
1

1 2
2

() 1,

3 1
() 2 ,

2 2
1 1

() .
2 2

V z

V z z z

V z z z

 

 



   

  

 (4)

Fig. 1. Direct-form Farrow structure.

Here, the subfilters have constant coefficients, which
are fixed in filtering. The non-integer delay of H(z, D) can
be adjusted through adjusting the value of the parameter D.
The direct realization of H(z, D) using the Farrow structure
requires

No. of multiplications = kk 22 

No. of additions = .2 kk 

On the other hand, we can see from (4) that the last
subfilter V2(z) has symmetric coefficients, but the others do
not have any symmetries. The coefficient symmetry of
V2(z) is taken into account in the realization shown in
Fig. 2.

V0(z)

1z 1z

y(n)

x(n)

1

2

1

2
1

D

V1(z)V2(z)

1

2


3

2
 2

D

Fig. 2. Example of the direct-form Farrow structure.

1z 1z

1

2

1

2
1

Fig. 3. Example of the transformed Farrow structure.

In order to reduce the number of multiplications
needed in the filtering process, it is desirable to symmetrize
the coefficients of all the subfilters V0(z), V1(z), …, Vk(z).
In [10], symmetric structures are proposed for realizing
non-causal polynomial-interpolation-type noninteger-delay
filters, and in [11–13], transformation approaches are pro-
posed for realizing causal ones.

Figure 3 shows the second-order transformed Farrow
structure, which can reduce the number of multiplications
by more than 50%. As a result, the Farrow structures after
transformations have the following complexities.

Odd-order case: For any odd kth-order case, the com-
putational complexity can be figured out by the same way
and can be summarized as follows:

1004 P. SOONTORNWONG, S. CHIVAPREECHA, PASCAL-INTERPOLATION-BASED NONINTEGER DELAY FILTER …

No. of multiplications =
21 4 1

(1)
2 2

k k k
k k

       
 

No. of additions =
2(1)(1) 4 1

(1) .
2 2

k k k k
k k

   
  

Even-order case : For any even kth-order case, the
computational complexity can be summarized as

No. of multiplications =
2 2 3

1
2 2 2 2

k k k k k
k

         
   

No. of additions =
2 2 22 3

.
4 2 4 2 2

k k k k k k k
k

    
       

   

It is clear that the numbers of multiplications are still
the square functions of the filter order k.

In the next section, we will propose a novel design
method and a new filter structure called Pascal noninteger-
delay filter for the polynomial-interpolation-type filter,
which requires much fewer multiplications as compared to
other ones. We will begin by discussing the background of
the Pascal noninteger-delay filter design, including the
generalized Pascal noninteger-delay filter and its filter
structure realization, the frequency characteristic and com-
putational complexity from the next section.

3. Discrete Pascal Transform and
Pascal Interpolation
Discrete Pascal transform (DPT) was proposed in

[22], which is intimately related to the Pascal’s triangle
shown in Fig. 4,

Fig. 4. Pascal’s triangle.

and is classified as one kind of discrete polynomial trans-
forms. The operation of DPT is based on Pascal transform
matrix that performs as an operator for signal transfor-
mation.

The discrete Pascal transform of the signal vector x
with size (k + 1) × 1 is defined as

 PxX  (5)

where P is the Pascal transform matrix with dimension
(k + 1) × (k + 1), and x is the input signal vector, and X is
the transformed output vector with size (k + 1) × 1.

3.1 Basis Functions of DPT

From (5), the Pascal transform matrix has the
following basis functions, which are the polynomials

 kix
i

x

i

x
ixPxP i

ii

i ...,,1,0,,)1(
!

)1(
),()(

)(












 (6)

where (k + 1) × (k + 1) is the size of the Pascal transform
matrix and

)!(!

!

ixi

x
i

x










 (7)

are called the binomial coefficients (as in the binomial
theorem) and are related to Pascal’s triangle. The term (–1)i
in (6) will alternate the sign of the columns of the Pascal
transform matrix, and P(x, i) are the elements in Pascal
transform matrix P, where x corresponds to the row num-
ber and i denotes the column number.

The function x(i) is called falling factorial powers
defined as

ki

ix

x

ixixxxxx i

...,,1,0,
)!(

!

)1)(2)...(2)(1()(







 (8)

where x(0) = 1, and k is also called the order of basis func-
tion. For example, the first four basis functions of DPT that
consist of four polynomials are

0

1

2 1

3 2

() 1,

() ,

1 1
() (1) (1) (),

2 2
1 1

() (1)(2) (2) ()
6 3

P x

P x x

P x x x x P x

P x x x x x P x


 

    

      

which can be summarized as the recurrence formula

).()(
1

1
)(1 xPix

i
xP ii 




 (9)

By using (9), we can generate the Pascal transform matrix
(size 4 × 4) for k = 3 as follows,

   .

