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Abstract. This paper proposes a new method for designing 
the polynomial-interpolation-type noninteger-delay filter 
with a new structure formulation. Since the design formu-
lation and the new realization structure are based on the 
discrete Pascal transform (DPT) and Pascal interpolation, 
we call the resulting filter Pascal noninteger-delay filter. 
The kth-order Pascal polynomial is used to pass through 
the given (k + 1) data points in achieving the kth-order 
Pascal filter. The Pascal noninteger-delay filter is a real-
time filter that consists of two sections, which can be real-
ized into the front-section and the back-section. The front-
section contains multiplication-free digital filters, and the 
number of multiplications in the back-section just linearly 
increases as order becomes high. Since the new Pascal 
filter has low complexity and structure can adjust non-
integer delay online, it is more suited for fast delay tuning. 
Consequently, the polynomial-interpolation-type delay 
filter can be achieved by using the Pascal approach with 
high efficiency and low-complexity structure. 

Keywords 
Low-complexity filter structure, noninteger-delay fil-
ter, discrete Pascal transform (DPT), polynomial-in-
terpolation-type delay filter, Pascal noninteger-delay 
filter  

1. Introduction 
Since the tunable noninteger-delay filter can change 

its non-integer group delay or phase delay, it can be ap-
plied to many fields of signal processing like one dimen-
sional signal interpolation, sampling-rate conversion and 
image interpolation. So far, many design methods have 
been developed in the literature [1–19]. Among those ex-
isting filters, the polynomial-interpolation-type noninteger-
delay filter has simple and unique features. Its amplitude 
response is the maximally flat for zero frequency. The 
derivation and realization of the polynomial-interpolation-
type noninteger-delay filter have been dealt with in [9–13]. 
The most straightforward realization of the polynomial-
interpolation-type noninteger-delay filter is to use the di-

rect-form Farrow structure [1]. In practical applications, 
because low frequency components dominate, employing 
the polynomial-interpolation-type noninteger-delay filter 
can achieve sufficiently satisfactory interpolations as de-
scribed in [15]. 

The direct-form Farrow structure for realizing the 
polynomial-interpolation-type noninteger-delay filter re-
quires a large number of multiplications, but non-causal 
ones can be symmetrically realized by exploiting symmetry 
transformations. After symmetry transformations, the 
structures need much fewer multiplications. In order to 
perform real-time filtering, causal filters are needed, but 
the direct-form Farrow structure of the causal polynomial-
interpolation-type noninteger-delay filters does not possess 
symmetric or anti-symmetric structures, which cannot 
exploit symmetries for reducing the number of multiplica-
tion operations. In [11–13], transformation matrices have 
been proposed for transforming causal filters to have low-
complexity structures. 

This paper develops a new design method and a new 
realization structure for the causal polynomial-interpola-
tion-type delay filter with very low hardware complexity in 
order to achieve high-speed filtering for real-time applica-
tions. As compared with the methods proposed in [10–13], 
the method proposed in this paper requires much less mul-
tiplications. The resulting filter structures from the methods 
in [10–13] require more multiplications than the Pascal 
structure proposed in this paper. As compared with the 
existing methods for deriving and realizing the causal 
polynomial-interpolation-type delay filters, we develop 
a novel design method and a new filter structure using dif-
ferent procedures, but the resulting structure has much 
lower complexity. 

