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Abstract. In this paper, a cascade structure of nonlinear 
digital predistorter (DPD) synthesized by the direct learn-
ing adaptive algorithm is represented. DPD is used for 
linearization of the power amplifier (PA) characteristics, 
namely for compensation of PA nonlinear distortion. 
Blocks of the cascade DPD are described by different 
models: the functional link artificial neural network 
(FLANN), the polynomial perceptron network (PPN) and 
the radially pruned Volterra model (RPVM). At synthesis 
of the cascade DPD there is possibility to overcome the ill 
conditionality problem due to reducing the dimension of 
the DPD nonlinear operator approximation. Results of 
compensating nonlinear distortion in Wiener–Hammer-
stein model of PA at the GSM–signal with four carriers are 
shown. The highest accuracy of PA linearization is pro-
duced by the cascade DPD containing PPN and RPVM. 
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1. Introduction 
With development of mobile communication, re-

quirements for transmitting systems containing power 
amplifiers become increasingly stringent. PA is a nonlinear 
device, where the transmitted signal is distorted and its 
spectrum extends beyond the boundaries of the communi-
cation channel bandwidth. As a result, in multi-channel 
communication systems the distortion caused by the influ-
ence of adjacent channels is amplified (inter-channel inter-
ference is emerged) [1]. 

To prevent the extension of the PA output signal 
spectrum and to maintain high PA energy efficiency the 
linearization of the PA characteristics is fulfilled. One of 
universal linearization methods is the digital predistortion 
(precompensation), which is characterized by robustness, 
simplicity of predistorter hardware implementation, effi-
ciency of nonlinear distortion canceling [3]. The purpose of 
digital predistorter (DPD, precompensator) is to linearize 

the PA characteristics by introducing a predistortion com-
pensating nonlinear PA distortion. In wideband communi-
cation channels PAs with high efficiency are described by 
nonlinear dynamic models therefore DPDs have nonlinear 
dynamic models, too [1]. 

Both the modification of DPD polynomial models and 
the DPD synthesis on the basis of neural networks are 
developed [3]. Neural models can be much simpler than 
polynomials. This fact is important for DPD hardware 
implementation. 

The present work describes the use of the functional 
link artificial neural network [2–4] and the polynomial 
perceptron network [4], [5] for synthesis of the cascade 
DPD in order to improve the quality of cancellation of 
nonlinear signal distortion in PA. The comparative analysis 
of DPD models is considered by the example of compen-
sating nonlinear distortion in the Wiener-Hammerstein 
model of PA at the GSM-signal with four carriers. 

2. Cascade Structure of Adaptive DPD 
DPD introduces nonlinear predistortion in order to 

compensate PA nonlinear distortion or to linearize PA.  

A structure of an adaptive DPD link to PA in accord-
ance with the feedforward algorithm of DPD learning is 
shown in Fig. 1 [6]. Here, DPD is described by the nonlin-
ear operator S composed of two nonlinear operators S1, S2, 
which are characteristic of two cascade connected blocks 
correspondently. The operators S1 and S2 are introduced in 
the operational equations  

  )()( 1 nxSnzd  ,   )()( 2 nzdSnz  , 

where n is the normalized discrete time, x(n), z(n) are the 
DPD input and output signals respectively, zd(n) is the 
output signal of the block described by the operator S1 and 
shown in Fig. 1. 

Models of nonlinear operators S1 and S2 are con-
structed by solving the approximation problem 
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Fig. 1. The structure of the DPD feedforward learning 

algorithm. 

where y(z(n)) is the PA output signal, Nx is the number of 
samples of the input signal x(n). At first we build a model 
of the operator S1, followed by a model of the operator S2. 
Polynomials and neural networks can be used as nonlinear 
operator models 

Parameters of cascade DPD nonlinear models are 
derived from the solution of the approximation problem (1) 
by iteration procedures under the following equations: 

)()()(1 nenznz kkk  , 1k , 

)()()(1 nenzdnzd kkk  , 1k , 

where k is the iteration number, ek(n) is the error of PA 
linearization at the k-th iteration,  

 )()()( nzynxne kk  . 

For k = 1 let us assume that  

)()()( 11 nxnzdnz  . 

PA has a low nonlinearity that is why its model can 
be represented as the convergent Volterra series. As a re-
sult the predistorter is weakly nonlinear. This condition 
influences the quick convergence of the DPD synthesis 
iteration procedure. 