1331

0121

0011

0001

),(























 ixPP

The basic properties of this P matrix are as follows.

(1) All the elements of the first column equal 1.

(2) The matrix is a lower triangle.

(3) The sum of all the elements of each row (except
the first row) equals zero.

(4) The inverse matrix is equal to the forward matrix,
that is, P–1 = P.

RADIOENGINEERING, VOL. 24, NO. 4, DECEMBER 2015 1005

3.2 Pascal Interpolation

Assume that xL(n) is obtained by interpolating the
original signal x(n) with an interpolation factor of L, then
L – 1 new data points will be inserted between every pair
of samples in the original x(n). The new interpolation tech-
nique using the DPT in [20] is proposed in [21]. The idea
used in Pascal interpolation is similar to the concept of
Fourier series expansion, that is, a periodic signal can be
expressed by the weighted-sum of exponential basis func-
tions. In the case of discrete Pascal transform (DPT), the
basis functions are Pascal polynomials Pi(x) shown in (6).
Then, the discrete-time signal x(n) can be represented by
using the DPT bases as

 



k

i
ii knnPXnx

0

0),()((10)

where the weights are the Pascal coefficients Xi that are
calculated as

 .0),()(
0




i

n
ni kinxiPX (11)

Here, the number of data points of x(n) is (k + 1), and
the order of the Pascal polynomial Pi(n) is i. The Pascal
coefficients Xi are similar to the Fourier coefficients in
Fourier series.

To interpolate the input x(n) with an interpolation
factor L for L = k + 1, which produces (k + 1) + k(L – 1)
output samples xL(n), we scale the index n by 1/L, i.e., we
change the basis functions from Pi(n) to Pi(n/L). Conse-
quently, the resulting interpolated samples xL(n) are

    ,)(
0




k

i
ii L

nPXL
nxny (12)

for   .1)1()1(0  Lkkn This equation is the im-

portant key of the Pascal interpolation. For simplicity, the
process from x(n) to x(n/L) can be summarized as Fig. 5.

Fig. 5. Concept of Pascal interpolation.

The mechanism inside block diagram in Fig. 5 corresponds
to (11) and (12), respectively. For easy understanding, we
explain the Pascal interpolation by using the following
example.

Example, given a sequence x(n) = [1 2 3] and we
want to interpolate this sequence with L = 3.

Step 1: Before interpolation, the Pascal coefficients
must be computed by transformation from x(n) to Xi using
the DPT in (11).

 












i

n

n
i inx

n

i
X

0

.20),()1(

The terms 









n

in)1(represent the elements of Pascal

transform matrix used for DPT, then

  ),(niPP

and

 kni
n

i
iPniP n

n ...,,1,0,,)1()(),(









with k = 2. The Pascal coefficient vector can be expressed
by matrix equation in (5), i.e.,

 PxX 

where X=[X0 X1 … Xk]
T and x=[x(0) x(1) … x(k)]T.

Therefore, in this step the Pascal coefficients can be
obtained by

 .

0

1

1

3

2

1

121

011

001

2

1

0





































































X

X

X
 (13)

Step 2: After we obtain the Pascal coefficients from
Step 1, the interpolated signal can be obtained using (12).
In this case, new (L – 1) = 2 data points will be inserted
between each pair of the input samples x(n).

    



2

0

.60,33)(
i

ii nnPXnxny

Then,

       .60,333)(221100  nnPXnPXnPXny

From basis function (6), we get

       .1
332

1
3,

33,13 210 





 

nnnP
nnPnP

Therefore,

   ,1
132

1

33)(210 X
nn

X
n

Xnxny 













 






 (14)

for .60  n

Substituting X0, X1, and X2 from Step 1 into (14) yields

 
 

 
 

(0) (0) 1,

11 4(1) 1 ,3 3 3
252(2) 1 ,3 3 3

(3) (1) 2,

174(4) 2 ,3 3 3
25 8(5) 2 ,3 3 3

(6) (2) 3.

y x

y x

y x

y x

y x

y x

y x

 

   

   

 

   

   

 

1006 P. SOONTORNWONG, S. CHIVAPREECHA, PASCAL-INTERPOLATION-BASED NONINTEGER DELAY FILTER …

1

2

3

1 2 3 4 5 6
n

y(n) = x(n/3)

0

x(n)

1

2

3

1 2
n

0

(a) (b)
Fig. 6. Example of the Pascal interpolation with a factor L= 3.

