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Abstract. Unmanned Aerial Vehicles (UAV) will increas-
ingly be used for responding to emergencies or for law 
enforcement in civil surveillance applications. Transferring 
the enormous amounts of information from UAV-mounted 
cameras or sensors will require large bandwidths, unlike 
the information required for remotely controlling a UAV, 
thus necessitating higher frequency bands typically in the 
vicinity of 2 or 5 GHz. Novel hardware developments will 
need to rely on a versatile propagation channel model for 
the envisaged scenarios ranging from deep shadow urban 
areas to open fields. This paper studies more complex 
intermediate scenarios, which fall between the aforemen-
tioned ones, and which are more difficult to model. A semi-
deterministic model, first developed for open, flat areas, 
has been generalized to accommodate any possible opera-
tional scenario and was tested in built-up areas. The model 
involves a stochastic part and a determinist which is a ray-
tracing based part used to compute the long term mean 
(LTM) of the signal's coherent component. 
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1. Introduction 
Unmanned Aerial Vehicles (UAV) will soon be 

widely used in civil applications as these systems offer 
a more economical and safer overview to the observer than 
helicopters or airplanes. By using 2 or 5 GHz high fre-
quency bands, more information can be transferred than at 
low frequencies which are primarily used for remotely 
commanding the UAV. However, such high frequency 
links undergo higher diffraction and shadowing/blockage 
losses [1], so new hardware is needed to transmit the infor-
mation from a UAV to the command center ultimately 
leading developers to seek propagation channel models to 
define optimized architectures, modulations, coding, etc.  

For low elevations between a UAV and the ground 
station, propagation characteristics lie between those of 
terrestrial and land mobile satellite links. Generative prop-
agation channel models for land mobile satellite channels 

are reviewed in [2] while a survey of models for terrestrial 
propagation can be found in [3]. For UAV links, a univer-
sal propagation channel model is called for, one which is 
reliable and precise in all envisaged environments ranging 
from open to dense urban environments with deep shad-
owing conditions. A characterization of possible shadow-
ing features, in terms of obstacle sizes and heights, is illus-
trated in Fig. 1 where buildings, trees, barns and walls are 
taken into account. Major terrain irregularity effects were 
not considered in this study as the chosen measurement 
scenarios were limited to flat areas. 

A detailed path loss analysis is performed in [4], [5] 
and [6]. A modeling and experimental study for the open, 
flat areas was presented in [7] where a 2×2 MIMO semi-
deterministic propagation channel model for UAVs with 
low elevation was first described. This semi-deterministic 
model is an evolution of a purely stochastic one developed 
for deep shadow conditions [8] applying a method from 
a vehicle-to-vehicle MIMO propagation channel model [9]. 

 
Fig. 1. Classification of studied environments as a function of 

obstacle size and height. 

This paper aims to generalize the semi-deterministic 
model, originally developed for open areas [7], for more 
complex, cluttered scenarios such as built-up areas or areas 
such as those shown in Fig. 1. Contrary to what was ob-
served for significantly deep shadow areas [8] where 
a purely stochastic approach was sufficient, there is a need 
for a deterministic, ray-tracing based component which 
cannot be reproduced by a purely statistical approach in 
open and cluttered areas. 



RADIOENGINEERING, VOL. 24, NO. 4, DECEMBER 2015 1045 

 

2. Measurements 
Our measurement campaign was performed in the 

2 GHz band using a Multiple Input Multiple Output 
(MIMO) setup based on criteria laid out in [10] where 
channel separation was achieved through the use of two 
nearby carriers within the assumed channel's coherence 
bandwidth. A number of scenarios, as shown in Fig. 1, 
were measured [10]. However, in this paper attention was 
focused on a built-up area. 

2.1 Setup 

A remotely controlled airship, simulating a UAV and 
shown in Fig. 2, carried the transmitter (Tx) with two 
downward quarter-wave monopole antennas spaced 
d = 31.78 cm (over two wavelengths) apart.  

 
Fig. 2. Tx equipment, two monopole antennas, remote 

controlled airship. 