At the cascade DPD synthesis the decomposition of 
the approximation problem (1) is carried out, i.e. the ap-
proximation problem (1) with a high dimension is divided 
into two approximation problems with less dimensions 
solved in DPD blocks consecutively. Under this approach 
the ill conditionality problem of the approximation prob-
lem (1) is solved.  

We use FLANN [2–4] and PPN [4], [5] as models of 
the nonlinear operators S1 and S2. 

3. Functional Link Artificial Neural 
Network 
FLANN is a single-layer network [2–4]. Therefore 

the algorithm of this network learning has a more rapid 
convergence to the solution of the approximation problem 
and it is simpler in comparison with the algorithms of tra-
ditional neural networks learning.  

The FLANN model is expressed as 

     )()()(
1

nfnwfny T
G

i
ii XΦWX 










 


 (2) 

where f is the nonlinear activation function of the network, 
X(n) is the vector of input signals, X(n) = [x1(n), x2(n),…, 
xQ(n)]T, T denotes transposing of the vector, W(n) is the 
vector of network weights, W = [w1, w2,…, wG]T, (X(n)) 
is the vector of the functions i, (X(n)) = 
[1(X(n)), 2(X(n)),…, G(X(n))]T, y(n) is the output 
signal of the model. 

The functions i, i = 1,2,…,G of the model (2) trans-
form input signals into basic functions by, for example, 
trigonometric polynomials, Legendre or Chebyshev poly-
nomials and carry out a multidimensional transformation of 
the obtained basis functions. The basic functions are 
formed for reducing the condition number at solving high 
nonlinear approximation problem. 

The FLANN structure is shown in Fig. 2. 

Fu
nc

tio
na

l 
lin

k
)(1 nx

1w

2w

+  f

)(2 nx

)(nxQ

 )(1 nX

 )(2 nX

 )(nG X Gw

)(ny.
.
.

.

.

.

 
Fig. 2. The FLANN structure. 

For DPD synthesis let us consider the linear activa-
tion function f in the model (2) and the basic functions as 
Chebyshev polynomials Ti (X(n)) of degree i, i = 1,2,…,P 
[2], [7].  From (2) we infer 

  )()( nny T XW     (3) 

where  

        ...,,)(...,,)(...,,)(,1)( 1211 nxTnxTnxTn QQXΦ  

      ...,,)()(...,,)( 21112 nxTnxTnxT Q  

       TQPPQQ nxTnxTnxTnxT )(...,,)(...,,)()( 1111  . 

In the considered case the block named “Functional 
link” (Fig. 2) is represented as a structure showed in Fig. 3. 
The block “Functional link” consists of two blocks. In the 
first block Chebyshev polynomials of different degrees are 
formed on the bases of a variety of input signals, and the 
second block is the multidimensional transformation. 

The FLANN model with Chebyshev basic functions 
is called Chebyshev functional link artificial neural net-
work (CFLANN). CFLANN corresponds to a two-layer 
perceptron neural network [7]. 
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Fig. 3. The structure of the block “Functional link”. 

 

First  
multiplier  

2x2(n)–1 
x(n)x(n–i) 
2x2(n–i)–1 

Second 
multiplier 

x*(n) 
x*(n–i) 

Tab. 1. Multipliers of CFLANN members of the 3rd degree. 
 

First  
multiplier  

4x3(n)–3x(n) 
4x3(n–i)–3x(n–i) 
(2x2(n)–1) x(n–i) 
(2x2(n–i)–1) x(n) 

Second 
multiplier 

(2x*(n))2–1 
(2x*(n–i))2–1 
x*( n)x*( n–i) 

Tab. 2. Multipliers of CFLANN members of the 5th degree. 
 

First  
multiplier  

8x4(n)– 8x2(n)+1 
8x4(n–i)– 8x2(n–i)+1 

(2x2(n)–1) (2x2(n–i)–1) 
x(n) (4x3(n–i)–3x(n–i)) 
x(n–i) (4x3(n)–3x(n)) 

Second 
multiplier 

4(x*(n))3–3x*(n) 
4(x*(n–i))3–3x*(n–i) 
(2(x*(n))2–1)x*(n–i) 
(2(x*(n–i))2–1)x*(n) 

Tab. 3. Multipliers of CFLANN members of the 7th degree. 
 