The proposed design method is related to a kind of 
discrete polynomial transform called discrete Pascal trans-
form (DPT) that was first proposed in [20], and later the 
DPT is applied to the so-called Pascal interpolation in [21]. 
The new design method and the new filter structure for the 
polynomial-interpolation-type delay filter is based on the 
Pascal interpolation, and the Lagrange polynomial is 
changed to Pascal polynomial for fitting the data points. 
Therefore, this new type of filter is called Pascal nonin-
teger-delay filter. The Pascal noninteger-delay filter can 
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adjust the delay parameter online with high processing 
speed because it uses a reduced number of multiplications, 
where the number linearly increases as the filter order 
increases. Although the coefficient-symmetry techniques in 
[10–13] can reduce the multiplication operations by about 
50%, the techniques still require more multiplications as 
compared with the Pascal noninteger-delay filter because 
the numbers of multiplications in [10–13] are not linear 
functions of the filter order. Consequently, the low-cost 
and high-speed causal polynomial-interpolation-type filter 
can be obtained by using the Pascal approach and the filter 
order can take both odd and even numbers. The Pascal 
noninteger-delay filter makes online tuning with very low 
hardware realization and high-speed operation possible, 
which is the major progress for the polynomial-interpola-
tion-type delay filter. 

2. Direct-Form Structure and 
Transformed Structure 
This section briefly reviews the polynomial-interpo-

lation-type noninteger-delay filter realized using the direct-
form Farrow structure [1] and the Farrow structures using 
symmetry transformations [11–13]. The polynomial-type 
noninteger-delay filter is also termed Lagrange-type non-
integer-delay filter as it stems from the interpolation using 
the Lagrange interpolating polynomial [9], [11–13]. 

The output of the polynomial-interpolation-type non-
integer-delay digital filter is 
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are the coefficients, and D is the fractional delay. Also, k is 
the filter order. The time-domain expression in (1) corre-
sponds to the frequency-domain transfer function 
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By employing the Farrow structure, H(z, D) can be realized 
as Fig. 1, where Vi(z), i = 0, 1, …, k, are called subfilters. 
For example, if the filter order k = 2, then 
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Fig. 1. Direct-form Farrow structure. 

Here, the subfilters have constant coefficients, which 
are fixed in filtering. The non-integer delay of H(z, D) can 
be adjusted through adjusting the value of the parameter D. 
The direct realization of H(z, D) using the Farrow structure 
requires 

No. of multiplications = kk 22   

No. of additions = .2 kk   

On the other hand, we can see from (4) that the last 
subfilter V2(z) has symmetric coefficients, but the others do 
not have any symmetries. The coefficient symmetry of 
V2(z) is taken into account in the realization shown in 
Fig. 2. 
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Fig. 2. Example of the direct-form Farrow structure. 
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Fig. 3. Example of the transformed Farrow structure. 

In order to reduce the number of multiplications 
needed in the filtering process, it is desirable to symmetrize 
the coefficients of all the subfilters V0(z), V1(z), …, Vk(z). 
In [10], symmetric structures are proposed for realizing 
non-causal polynomial-interpolation-type noninteger-delay 
filters, and in [11–13], transformation approaches are pro-
posed for realizing causal ones. 

Figure  3 shows the second-order transformed Farrow 
structure, which can reduce the number of multiplications 
by more than 50%. As a result, the Farrow structures after 
transformations have the following complexities. 

Odd-order case: For any odd kth-order case, the com-
putational complexity can be figured out by the same way 
and can be summarized as follows: 
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Even-order case : For any even kth-order case, the 
computational complexity can be summarized as 
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It is clear that the numbers of multiplications are still 
the square functions of the filter order k. 

In the next section, we will propose a novel design 
method and a new filter structure called Pascal noninteger-
delay filter for the polynomial-interpolation-type filter, 
which requires much fewer multiplications as compared to 
other ones. We will begin by discussing the background of 
the Pascal noninteger-delay filter design, including the 
generalized Pascal noninteger-delay filter and its filter 
structure realization, the frequency characteristic and com-
putational complexity from the next section. 

3. Discrete Pascal Transform and 
Pascal Interpolation 
Discrete Pascal transform (DPT) was proposed in 

[22], which is intimately related to the Pascal’s triangle 
shown in Fig. 4,  

 
Fig. 4. Pascal’s triangle. 

and is classified as one kind of discrete polynomial trans-
forms. The operation of DPT is based on Pascal transform 
matrix that performs as an operator for signal transfor-
mation. 