Figure 3 shows the static receiver (Rx) which is also 
composed of two monopole antennas with a four-rod 
ground plane. The monopoles were placed on a 1.5-m-high 
tripod with equal separation, d = 31.78 cm, as on Tx. A 2x2 
MIMO receiver acquired instantaneous power at a 10 kSps 
(samples per second) rate. The measurement bandwidth of 
12.5 kHz accommodated the small Doppler shift, caused by 
airship motion, and provided a sufficiently small noise 
floor for a high dynamic range. 

The 2×2 MIMO configuration is depicted in Fig. 4. 
As in [11], the transmit frequencies were extremely close to 
one another (F1 = 2001.0666 and F2 = 2000.8666 MHz) and 
within the expected channel's coherence bandwidth, but far 
enough apart for the receiver's selectivity to separate the 
signals.  

Only received power was measured as no phase in-
formation was recorded, i.e. |h|2, where h is the channel 
response at the carrier frequency. The measurements were 
narrowband since continuous wave (CW) signals were 
used. This setup allowed the recording of sub-channels 
|h11|

2, |h12|
2, |h21|

2 and |h22|
2. 

 
Fig. 3. Rx equipment: 1) Detail of antennas. 2) Receiver.  

3) Computer with software. 

 
Fig. 4. 2×2 MIMO propagation channel schematic. 

2.2 Airship Trajectory 

Figure 5 depicts the airship trajectory with a maxi-
mum terrain height difference (without considering build-
ings) of 38 m. The airship flew along the perimeter of 
a square with two parallel and two perpendicular flight 
paths with respect to Rx. The square sides were 200-m-
long and the ground distance between Rx and Tx was ap-
proximately 2.7 km. The airship speed was 5-8 m/s, so the 
small Doppler shift was covered by the receiver bandwidth, 

 

Fig. 5. Airship trajectory top view and projection onto side 
view. 
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hence, it was neglected in further analysis. The elevation 
angle was set from 1° to 3°, in 0.5° increments, resulting in 
20 flight paths. By performing ray-tracing, it was verified 
that all terrain interactions took place in the narrow shaded 
triangle close to Rx, which means that, in practice, the 
relevant part of the terrain profile for all flight path transmit 
points was the same for all Tx positions as shown in Fig. 5. 

3. Versatile Propagation Channel 
Model 
Compared to the open field scenario [7] with two 

clear coherent contributions (direct and ground reflected 
rays), cluttered areas introduce more rays subject to dif-
fraction and reflection which make up the coherent or ge-
ometry-dependent component of the proposed semi-deter-
ministic model. 

3.1 Preliminary Requests 

In this paper we concentrated on the SISO case and, 
thus, analyzed one of the four available sub-channels. The 
others were used for consistency tests in the recorded 
signal.  

Slight modifications to the model parameter extrac-
tion procedure used for open areas in [7] were introduced 
with the received power, P (dBm), acquired at a sampling 
rate of 10 kSps. The signal was then decimated by a factor 
of 32 (window 1, W1). The sampling rate was, thus, re-
duced to 312.5 Sps and yielded a new series, P' (dBm). The 
line-of-sight (LOS) power, PLOS (dBm), was calculated 
using the link budget equation and subtracted from all four 
channels yielding the excess gain, G (dB), given by 
G(dB) = P' – PLOS. Note that G(dB) = 10 log10|h|2. 

The method of moments, MoM, [12] was applied to 
all four channel series. This technique assumes local Rice 
distributed variations and produces the following 
parameters: direct signal amplitude, A, and local average 
multipath power, . A 16-sample window (window 2, W2) 
was used to extract the coherent component amplitudes 
A (dB) and the incoherent component average powers 
 (dB). The same window, W2, was used for low-pass 
filtering of the A and  series by computing the running 
mean. A new series, A' (dB), resulted from subtracting the 
obtained long-term mean of A, LTM(A), i.e., 
A'(dB) = A  LTM(A). Similarly, the series '(dB) was 
obtained from (dB), '(dB) =  – LTM() + <LTM()>, 
where <LTM()> is the mean value of LTM().  

A general model is used to model first- and second-
order characteristics of the propagation channel model for 
different scenarios. This model is composed of a determin-
istic part, whose structure changes with the scenarios, and 
a statistical part, whose structure remains the same with 
only the parameters being modified. Figure 6 shows the 
channel model's schematic diagram with greater detail of 
the  model  given  in  [7].  The  channel  model  consists of 

 
Fig. 6. SISO propagation channel model for an urban 

environment. 

a coherent component divided into a geometry-dependent 
(deterministic) part and a slowly varying stochastic term, in 
addition to an incoherent component (diffuse multipath) 
representing the diffuse multipath contribution. 