First  
multiplier  

16x5(n)–20x3(n)+5x(n) 
16x5(n–i)–20x3(n–i)+5x(n–i) 

x(n)(8x4(n–i)–8x2(n–i)+1) 
x(n–i)(8x4(n)–8x2(n)+1) 

(4x3(n)–3x(n)) (2x2(n–i)–1) 
(4x3(n–i)–3x(n–i)) (2x2(n)–1) 

Second 
multiplier 

8(x*(n))4–8 (x*(n))2+1 
8(x*(n–i))4–8 (x*(n–i))2+1 

(2(x*(n))2–1) (2(x*(n–i))2–1) 
(4(x*(n))3–3x*(n))x*(n–i) 

(4(x*(n–i))3–3x*(n–i))x*(n) 

Tab. 4. Multipliers of CFLANN members of the 9th degree. 

CFLANN of a predistorter should form an output 
signal spectrum located within the PA bandwidth at input 
signal frequencies and intermodulation frequencies of 
products generated by nonlinear PA [8]. 

The CFLANN model terms of odd (from the 1st to the 
9th) degrees are produced by multiplying every components 
of the top columns from Tab. 1–4 by every components of 

the corresponding bottom columns. In Tab. 1–4 the sign * 
means the complex conjugation, i is the signal delay. 

The mentioned multiplication results in producing the 
vector (X(n)), which is then multiplied by the vector WT 
in (3). As a result we form the CFLANN model of odd 
degree. 

4. Polynomial Perceptron Network 
PPN is a single-layer network [4], [5]. This network is 

characterized by the simplicity of its learning algorithm 
and high speed of convergence to the solution of the 
approximation problem. 

The PPN model is described by the expression [4], [5] 

   )()( nfny T XFW     (4) 

where f is the nonlinear activation function of the network, 
X(n) is the vector of input signals, X(n) = [x1(n), x2(n),…, 
xQ(n)]T, T denotes transposing of the vector, W(n) is the 
vector of network weights, W = [w1, w2,…, wG]T, F(X(n)) 
is the vector containing elements with multidimensional 
transformation, 

   ...,),(...,),(...,),(...,),(,1)( 22
11 nxnxnxnxn QQXF  

TP
Q

P
QQ nxnxnxnxnxnx )(...,),(...,),()(...,),()(..., 1121  , 

P is the degree of the function-vector element, y(n) is the 
output signal of the model (4). 

The PNN structure is shown in Fig. 4. 
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Fig. 4. The PNN structure. 
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From a comparison of PPN and FLANN it follows 
that FLANN (Fig. 2) is obtained from PPN (Fig. 4) by the 
additional transformation of input signals in basic functions 
by using Legendre polynomials, Chebyshev polynomials, 
etc. 

For DPD synthesis let us assume that the activation 
function is linear in the model (4). We can rewrite (4) as  

  )()( nny T XFW .  (5) 

The input signal vector X(n) is formed on the basis of 
delay line. Multidimensional transformation F in the model 
(5) is performed under conditions of constructing inter-
modulation spectral components of the DPD output [8], 
[9].  

As a result we obtain the following PPN model  

 )()()( 21 nynyny   (6) 

where  
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* is the sign of complex conjugation, M is the memory 
length, P is the odd degree of polynomial, 

  









M

i

k
k

P

k

nxwnxinxny
1

2)9(
52

2/)5(

0

32*
2 )()()()(  

 








M

i

k
k

P

k

nxwinxnx
1

2)10(
32

2/)3(

1

2* )()()(  

  









M

i

k
k

P

k

inxwnxinx
1

2)11(
52

2/)5(

1

32* )()()(  

  









M

i

k
k

P

k

nxwinxnx
1

2)12(
52

2/)5(

1

32* )()()(  

 







2/)3(

1

2)13(
32

1

2
)()()(

P

k

k
k

M

i

inxwnxnx  










2/)3(

1

2)14(
32

1

2
)()()(

P

k

k
k

M

i

nxwnxinx .       (8) 

The expression (7) describes the radially pruned Volterra 
model (RPVM). RPVM is the regressive form of the trun-
cated Volterra series. Volterra kernels in RPVM are built 
on a hypercube grid and radial directions are selected on 
the basis of the 3rd order kernel [9], [10]. 

5. Compensation of Nonlinear Distor-
tion in PA Wiener-Hammerstein 
Model 
In practice a nonlinear PA exhibits a memory effect 

that is why a nonlinear predistorter with memory should be 
used for compensation of PA nonlinearity. 