The discrete Pascal transform of the signal vector x  
with size (k + 1) × 1 is defined as 

 PxX   (5) 

where P is the Pascal transform matrix with dimension 
(k + 1) × (k + 1), and x is the input signal vector, and X is 
the transformed output vector with size (k + 1) × 1. 

3.1 Basis Functions of DPT 

From (5), the Pascal transform matrix has the 
following basis functions, which are the polynomials 
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where (k + 1) × (k + 1) is the size of the Pascal transform 
matrix and 
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are called the binomial coefficients (as in the binomial 
theorem) and are related to Pascal’s triangle. The term (–1)i 
in (6) will alternate the sign of the columns of the Pascal 
transform matrix, and P(x, i) are the elements in Pascal 
transform matrix P, where x corresponds to the row num-
ber and i denotes the column number. 

The function x(i) is called falling factorial powers 
defined as 
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where x(0) = 1, and k is also called the order of basis func-
tion. For example, the first four basis functions of DPT that 
consist of four polynomials are 
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which can be summarized as the recurrence formula 
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By using (9), we can generate the Pascal transform matrix 
(size 4 × 4) for k = 3 as follows, 
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The basic properties of this P matrix are as follows. 

(1) All the elements of the first column equal 1. 

(2) The matrix is a lower triangle. 

(3) The sum of all the elements of each row (except 
the first row) equals zero. 

(4) The inverse matrix is equal to the forward matrix, 
that is, P–1 = P. 
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3.2 Pascal Interpolation 

Assume that xL(n) is obtained by interpolating the 
original signal x(n) with an interpolation factor of L, then 
L – 1 new data points will be inserted between every pair 
of samples in the original x(n). The new interpolation tech-
nique using the DPT in [20] is proposed in [21]. The idea 
used in Pascal interpolation is similar to the concept of 
Fourier series expansion, that is, a periodic signal can be 
expressed by the weighted-sum of exponential basis func-
tions. In the case of discrete Pascal transform (DPT), the 
basis functions are Pascal polynomials Pi(x) shown in (6). 
Then, the discrete-time signal x(n) can be represented by 
using the DPT bases as 
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where the weights are the Pascal coefficients Xi that are 
calculated as 
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Here, the number of data points of x(n) is (k + 1), and 
the order of the Pascal polynomial Pi(n) is i. The Pascal 
coefficients Xi are similar to the Fourier coefficients in 
Fourier series. 

To interpolate the input x(n) with an interpolation 
factor L for L = k + 1, which produces (k + 1) + k(L – 1) 
output samples xL(n), we scale the index n by 1/L, i.e., we 
change the basis functions from Pi(n) to Pi(n/L). Conse-
quently, the resulting interpolated samples xL(n) are 
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for   .1)1()1(0  Lkkn  This equation is the im-

portant key of the Pascal interpolation. For simplicity, the 
process from x(n) to x(n/L) can be summarized as Fig. 5. 

 
Fig. 5. Concept of Pascal interpolation. 

The mechanism inside block diagram in Fig. 5 corresponds 
to (11) and (12), respectively. For easy understanding, we 
explain the Pascal interpolation by using the following 
example. 

Example, given a sequence x(n) = [1   2   3] and we 
want to interpolate this sequence with L = 3. 

Step 1: Before interpolation, the Pascal coefficients 
must be computed by transformation from x(n) to Xi using 
the DPT in (11). 
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with k = 2. The Pascal coefficient vector can be expressed 
by matrix equation in (5), i.e., 

 PxX   

where X=[X0  X1 …  Xk]
T and x=[x(0)  x(1) …  x(k)]T. 

Therefore, in this step the Pascal coefficients can be 
obtained by 
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Step 2: After we obtain the Pascal coefficients from 
Step 1, the interpolated signal can be obtained using (12). 
In this case, new (L – 1) = 2 data points will be inserted 
between each pair of the input samples x(n). 
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Substituting X0, X1, and X2 from Step 1 into (14) yields 
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Fig. 6. Example of the Pascal interpolation with a factor L= 3. 