The original discrete-time input signal x(n) and the
interpolated output signal x(n/3) are shown in Fig. 6.

From the above example, we can see that the kth-or-
der (degree) Pascal polynomial can fit the (k + 1) samples,
the second-order Pascal polynomial fits 3 input data points.
This property is also identical to the Lagrange interpola-
tion, which has been used to derive the polynomial-inter-
polation-type noninteger-delay filter. Therefore, the Pascal
interpolation can also be used for developing a new struc-
ture for the polynomial-interpolation-type filter.

4. Pascal Noninteger-Delay Filter
In this section, we will briefly discuss why the Pascal

interpolation can be used for developing a new structure
for the polynomial-interpolation-type filter, which is called
Pascal noninteger-delay filter.

4.1 Origin of Pascal Noninteger-Delay Filter

Below, we develop the Pascal noninteger-delay filter
based on Pascal interpolation. The Pascal polynomial is
used for fitting the data points instead of the Lagrange
polynomial. The basic idea is directly related to the DPT
and Pascal interpolation, which is described in the previous
section. The example used in the previous section is con-
tinuously used to develop the Pascal noninteger-delay
filter.

From the previous example in Step 1 (the stage of the
Pascal coefficients calculation from input data vector using
(13)), the matrix equation can be rewritten as

 .

)2(

)1(

)0(

121

011

001

2

1

0




















































x

x

x

X

X

X
 (15)

In the real-time applications, the system must be causal.
Then, we can set

)()0(nxx  ; present input

)1()1( nxx ; 1 sample delayed input

)2()2( nxx ; 2 samples delayed input.

Therefore,

)(0 nxX  ,

)1()(1  nxnxX ,

).2()1(2)(2  nxnxnxX

From this point, we know that X0, X1, and X2 can be
regarded as the outputs of the filters (1 – z–1)i, i = 0, 1, 2.
For any ith-order (0 ≤ i ≤ k) the Pascal coefficients in z-
transform Z{Xi} are obtained by

  )()1()()(1 zXzzXzHXZ i
ii

 (16)

with i
i zzH)1()(1 .

The next stage is to change n/L in (14) to the delay
parameter (D), which leads to

210)1(

2

1
)()()(XDDXDXnyDnx 






  (17)

where k is also the Pascal noninteger-delay filter order.

To confirm that our Pascal noninteger-delay filter is
correct and can operate, the second-order Pascal nonin-
teger-delay filter (k = 2) in (17) will be tested in 2 cases:
integer-delay and noninteger-delay.

Integer-delay:

D = 0;)()(0 nxXny  ; no delay

D = 1;
10)(XXny 

)1( nx ; 1 sample delayed

D = 2;
210 2)(XXXny 

)2( nx ; 2 samples delayed

Noninteger-delay:

D = 0.5 =
2

1 ;
210 8

1

2

1
)5.0()(XXXnxny 

).2(
8

1
)1(

4

1

2

1
)(

8

1

2

1
1 



 



  nxnxnx

Then,

).5.0()2(
8

1
)1(

4

3
)(

8

3
)( nxnxnxnxny

Assume that x(n) = 3, x(n – 1) = 2, and x(n – 2) = 1.
Then, substituting these values into the above equation
obtains the output y(n) = x(n – D) = x(n – 0.5) = 2.5, which
is equivalent to the noninteger-delayed (0.5 sample de-
layed) input signal x(n).

Fig. 7. Graphical representations of the input and output of

the second-order Pascal noninteger-delay filter.

RADIOENGINEERING, VOL. 24, NO. 4, DECEMBER 2015 1007

The graphical representation of the input and output
of the second-order Pascal noninteger-delay filter are
shown in Fig. 7 for understanding the mechanism using the
Pascal noninteger-delay filter to delay the input signal x(n)
in a noninteger fashion. The tested results show that the
Pascal noninteger-delay filter operates properly. Any kth-
order Pascal noninteger-delay filter and its structure will be
described in the next section.

Finally but more importantly, the transfer function of
the second-order Pascal noninteger-delay filter will be
formulated in this section. From (17), we can get

.)2(
2

1
)1()(

2

1

)2(
2

1
)1(2)(

2

3
)()(

2





 





 

nxnxnxD

nxnxnxDnxny

Therefore,

.
2

1

2

1

2

1
2

2

3
1),(),(ˆ

212

21





 





 





zzD

zzDDzHDzH
 (18)

The transfer function (18) is equivalent to the direct
form in (4), which verifies that our derived Pascal non-
integer delay filter is the same polynomial-interpolation-
type. However, we will not use the expression in (18) to
realize it. Instead, the following subsections will propose
a more efficient realization structure than the Farrow struc-
tures mentioned above.