3.2 Geometry-dependent Coherent Compo-
nent and Simple Ray-tracing Calculation 

As there is a deterministic component in the received 
signal that cannot be reproduced by means of statistical 
techniques, it was necessary to perform simple ray-tracing 
to evaluate this coherent component, thus, limiting our 
analysis to a small number of Rx locations and elevation 
angles. Figure 7 shows an aerial photograph of Fleming 
Square, in Prague, with two yellow points indicating the 
measurement locations. The perimeter of the local envi-
ronment (an open square in a built-up area) which is most 
likely to affect the propagation conditions is also shown. 

 
Fig. 7. Buildings close to Fleming Square (yellow outline) in 

Prague (Czech Republic). 
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Blue and green lines show the paths from the corner points 
representing the flight path (Fig. 5) to the two Rx locations. 
The red line demonstrates how the crescent-shaped group 
of buildings on the right side of the photo of the perimeter 
cannot contribute side reflections significant enough to 
affect the received signal. 

In this case, the 3D propagation conditions can be 
simplified to the vertical-plane 2D representation depicted 
in Fig. 8. As discussed in [8], the closest-to-Rx building's 
edge influences the received signal the most, hence, build-
ings beyond this point are neglected. The elements consid-
ered in the ray-tracing include a 15-m-high building edge 
located 100 m from Rx which was placed on a 1.5-m-high 
tripod sitting on a 1-m-high hill. Behind Rx there is a mod-
ern building with a glass surface which is 21 m in height 
and 55 m away from Rx. We calculated the power as the 
complex sum of four rays. The variations in each ray, as Tx 
moves, give rise to signal variations related to the com-
puted value. Such variations were modeled statistically. 

Figure 8 shows the magnitudes of the various rays, 
which were computed as follows: the first ray is a direct 
path undergoing diffraction; the second is a diffracted 
ground-reflected ray with a reflection coefficient of 
ρ1 = 0.8; the third is a diffracted-reflected ray with the 
reflection point located on the tinted-glass building behind 
Rx with a reflection coefficient of ρ2 = 1; the fourth 
reaches Rx via a reflection on the glass building (ρ2) and 
then the ground (ρ1). Due to an extremely low elevation 
angle, and its relative insignificance, the figure is not 
drawn in scale. 

 
Fig. 8. Ray–tracing 2D diagram. 

The diffraction loss can be calculated using a simple 
knife-edge model [13] where the diffraction parameter is 
given by 
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where h is the difference between edge height and the in-
tersection point of the LOS path with the knife-edge plane, 
 is wavelength, and d1 and d2 are the distances of Tx and 
Rx from the knife edge. The diffraction loss is Fi and is 
given by 
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where C and S are Fresnel integrals. The total received 
power, relative to LOS, is given by the complex sum of the 
four rays, namely 
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which is L = 20·log10(|g|), a diffraction loss in logarithmic 
units meaning this vector represents LTM (A), the coherent 
component series. 

3.3 Stochastic Element of the Coherent 
Component 

The stochastic component of the deterministic part 
discussed above, LTM(A), is modeled using a normal dis-
tribution in dB (log-normal in linear units). The autocorre-
lation function is approximated by a Gaussian function, 
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where A2  is the correlation time, vA2  is the correla-

tion length, and v is the airship's velocity. LPF2 (Fig. 5) is 
an FIR filter with an impulse response such that 
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More details can be found in [7]. The zero mean fil-
tered output is multiplied by the standard deviation ΣA(dB), 
then added to the vector containing the geometry-depend-
ent component and, finally, the result is converted to linear 
(voltage/field) units, i.e., 20/'10 Aa  . 