The original discrete-time input signal x(n) and the 
interpolated output signal x(n/3) are shown in Fig. 6. 

From the above example, we can see that the kth-or-
der (degree) Pascal polynomial can fit the (k + 1) samples, 
the second-order Pascal polynomial fits 3 input data points. 
This property is also identical to the Lagrange interpola-
tion, which has been used to derive the polynomial-inter-
polation-type noninteger-delay filter. Therefore, the Pascal 
interpolation can also be used for developing a new struc-
ture for the polynomial-interpolation-type filter. 

4. Pascal Noninteger-Delay Filter 
In this section, we will briefly discuss why the Pascal 

interpolation can be used for developing a new structure 
for the polynomial-interpolation-type filter, which is called 
Pascal noninteger-delay filter. 

4.1 Origin of Pascal Noninteger-Delay Filter 

Below, we develop the Pascal noninteger-delay filter 
based on Pascal interpolation. The Pascal polynomial is 
used for fitting the data points instead of the Lagrange 
polynomial. The basic idea is directly related to the DPT 
and Pascal interpolation, which is described in the previous 
section. The example used in the previous section is con-
tinuously used to develop the Pascal noninteger-delay 
filter. 

From the previous example in Step 1 (the stage of the 
Pascal coefficients calculation from input data vector using 
(13)), the matrix equation can be rewritten as 
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In the real-time applications, the system must be causal. 
Then, we can set 

)()0( nxx     ; present input 

)1()1(  nxx   ; 1 sample delayed input 

)2()2(  nxx   ; 2 samples delayed input. 

Therefore, 
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From this point, we know that X0, X1, and X2 can be 
regarded as the outputs of the filters (1 – z–1)i, i = 0, 1, 2. 
For any ith-order (0 ≤ i ≤ k) the Pascal coefficients in z-
transform Z{Xi} are obtained by 
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The next stage is to change n/L in (14) to the delay 
parameter (D), which leads to 
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where k is also the Pascal noninteger-delay filter order. 

To confirm that our Pascal noninteger-delay filter is 
correct and can operate, the second-order Pascal nonin-
teger-delay filter (k = 2) in (17) will be tested in 2 cases: 
integer-delay and noninteger-delay. 

Integer-delay: 
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Assume that x(n) = 3, x(n – 1) = 2, and x(n – 2) = 1. 
Then, substituting these values into the above equation 
obtains the output y(n) = x(n – D) = x(n – 0.5) = 2.5, which 
is equivalent to the noninteger-delayed (0.5 sample de-
layed) input signal x(n). 

 
Fig. 7. Graphical representations of the input and output of 

the second-order Pascal noninteger-delay filter. 
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The graphical representation of the input and output 
of the second-order Pascal noninteger-delay filter are 
shown in Fig. 7 for understanding the mechanism using the 
Pascal noninteger-delay filter to delay the input signal x(n) 
in a noninteger fashion. The tested results show that the 
Pascal noninteger-delay filter operates properly. Any kth-
order Pascal noninteger-delay filter and its structure will be 
described in the next section. 

Finally but more importantly, the transfer function of 
the second-order Pascal noninteger-delay filter will be 
formulated in this section. From (17), we can get 
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The transfer function (18) is equivalent to the direct 
form in (4), which verifies that our derived Pascal non-
integer delay filter is the same polynomial-interpolation-
type. However, we will not use the expression in (18) to 
realize it. Instead, the following subsections will propose 
a more efficient realization structure than the Farrow struc-
tures mentioned above. 