4.2 Pascal Noninteger-Delay Filter and Its
Structure

The Pascal noninteger-delay filtering consists of 2
operations. The first one passes the input signal x(n)
through the highpass filters that have transfer functions in
(16) in order to obtain the Pascal coefficients, Xi (i = 0, 1,
…, k). The transfer functions in (16) can be written again
as

  
kiz

zX

XZ
zH ii

i ...,,1,0,)1(
)(

)(1   . (19)

In the second step, the Pascal coefficients Xi will go to the
next operation as follows,

 



k

i
ii XDPny

0

)()((20)

with
!

)1(
)(

)(

i

D
DP

ii

i


 (21)

and).1)(2)...(2)(1()( iDiDDDDD i

In this step, we will consider Xi as the inputs of a
system, and the coefficients Pi(D) are the functions of the
delay parameter D. Here, we call Pi(D) the “Pascal-de-
layed” coefficients. The coefficients Pi(D) control the de-
lay of the Pascal noninteger-delay filter, which play a vital
role in the Pascal noninteger-delay filter. Table 1 shows the
coefficients Pi(D) of the seventh-order Pascal noninteger-
delay filter for various values of the delay parameter D.
The Pascal noninteger-delay filter includes 2 systems, the
first system is shown in (19), and the second one is given
in (20). Consequently, the mechanism of the Pascal nonin-
teger-delay filter is summarized in Fig. 8 for easy under-
standing.

Combining (19) and (20) gets the whole transfer
function for the Pascal noninteger-delay filter as

k

k zDP

zDPzDPDPDzH

)1)((...

)1)(()1)(()(),(ˆ

1

21
2

1
10









 



k

i

i
i zDPDzH

0

1)1)((),(ˆ (22)

which can also be written in matrix form as

 PzpT

0

1 ˆ)1)((),(ˆ 



k

i

i
i zDPDzH (23)

where the Pascal-delayed coefficients vector p̂ is defined

as























































k
k z

z

z

DP

DP

DP

DP



2

1

2

1

0 1

,

)(

)(

)(

)(

ˆ zp
 (24)

and P is the Pascal transform matrix as discussed in Sec. 3.

In order to realize the Pascal noninteger-delay filter,
we will consider the first system and the second system
separately as shown in Fig. 8.

The first system can be considered as a single-input,
multi-output (SIMO) system, and we call it the front-
section of the Pascal noninteger-delay filter. The second
system is a multi-input, single-output (MISO) system, and

Pi(D) i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7
D = 0.00 1.0000 0 0 0 0 0 0 0
D = 0.25 1.0000 –0.2500 –0.0938 –0.0547 –0.0376 –0.0282 –0.0223 –0.0183
D = 0.50 1.0000 –0.5000 –0.1250 –0.0625 –0.0391 –0.0273 –0.0205 –0.0161
D = 0.75 1.0000 –0.7500 –0.0938 –0.0391 –0.0220 –0.0143 –0.0101 –0.0076
D = 1.00 1.0000 –1.0000 0 0 0 0 0 0

Tab. 1. Pascal-delayed coefficients of the seventh-order Pascal noninteger-delay filter for various D.

1008 P. SOONTORNWONG, S. CHIVAPREECHA, PASCAL-INTERPOLATION-BASED NONINTEGER DELAY FILTER …

1() (1) ,

0,1, 2,...,

i
iH z z

i k

 
 0

() ()
k

i i
i

y n P D X




The front-section The back-section

0X

1X

2X

kX

  

The generalized Pascal tunable noninteger-delay filter = h(z, D)(,)H z D

()x n () ()y n x n D 

Fig. 8. The mechanism of the proposed Pascal noninteger-

delay filter.

0
0.2

0.4
0.6

0.8
1

14.5

15

15.5
0

0.2

0.4

0.6

0.8

1

Normalized FrequencyFractional-Delay

A
m

pi
tu

de
 R

es
po

ns
e

Fig. 9. Amplitude Response of the 30th-order Pascal

noninteger-delay filter (k = 30).

we call it the back-section of the Pascal noninteger-delay
filter, which is the key of the Pascal noninteger-delay filter
for adjusting the delay. Therefore, from the concept in
Fig. 8, and (19) to (24), we can show the amplitude
response of the Pascal noninteger-delay filter as Fig. 9
(k = 30).

In Fig. 9, the value of delay parameter D in nonin-
teger-delay is between D  [0.5k –0.5, 0.5k +0.5]. The
details for realizing both front-section and back-section of
the Pascal noninteger-delay filter will be described in the
next subsections.