3.4 Diffuse Component 

The principle for diffuse component generation did 
not change. The multipath power, ', series generator is 
also based on filtering normally distributed random time 
series generated in a similar way as the coherent compo-
nent. The impulse response of the FIR filter follows the 
same expression as (5), a detailed extraction of which is 
described in [4]. The output series is multiplied by the 
standard deviation, ΣΓ(dB), and the mean value, MΓ(dB), is 
added. Series ', in logarithmic units, is converted to the 

linear units using 10/'105.0  which then multiples the 

output of the two Gaussian random generators in quadra-
ture to set the appropriate multipath power level. The two 
Gaussian generator outputs are first filtered to include the 
Doppler spreading effect. This low-pass Butterworth filter 
is obtained by a trial-and-error method, with the following 
specifications: fPASS = 1 Hz; RPASS = 0.5 dB; fSTOP = 120 Hz; 
and RSTOP = 40 dB which, together, shape the signal spec-
trum in the desired way as in the measurements. The output 
is added to coherent part a to produce the channel's com-
plex envelope time series. 

3.5 Model Parameters 

Model parameters were obtained for two Rx locations 
at Fleming Square and are summarized in Tab. 1. They are  
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Fig. 9. Measured 2×2 MIMO time series. 

 
 

 1 deg 2 deg 3 deg all 
 Av. Std. Av. Std. Av. Std. Av. Std.

A' 
(dB) 

0.369 0.108 0.379 0.125 0.354 0.121 0.610 0.428 

vA 
(m) 

0.042 0.011 0.037 0.008 0.032 0.008 0.038 0.010 

' 
(dB) 

-
46.26 

1.96 
-

42.66 
1.94 

-
41.77 

1.88 
-

44.08 
2.68 

' 
(dB) 

1.391 0.230 1.353 0.262 1.288 0.222 1.352 0.242 

v' 
(m) 

0.038 0.007 0.039 0.006 0.036 0.009 0.038 0.007 

Tab. 1. Model parameter ranges for different elevation angles. 

notably similar as they are almost entirely independent of 
the elevation angle. The only parameter where the depend-
ency on elevation angle is noticeable is the mean value of Γ 
(MΓ) which increases with elevation. 

4. Data Analysis and Discussion 
A long pathway with a mean elevation angle of 3.17° 

is presented. Other series were fit similarly. The measured 
signal's LTM(A) vector was used in the synthesis to com-
pare the results. The synthetized and measured signals are 
depicted in Fig. 10. In the deep nulls, the measured signal 
(blue curve) was clipped by the receiver's dynamic range, 
while the synthetized signal (red curve) was not clipped. 

Figure 11 shows the histograms of the various model 
parameters extracted using the MoM technique [12]. As 
explained earlier, the signal is divided into a coherent part 
A and a diffuse part represented by Γ. Parameters A’ and 
Γ’, derived from the previous ones, can be approximated by 
Gaussian distributions. 

Vectors LTM(Γ) and LTM(A) were found to be un-
correlated. The behavior of LTM(A) can be described as 
the combination of four rays which can be identified and 
quantified using simple ray-tracing. LTM(Γ) was, as in [7], 
kept constant.  

 
Fig. 10. Measured and synthetized signal for a long pathway 

with elevation angle = 3.17 °. 

 
Fig. 11. Histogram of MoM parameter extraction results. 

 
Fig. 12. Measured and synthetized signal a) CDF b) AFD. 

Finally, Fig. 12 a) shows the cumulative distribution 
function (CDF) for the measured and synthetized signals. 
The differences at the tails of the distributions are due to 
the clipping of the deep nulls in the measurements. 
Fig. 12 b) shows the average fade duration (AFD) for 
measured and synthetized signal as having fair agreement. 

5. Conclusion 
In this paper a semi-deterministic channel model was 

developed for a built-up area and the obtained parameter 
set corresponding to the statistical part was computed. The 
geometry-dependent component was obtained using a sim-
ple 2D ray-tracing method. Four main rays were identified.  

Values below 121 dBm (121 dBm absolute value 
44 dB in LevelPLOS) were clipped during the measure-
ment. In the case of the synthetized signal, there was no 
need for clipping as shown in Fig. 10. 
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The model is described with full parametrization for 
elevations angle from 1 to 3 deg. which supports the gen-
eral purpose of this model. The model is valid for 1st-and 
2nd-order characteristics such as CDF and AFD.  

The model generality can be seen when the parameter 
ranges were only adapted in the stochastic part and the 
principle and schematic were not changed, even though the 
deterministic part was totally adapted to an urban scenario. 
This model enables us to synthetize the time series of one 
representation, so that when many representations are ap-
plied, similar statistics to the real measured channel are 
obtained. 
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