4.2 Pascal Noninteger-Delay Filter and Its 
Structure 

The Pascal noninteger-delay filtering consists of 2 
operations. The first one passes the input signal x(n) 
through the highpass filters that have transfer functions in 
(16) in order to obtain the Pascal coefficients, Xi (i = 0, 1, 
…, k). The transfer functions in (16) can be written again 
as 
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In the second step, the Pascal coefficients Xi will go to the 
next operation as follows,  
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In this step, we will consider Xi as the inputs of a 
system, and the coefficients Pi(D) are the functions of the 
delay parameter D. Here, we call Pi(D) the “Pascal-de-
layed” coefficients. The coefficients Pi(D) control the de-
lay of the Pascal noninteger-delay filter, which play a vital 
role in the Pascal noninteger-delay filter. Table 1 shows the 
coefficients Pi(D) of the seventh-order Pascal noninteger-
delay filter for various values of the delay parameter D. 
The Pascal noninteger-delay filter includes 2 systems, the 
first system is shown in (19), and the second one is given 
in (20). Consequently, the mechanism of the Pascal nonin-
teger-delay filter is summarized in Fig. 8 for easy under-
standing.  

Combining (19) and (20) gets the whole transfer 
function for the Pascal noninteger-delay filter as 
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which can also be written in matrix form as 
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where the Pascal-delayed coefficients vector p̂  is defined 

as  
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and P is the Pascal transform matrix as discussed in Sec. 3. 

In order to realize the Pascal noninteger-delay filter, 
we will consider the first system and the second system 
separately as shown in Fig. 8.  

The first system can be considered as a single-input, 
multi-output (SIMO) system, and we call it the front-
section of the Pascal noninteger-delay filter. The second 
system is a  multi-input,  single-output (MISO) system, and 

 
 

Pi(D) i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 
D = 0.00 1.0000 0 0 0 0 0 0 0 
D = 0.25 1.0000 –0.2500 –0.0938 –0.0547 –0.0376 –0.0282 –0.0223 –0.0183 
D = 0.50 1.0000 –0.5000 –0.1250 –0.0625 –0.0391 –0.0273 –0.0205 –0.0161 
D = 0.75 1.0000 –0.7500 –0.0938 –0.0391 –0.0220 –0.0143 –0.0101 –0.0076 
D = 1.00 1.0000 –1.0000 0 0 0 0 0 0 

Tab. 1. Pascal-delayed coefficients of the seventh-order Pascal noninteger-delay filter for various D. 
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Fig. 8. The mechanism of the proposed Pascal noninteger-

delay filter. 
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Fig. 9. Amplitude Response of the 30th-order Pascal 

noninteger-delay filter (k = 30). 

we call it the back-section of the Pascal noninteger-delay 
filter, which is the key of the Pascal noninteger-delay filter 
for adjusting the delay. Therefore, from the concept in 
Fig. 8, and (19) to (24), we can show the amplitude 
response of the Pascal noninteger-delay filter as Fig. 9 
(k = 30). 

In Fig. 9, the value of delay parameter D in nonin-
teger-delay is between D  [0.5k –0.5, 0.5k +0.5]. The 
details for realizing both front-section and back-section of 
the Pascal noninteger-delay filter will be described in the 
next subsections. 

4.3 Front-Section Realization 

The front-section of Pascal noninteger-delay filter, 
which is the first system in Fig. 8, is used for filtering by 
the filter Hi(z) in (19) in order to obtain the Pascal coeffi-
cients Xi. In fact, the Pascal coefficients are also the time-
domain signals. After such Pascal coefficients are com-
puted, they will be passed to the second system called the 
back-section. 

In order to realize the front-section of Pascal nonin-
teger-delay filter, we will be considered by factorizing the 
Pascal transform matrix P into binary {1, 0, –1} matrices. 
The front-section can be realized without any multiplica-
tions, and then the obtained front-section of Pascal nonin-
teger-delay filter will be multiplierless digital filters. 