4.3 Front-Section Realization

The front-section of Pascal noninteger-delay filter,
which is the first system in Fig. 8, is used for filtering by
the filter Hi(z) in (19) in order to obtain the Pascal coeffi-
cients Xi. In fact, the Pascal coefficients are also the time-
domain signals. After such Pascal coefficients are com-
puted, they will be passed to the second system called the
back-section.

In order to realize the front-section of Pascal nonin-
teger-delay filter, we will be considered by factorizing the
Pascal transform matrix P into binary {1, 0, –1} matrices.
The front-section can be realized without any multiplica-
tions, and then the obtained front-section of Pascal nonin-
teger-delay filter will be multiplierless digital filters.

The concept of front-section comes from the
factorization of the Pascal transform matrix P into binary
{1, 0, –1} matrices. From (19), we can write the vector of
transfer function Hi(z) as follows,














































































k
kk z

z

z

kPkPkPzH

zH

zH

zH






1

1

21

2

1

0 1

)()()(1

00121

00011

00001

)(

)(

)(

)(

 (25)

or,













































































)(

)2(

)1(

)(

)()()(1

00121

00011

00001

21

2

1

0

knx

nx

nx

nx

kPkPkPX

X

X

X

kk






 (26)

The Pascal coefficients Xi can be computed by using
(26), i.e., the DPT of input vector x, where xT = [x(n)
x(n – 1) x(n – 2)…x(n – k)]. Usually, the matrix transfor-
mation requires many multiplications and additions, which
is dependent on the dimension of the used matrix operator.
This paper proposes a method for factorizing the Pascal
transform matrix P into binary {1, 0, –1} matrices, that will
allow the transformation using matrix P to operate without
multiplications and only additions are used. Therefore, the
hardware realization for transformation circuits can be
efficiently designed by using the so-called butterfly unit of
DPT to establish the whole structure. Consider the 2 × 2
Pascal transform matrix P, which can be denoted as P2
(subscript 2 is the dimension of P2)

 










11

01
2P

and from (26), we can get

 .
)1(

)(

11

01

1

0



























nx

nx

X

X

Also, from this matrix equation, we can make the data flow
graph as Fig. 10,

Fig. 10. Butterfly unit of the DPT.

This flow graph is called a butterfly unit of DPT [22]
and used as a basic unit for constructing the front-section
of any kth-order Pascal noninteger-delay filter. The method
for factorizing the Pascal transform matrix P into binary
{1, 0, –1} matrices is based on Gaussian elimination [23],
which can be described as follows. The elimination matrix
in [23] is used to factorize another kind of Pascal matrix
(all elements in matrix are positive), but Pascal transform
matrix used in DPT (alternating sign by (–1)i; i is column
index) is different from that in [23]. With some modifica-
tion from [23], the elimination matrix E for the Pascal
transform matrix P has entry Ex,x = –1, except E0,0 = 1 ,and
Ex,x – 1 = 1, and all other entries are zero.

RADIOENGINEERING, VOL. 24, NO. 4, DECEMBER 2015 1009

For example, the front-section of the third-order
Pascal noninteger-delay filter can be shown as below

      
123

3

2

1

0

.

)3(

)2(

)1(

)(

1100

0110

0011

0001

1100

0110

0010

0001

1000

0100

0010

0001

)3(

)2(

)1(

)(

1331

0121

0011

0001

stagestagestage

nx

nx

nx

nx

nx

nx

nx

nx

X

X

X

X

























































































































































This computation can be realized as Fig. 11.

Notice that the matrix P has the size (k + 1)2; k is the
order of the Pascal noninteger-delay filter. For any kth-
order case, the front-section can be realized in the similar
fashion and shows the details as Fig. 12.

By considering the realization diagram, we know that
the number of additions for the front-section of the Pascal
noninteger-delay filter is

No. of additions = .
2

)1(kk

The front-section does not require any multiplica-
tions. Thus, the obtained front-section of the Pascal nonin-
teger-delay filter contains only multiplierless digital filters.

1z

1z

1z

Fig. 11. An example for front-section of the third-order Pascal

noninteger-delay filter.

1z

1z

1z

1z

1z

Fig. 12. The front-section of the kth-order Pascal noninteger-

delay filter.

4.4 Back-Section Realization

The back-section of the Pascal noninteger-delay filter
changes the delay of the Pascal noninteger-delay filter
online, and it is realized by using (20) and (21). The front-
section outputs Xi, and then Xi are fed to the back-section
as

.)()(...

)()()(

)()()(

11

221100

0

kkkk

k

i
ii

XDPXDP

XDPXDPXDP

XDPnyDnx











 (27)

From (21) and definition of falling factorial powers D(i) we
have

.)1)...(2)(1(
!