In the presented example, we assume the PA model is 
Wiener-Hammerstein model composed of a linear time-
invariant (LTI) system, followed by a memoryless nonline-
arity, which is in turn followed by another LTI system [9], 
[11]. The LTI blocks before and after the memoryless non-
linearity have the system functions given by 

1

2

1
2.01

5.01
)(










z

z
zH , 

1

2

2
4.01

1.01
)(










z

z
zH , 

correspondently. The memoryless nonlinear part of the 
described PA model is given by 

4
5

2
31 )()()()()()( nvnvbnvnvbnvbnw  , 

where jb 0858.00108.11  , jb 1583.00879.03  , 

jb 8891.00992.15  , v(n) is the output signal of the LTI 

system with the function )(1 zH . 

The input signal for the PA model is the complex 
envelope of a GSM-signal with four carriers in the 
frequency baseband with the bandwidth of 20 MHz. The 
sampling frequency of the GSM-signal complex envelope 
is 184.32 MHz.  

The dependences of the normalized magnitude and 
phase change of the PA output signal on the PA input sig-
nal normalized magnitude are depicted in Fig. 5 (a), (b). In 
Fig.5 (c) the power spectral densities (PSD) of the de-
scribed PA model input and output signals without DPD 
application are shown by dotted (1) and solid (2) lines 
correspondingly. 

The adaptive DPD based on CFLANN of the 9th de-
gree, RPVN (7) with P = 7, PPN (6) with P = 7 and the 
cascade connection of these models are constructed to 
linearize the above-mentioned PA model. It should be 
noted,  that all  the top  indexes  of the sums in  expressions 
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Fig. 5. PA characteristics and signal PSD without DPD. 

(7) and (8) are (P – 1)/2. The memory length of the inves-
tigated models is 4 (M = 4 in (7), (8)). 

The PA linearization error is estimated by normalized 
mean-square error (NMSE). This error is calculated from 
the expression  

 
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y z n x n
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 dB, 

where x(n) is the complex-valued input signal of the cas-
cade connection between DPD and PA shown in Fig. 1, Nx 
is the number of samples in the input signal x(n), Nx = 
106339, y(z(n)) is the PA complex-valued output signal. 
 

Model NMSE Q 
 CFLANN of the 9th degree –65.04 226 

RPVM (7) at P = 7 –72.87 145 
PPN (6) at P = 7 –75.50 221 

Cascade 
connection 

CFLANN of the 9th degree 
and CFLANN of the 7th 
degree 

–69.42 375 

RPVM (7) at P = 7 and 
RPVM (7) at P = 7 

–78.14 290 

PPN (6) at P = 7 and 
RPVM (7) at P = 7  

–79.14 366 

Tab. 5. NMSE and Q in DPD models. 

NMSE estimated on the 45th iteration of the DPD 
adaptive algorithm and the number Q of coefficients in 
DPD models are presented in Tab. 5. 
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Fig. 6. PA characteristics and signal PSD with the cascade 
DPD including the PPN and RPVM models. 
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As can be seen from Tab. 5, the PPN model provides 
higher accuracy of PA linearization than RPVM and 
CFLANN. The use of the cascade DPD structure leads to 
an increased PA linearization accuracy. The highest accu-
racy is achieved by the cascade DPD structure with PPN 
and RPVM. 

Taking into account the cascade DPD with PPN and 
RPVM models the dependences of the normalized magni-
tude and phase change of the PA output signal on the nor-
malized magnitude of the DPD input signal are shown in 
Fig. 6 (a), (b). The PSD of the PA output signal at the 
mentioned cascade DPD is depicted in Fig. 6 (c). 

From comparison of Fig. 6 with Fig. 5 it follows that 
the cascade DPD consisting of PPN and RPVM models 
gives a high quality of PA Wiener-Hammerstein model 
linearization. 

6. Conclusions 
On the basis of the decomposition of the DPD nonlin-

ear operator approximation problem into two sub-problems 
solved consecutively, it is possible to remove the ill condi-
tionality from the DPD nonlinear operator approximation 
due to reduction of the approximation problem dimension. 

This decomposition is realized in a cascade DPD 
synthesis. DPD block models are built as the functional 
link artificial neural network, the polynomial perceptron 
network and the radially pruned Volterra model. 

DPD is synthesized for compensation of nonlinear 
distortion in PA Wiener-Hammerstein model at the com-
plex envelope of a GSM-signal with four carriers. The 
predistortion results in the facts that the cascade DPD 
composed of PPN and RPVM linearizes PA with the high-
est accuracy, and the cascade DPD based on CFLANN 
yields the lowest accuracy of PA linearization. 
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