The concept of front-section comes from the 
factorization of the Pascal transform matrix P into binary 
{1, 0, –1} matrices. From (19), we can write the vector of 
transfer function Hi(z) as follows, 
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or, 
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The Pascal coefficients Xi can be computed by using 
(26), i.e., the DPT of input vector x, where xT = [x(n)   
x(n – 1)  x(n – 2)…x(n – k)]. Usually, the matrix transfor-
mation requires many multiplications and additions, which 
is dependent on the dimension of the used matrix operator. 
This paper proposes a method for factorizing the Pascal 
transform matrix P into binary {1, 0, –1} matrices, that will 
allow the transformation using matrix P to operate without 
multiplications and only additions are used. Therefore, the 
hardware realization for transformation circuits can be 
efficiently designed by using the so-called butterfly unit of 
DPT to establish the whole structure. Consider the 2 × 2 
Pascal transform matrix P, which can be denoted as P2 
(subscript 2 is the dimension of P2) 

 










11

01
2P  

and from (26), we can get 
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Also, from this matrix equation, we can make the data flow 
graph as Fig. 10, 

 
Fig. 10. Butterfly unit of the DPT. 

This flow graph is called a butterfly unit of DPT [22] 
and used as a basic unit for constructing the front-section 
of any kth-order Pascal noninteger-delay filter. The method 
for factorizing the Pascal transform matrix P into binary 
{1, 0, –1} matrices is based on Gaussian elimination [23], 
which can be described as follows. The elimination matrix 
in [23] is used to factorize another kind of Pascal matrix 
(all elements in matrix are positive), but Pascal transform 
matrix used in DPT (alternating sign by (–1)i; i is column 
index) is different from that in [23]. With some modifica-
tion from [23], the elimination matrix E for the Pascal 
transform matrix P has entry Ex,x = –1, except E0,0 = 1 ,and 
Ex,x – 1 = 1, and all other entries are zero. 
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For example, the front-section of the third-order 
Pascal noninteger-delay filter can be shown as below 
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This computation can be realized as Fig. 11. 

Notice that the matrix P has the size (k + 1)2; k is the 
order of the Pascal noninteger-delay filter. For any kth-
order case, the front-section can be realized in the similar 
fashion and shows the details as Fig. 12. 

By considering the realization diagram, we know that 
the number of additions for the front-section of the Pascal 
noninteger-delay filter is 

No. of additions = .
2

)1( kk  

The front-section does not require any multiplica-
tions. Thus, the obtained front-section of the Pascal nonin-
teger-delay filter contains only multiplierless digital filters. 
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Fig. 11. An example for front-section of the third-order Pascal 

noninteger-delay filter. 
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Fig. 12. The front-section of the kth-order Pascal noninteger-

delay filter. 

4.4 Back-Section Realization 

The back-section of the Pascal noninteger-delay filter 
changes the delay of the Pascal noninteger-delay filter 
online, and it is realized by using (20) and (21). The front-
section outputs Xi, and then Xi are fed to the back-section 
as 
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From (21) and definition of falling factorial powers D(i) we 
have 
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Next, the Horner’s rule is applied for sharing the common 
terms as 
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Consequently, by using (29), the back-section of the 
any kth-order Pascal noninteger-delay filter can be realized 
as Fig. 13. 

Here, we can summarize the computational complex-
ity of the back-section realization as 

No. of multiplications = 3k – 3 

No. of additions = 2k – 1. 

Since the whole Pascal noninteger-delay filter con-
sists of both the front-section and the back-section, and the 
front-section consists of only mutiplierless filters, all the 
multiplications of the Pascal noninteger-delay filter occur 
only from the back-section. The total computational com-
plexity of the kth-order Pascal noninteger-delay filter will 
be considered in the next section and the computational 
complexities will be also compared with those of the di-
rect-form Farrow structure as well as the Farrow structures 
after symmetry transformations proposed in [11–13]. 

5. Complexity of the Pascal Non-
integer-Delay Filter 
This section evaluates the Pascal noninteger-delay 

filter complexity by counting both multiplication and 
addition operations. For the example,  the third-order Pascal 
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Fig. 13. The back-section of the kth-order Pascal noninteger-

delay filter. 

noninteger-delay filter can be realized by using the struc-
tures from front-section and back-section as shown in 
Fig. 14. 