)1(

)2)...(2)(1(
)!1(

)1(
...

)2)(1(
6

1
)1(

2

1
)(

1

1

3210

k

k

k

k

XkDDDD
k

XkDDDD
k

XDDDXDDDXXny


















 (28)

Next, the Horner’s rule is applied for sharing the common
terms as



....
)1(

)1(

)1(
1

)2(
...

2

)1(
)(1

1
210



















 







 


k
k

k
k

X
k

kD

X
k

kD
X

D
XXny

 (29)

Consequently, by using (29), the back-section of the
any kth-order Pascal noninteger-delay filter can be realized
as Fig. 13.

Here, we can summarize the computational complex-
ity of the back-section realization as

No. of multiplications = 3k – 3

No. of additions = 2k – 1.

Since the whole Pascal noninteger-delay filter con-
sists of both the front-section and the back-section, and the
front-section consists of only mutiplierless filters, all the
multiplications of the Pascal noninteger-delay filter occur
only from the back-section. The total computational com-
plexity of the kth-order Pascal noninteger-delay filter will
be considered in the next section and the computational
complexities will be also compared with those of the di-
rect-form Farrow structure as well as the Farrow structures
after symmetry transformations proposed in [11–13].

5. Complexity of the Pascal Non-
integer-Delay Filter
This section evaluates the Pascal noninteger-delay

filter complexity by counting both multiplication and
addition operations. For the example, the third-order Pascal

1010 P. SOONTORNWONG, S. CHIVAPREECHA, PASCAL-INTERPOLATION-BASED NONINTEGER DELAY FILTER …

Fig. 13. The back-section of the kth-order Pascal noninteger-

delay filter.

noninteger-delay filter can be realized by using the struc-
tures from front-section and back-section as shown in
Fig. 14.

The third-order Pascal noninteger-delay filter in
Fig. 14 needs 6 multiplications and 11 additions. Table 2
lists the numbers of multiplications and additions of the
third-order polynomial-interpolation-type filters using three
types of structures.

1z

1z

1z

Fig. 14. The third-order Pascal noninteger-delay filter.

Type of filter
No. of

Multiplications
No. of

additions
Direct-form Farrow structure 15 12
Transformed Farrow structure 11 11
Pascal noninteger-delay filter 6 11

Tab. 2. Comparison of computational complexities of the
third-order polynomial-interpolation-type filters.

Type of filter
No. of

Multiplications
No. of

additions

Direct-form Farrow structure kk 22  kk 2

Transformed Farrow structure in
[12–14]
 (Odd-order)

 (Even-order)

2

142  kk

2

32 kk 

2

142  kk

2

32 kk 

Pascal noninteger-delay filter 33 k
2

252  kk

Tab. 3. Computational complexities of the kth-order polyno-
mial-interpolation-type delay filters.

Clearly, the Pascal noninteger-delay filter has less
complexity than other 2 types of the polynomial-interpola-
tion-type filters, especially the number of multiplications is
much less.

The complexity of the kth-order Pascal noninteger-
delay filter is compared with the polynomial-interpolation-
type noninteger-delay filters having the direct-form Farrow
structure and the Farrow structures after symmetry trans-
formations are shown in Tab. 3.

The computational complexities from the second-or-
der to 30th-order of 3 types of polynomial-interpolation-
type delay filters are shown in Fig. 15 and Fig. 16, respec-
tively.

By using Fig. 15, we can compare the numbers of
multiplications of 3 types of realization structures. As
compared to the direct-form Farrow structure [1], the
structures using symmetry transformations [11–13] can
reduce the number of multiplications by about 50%. How-
ever, the number of multiplications required by the method

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

kth-order of tunable noninteger-delay filter

N
um

be
r

of
 M

ul
ti

pl
ic

at
io

ns

Farrow structure after transformation

 Direct-form Farrow structure

Pascal tunable noninteger-delay filter

Fig. 15. Number of multiplications of 3 types of the polyno-

mial-interpolation-type delay filters.

RADIOENGINEERING, VOL. 24, NO. 4, DECEMBER 2015 1011

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

kth-order of tunable noninterger-dalay filter

N
um

be
r

of
 A

dd
it

io
ns

Pascal tunable noninteger-delay filter

Direct-form Farrow structure

Farrow structure after transformation

Fig. 16. Number of additions of 3 types of the polynomial-

interpolation-type delay filters.

in [11–13] is not linear with respect to the order k, but it is
a square function. The Pascal noninteger-delay filter re-
quires fewer multiplications than the Lagrange-type with
transformed Farrow structures [11–13].

The number of multiplications is linear with respect to
the order k. In Fig. 16, we compare the numbers of addi-
tions of 3 types of polynomial-interpolation-type delay
filters, the Pascal noninteger-delay filter requires less addi-
tions than the direct-form Farrow structure [1]. Obviously,
since the Pascal noninteger-delay filter requires the lowest
computational complexity, it is more suitable for fast fil-
tering.

6. Conclusion
In this paper, we have derived a new filter realization

structure for the polynomial-interpolation-type delay filter.
Since it is formulated from the discrete Pascal transform
(DPT) and Pascal interpolation, we call it Pascal nonin-
teger-delay filter. The resulting Pascal noninteger-delay
filter has a low-complexity structure that contains two
sections (front-section and back-section). The former con-
sists of multiplierless filters only, and the latter requires
less multiplications. Because the proposed Pascal structure
can online adjust the delay with less multiplications, it is
suited for fast tuning applications. Moreover, we have
compared the numbers of multiplications of 3 types of the
polynomial-interpolation-type delay filters, and concluded
that the Pascal structure requires the smallest number of
multiplications. Consequently, the polynomial-interpola-
tion-type delay filter can be achieved by using the Pascal
approach with high efficiency and the lowest complexity
filter structure.

References

[1] FARROW, C. W. A continuously variable digital delay element. In
Proceedings of IEEE International Symposium on Circuits Systems

(ISCAS). Espoo (Finland), 1988, vol. 3, p. 2641–2645. DOI:
10.1109/ISCAS.1988.15483

[2] DENG, T.-B. Discretization-free design of variable fractional-
delay FIR digital filters. IEEE Transactions on Circuits and
System II: Analog Digital Signal Processing, 2001, vol. 48, no. 6,
p. 637–644. DOI: 10.1109/82.943337

[3] ZHAO, H., YU, J.-B. A simple and efficient design of variable
fractional delay FIR filters. IEEE Transactions on Circuits and
System II: Express Briefs, 2006, vol. 53, no. 2, p. 157–160. DOI:
10.1109/TCSII.2005.856673

[4] TSENG, C.-C. Design of variable fractional delay FIR filters using
differentiator bank. In Proceedings of IEEE International Sympo-
sium on Circuits Systems (ISCAS 2002). Phoenix (Arizona, USA),
2002, vol. 4, p. 421–424. DOI: 10.1109/ISCAS.2002.1010481

[5] DENG, T.-B., NAKAGAWA, Y. SVD-based design and new
structure for variable fractional-delay digital filters. IEEE Trans-
actions on Signal Processing, 2004, vol. 52, no. 9, p. 2513–2527.
DOI: 10.1109/TSP.2004.831922

[6] DENG, T.-B., LIAN, Y. Weighted-least-squares design of variable
fractional-delay FIR filters using coefficient symmetry. IEEE
Transactions on Signal Processing, 2006, vol. 54, no. 8, p. 3023–
3038. DOI: 10.1109/TSP.2006.875385

[7] DENG, T.-B., QIN, W. Coefficient relation-based minimax design
and low-complexity structure of variable fractional-delay digital
filters. Signal Processing, 2013, vol. 93, no. 4, p. 923–932. DOI:
10.1016/j.sigpro.2012.11.004

[8] DENG, T.-B., QIN, W. Improved bi-equiripple variable fractional-
delay filters. Signal Processing, 2014, vol. 94, no. 1, p. 300–307.
DOI: 10.1016/j.sigpro.2013.07.004

[9] LIU, G.-S., WEI, C.-W. A new variable fractional sample delay
filter with nonlinear interpolation. IEEE Transactions on Circuits
and System II: Analog Digital Signal Processing, 1992, vol. 39,
no. 2, p. 123–126. DOI: 10.1109/82.205818

[10] DENG, T.-B. Coefficient-symmetries for implementing arbitrary-
order Lagrange-type variable fractional-delay digital filters. IEEE
Transactions on Signal Processing, 2007, vol. 55, no. 8, p. 4078 to
4090. DOI: 10.1109/TSP.2007.893967

[11] DENG, T.-B. Symmetric structures for odd-order maximally flat
and weighted-least-squares variable fractional-delay filters. IEEE
Transactions on Circuits and System I: Regular Papers, 2007,
vol. 54, no. 12, p. 2718–2732. DOI: 10.1109/TCSI.2007.905649

[12] DENG, T.-B. Transformation matrix for odd-order Lagrange-type
variable fractional-delay filters. In Proceedings of 6th International
Conference on Information Communications and Signal Pro-
cessing (ICICS 2007). Singapore, 2007, p. 1–5. DOI:
10.1109/ICICS.2007.4449557