The third-order Pascal noninteger-delay filter in 
Fig. 14 needs 6 multiplications and 11 additions. Table 2 
lists the numbers of multiplications and additions of the 
third-order polynomial-interpolation-type filters using three 
types of structures. 

1z
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Fig. 14. The third-order Pascal noninteger-delay filter. 

 

Type of filter 
No. of 

Multiplications 
No. of 

additions 
Direct-form Farrow structure 15 12 
Transformed Farrow structure 11 11 
Pascal noninteger-delay filter 6 11 

Tab. 2. Comparison of computational complexities of the 
third-order polynomial-interpolation-type filters. 

 

Type of filter 
No. of 

Multiplications 
No. of 

additions 

Direct-form Farrow structure kk 22   kk 2  

Transformed Farrow structure in 
[12–14] 
     (Odd-order) 
 
      
     (Even-order) 
 

 
 

2

142  kk
 

2

32 kk 
 

 
 

2

142  kk
 

2

32 kk 
 

Pascal noninteger-delay filter 33 k  
2

252  kk
 

Tab. 3. Computational complexities of the kth-order polyno-
mial-interpolation-type delay filters. 

Clearly, the Pascal noninteger-delay filter has less 
complexity than other 2 types of the polynomial-interpola-
tion-type filters, especially the number of multiplications is 
much less. 

The complexity of the kth-order Pascal noninteger-
delay filter is compared with the polynomial-interpolation-
type noninteger-delay filters having the direct-form Farrow 
structure and the Farrow structures after symmetry trans-
formations are shown in Tab. 3. 

The computational complexities from the second-or-
der to 30th-order of 3 types of polynomial-interpolation-
type delay filters are shown in Fig. 15 and Fig. 16, respec-
tively. 

By using Fig. 15, we can compare the numbers of 
multiplications of 3 types of realization structures. As 
compared to the direct-form Farrow structure [1], the 
structures using symmetry transformations [11–13] can 
reduce the number of multiplications by about 50%. How- 
ever, the number of multiplications required by the method 
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Fig. 15. Number of multiplications of 3 types of the polyno-

mial-interpolation-type delay filters. 
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Fig. 16. Number of additions of 3 types of the polynomial-

interpolation-type delay filters. 

in [11–13] is not linear with respect to the order k, but it is 
a square function. The Pascal noninteger-delay filter re-
quires fewer multiplications than the Lagrange-type with 
transformed Farrow structures [11–13]. 

The number of multiplications is linear with respect to 
the order k. In Fig. 16, we compare the numbers of addi-
tions of 3 types of polynomial-interpolation-type delay 
filters, the Pascal noninteger-delay filter requires less addi-
tions than the direct-form Farrow structure [1]. Obviously, 
since the Pascal noninteger-delay filter requires the lowest 
computational complexity, it is more suitable for fast fil-
tering.  

6. Conclusion 
In this paper, we have derived a new filter realization 

structure for the polynomial-interpolation-type delay filter. 
Since it is formulated from the discrete Pascal transform 
(DPT) and Pascal interpolation, we call it Pascal nonin-
teger-delay filter. The resulting Pascal noninteger-delay 
filter has a low-complexity structure that contains two 
sections (front-section and back-section). The former con-
sists of multiplierless filters only, and the latter requires 
less multiplications. Because the proposed Pascal structure 
can online adjust the delay with less multiplications, it is 
suited for fast tuning applications. Moreover, we have 
compared the numbers of multiplications of 3 types of the 
polynomial-interpolation-type delay filters, and concluded 
that the Pascal structure requires the smallest number of 
multiplications. Consequently, the polynomial-interpola-
tion-type delay filter can be achieved by using the Pascal 
approach with high efficiency and the lowest complexity 
filter structure. 
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