[13] DENG, T.-B. Transformation matrix for even-order Lagrange-type
variable fractional-delay digital filters. In Proceedings of
International Conference on Intelligent and Automation Systems
(ICIAS 2007). Kuala Lumpur (Malaysia), 2007, p. 1179–1182.
DOI: 10.1109/ICIAS.2007.4658570

[14] PEI, S.-C., TSENG, C.-C. A comb filter design using fractional-
sample delay. IEEE Transactions on Circuits and System II: Ana-
log Digital Signal Processing, 1998, vol. 45, no. 6, p. 649–653.
DOI: 10.1109/82.673650

[15] DENG, T.-B. High-resolution image interpolation using two-
dimensional Lagrange-type variable fractional-delay filter. In
Proceedings of International Symposium on Nonlinear Theory and
Applications (NOLTA 2005). Bruges (Belgium), 2005, p. 214–217.

[16] SHYU, J.-J., PEI, S.-C., CHAN, C.-H. Minimax phase error design
of allpass variable fractional-delay digital filters by iterative
weighted least-squares method. Signal Processing, 2009, vol. 89,
no. 9, p. 1774–1781. DOI: 10.1016/j.sigpro.2009.03.021

1012 P. SOONTORNWONG, S. CHIVAPREECHA, PASCAL-INTERPOLATION-BASED NONINTEGER DELAY FILTER …

[17] TSENG, C.-C. Closed-form design of digital IIR integrators using
numerical integration rules and fractional sample delays. IEEE
Transactions on Circuits and System I: Regular Papers, 2007,
vol. 54, no. 3, p. 643–655. DOI: 10.1109/TCSI.2006.887641

[18] SHYU, J.-J., PEI, S.-C., HUANG, Y.-D. Two-dimensional Farrow
structure and the design of variable fractional delay 2-D FIR
digital filters. IEEE Transactions on Circuits and System I:
Regular Papers, 2009, vol. 56, no. 2, p. 395–404. DOI:
10.1109/TCSI.2008.2001828

[19] TSENG, C.-C. Design of 1-D and 2-D variable fractional delay
allpass filters using weighted least-squares method. IEEE
Transactions on Circuits and System I: Fundamental Theory
Applications, 2002, vol. 49, no. 10, p. 1413–1422. DOI:
10.1109/TCSI.2002.803361

[20] ABURDENE, M. F., GOODMAN, T. J. The discrete Pascal
transform and its applications. IEEE Signal Processing Letters,
2005, vol. 12, no. 7, p. 493–495. DOI: 10.1109/LSP.2005.849498

[21] GOODMAN, T. J., ABURDENE, M. F. Interpolation using the
discrete Pascal transform. In Proceedings of 40th Annual
Conference on Information Sciences and Systems (CISS 2006).
New Jersey (USA), 2006, p. 1079–1083. DOI:
10.1109/CISS.2006.286626

[22] SKODRAS, A. N. Efficient computation of the discrete Pascal
transform. In Proceedings of 14th European Signal Processing
Conference (EUSIPCO 2006). Florence (Italy), 2006, p. 1–4. DOI:
10.1109/CISS.2006.286626

[23] EDELMAN, A., STRANG, G., USA. Pascal Matrices. 12 pages.
[Online] Cited 2014-05-19. Available at: http://www-
math.mit.edu/~gs/papers/pascal-work.pdf

About the Authors ...
Parinya SOONTORNWONG was born in Chonburi,
Thailand. He received his B.S.Id.Ed. in Telecommunica-
tion Engineering from King Mongkut’s Institute of Tech-
nology Ladkrabang (KMITL) in 2000 and M. Eng. in
Electrical Engineering from Prince of Songkla University
(PSU) in 2006. He is a D. Eng. candidate student in Elec-
trical Engineering in King Mongkut’s Institute of Technol-
ogy Ladkrabang (KMITL) support by Thai Government
Science and Technology Scholarship, Ministry of Science
and Technology (MOST) Scholarship. His research inter-
ests include digital filter design and digital signal pro-
cessing (DSP).

Sorawat CHIVAPREECHA was born in Nakornpathom,
Thailand. He is an Assistant Professor with the Department
of Telecommunication Engineering, Faculty of Engineer-
ing, King Mongkut’s Institute of Technology Ladkrabang
(KMITL). He received his B. Eng. in Telecommunication
Engineering from Suranaree University of Technology
(SUT) in 1998, M. Eng. and D. Eng. in Electrical Engi-
neering from King Mongkut’s Institute of Technology
Ladkrabang (KMITL), in 2001 and 2008, respectively. His
research interests include digital filter design and imple-
mentation, VLSI for digital signal processing, information
science and satellite engineering.

