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Abstract. The work presented in this paper describes a novel
approach for automatic video tracking of visual degraded air
vehicles in daylight with sky background. The offered and
applied video object tracking method is based on Histogram
Probabilistic Multi Hypothesis Tracker algorithm. The H-
PMHT is an expectation maximization based algorithm de-
veloped for tracking objects in intense clutter environment by
using intensity modulated data streams. Basically H-PMHT
algorithm is suitable for linear-Gaussian point spread func-
tion case. However, recent studies have indicated that the al-
gorithm is also applicable for non-linear and non-Gaussian
target shapes. Thus H-PMHT becomes a suitable alternative
for tracking applications with sonar, high resolution radars,
IR, UV sensors and cameras. In this work H-PMHT algo-
rithm is used for video tracking of visual degraded air vehi-
cles. For this purpose RGB video data is processed by using
a reciprocal pixel intensity measurement for meeting the re-
quirements of the tracking process. A simulation study is
conducted in order to demonstrate the video tracking perfor-
mance ofH-PMHTagainst visual degraded air vehicles. Also
the results obtained with H-PMHT algorithm are compared
with the results of amplitude information added Interacting
Multi Model Probabilistic Data Association algorithm.

Keywords
Visual degraded air vehicles, Histogram PMHT (H-
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1. Introduction
Using conventional single point tracking algorithms is

not fully compatible with video object tracking scenarios
because of time-varying shapes and pixel spreading areas
of objects. In conventional algorithms tracking is fulfilled
by processing the point-measurement data [1]–[3]. In order
to realize video object tracking by using point-measurement
data, a point is defined instead of pixel spreading object by
using mid-point or center of gravity. In both cases point mea-
surement does not represent the pixel-spreading nature of the
object exactly, and this leads to an increment in measurement
error. Using whole data streams may be an effective ap-
proach for obtaining more accurate track expectations. Also

using whole data provides an optimal approach. In this con-
text Histogram Probabilistic Multi Hypothesis Tracker (H-
PMHT) presents an optimal and furthermore track-before-
detect (TkBD) algorithm.

The H-PMHT [4] is basically an EM based algorithm
for handling data streams, and tracking objects in high clut-
ter environment. H-PMHT uses histogram intensity data
directly and provides rather satisfactory results for one di-
mensional [5], [6] and two dimensional [7] applications. In
the applications taken part in references [5]–[7] spreading of
the target intensities presents almost a linear-Gaussian dis-
tribution, on the other hand for non-linear and non-Gausian
applications a particular solution presented in [8] with par-
ticle filters. Also video tracking applications presented in
[9] with a special processed video data, and in [10] with
simulated image sequence were realized by using a modified
H-PMHT, which is called H-PMHT with random matrices
(H-PMHT-RM).

In this study H-PMHT algorithm is used for video track-
ing of visual degraded air vehicles in-flight. Visual degraded
air vehicles have low-emissive and environmentally com-
patible dark paint and peculiar structures for absorbing and
scattering of light. In the look-up case detecting air vehi-
cles in daylight is almost inevitable even though they have
degraded vision or not. Since the sky is generally much
brighter than the vehicle [11]. Therefore the innovation of
this study does not emerge from detection of air vehicle and
its conventional tracking, but processing the video data and
using it for tracking purposes. Visual unprocessed air vehi-
cles produce higher pixel intensity ratio than visual degraded
air vehicles, and in some conditions with regard to the posi-
tion of sun and reflection of its lights visual unprocessed air
vehicles produce higher pixel intensity ratio even than back-
ground intensity ratio. On the other hand visual degraded air
vehicles normally produces lower pixel intensity ratios than
sky-background intensity ratios. This phenomenon causes
some processing complications for using with intensity ratio
based tracking algorithms, including H-PMHT.

In H-PMHT algorithm to detect target location from
the data streams, high intensity ratio pixel clusters should be
searched, and decided whether they emerge from target or
clutter. However, visual degraded aerial vehicles in daylight
have lower intensity histogram data than background, which
is composed of sky and clouds. This condition especially
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takes place when tracking air vehicles from ground to air
or air to air. This results with low pixel intensity ratio for
targets, and high pixel intensity ratio for background. For ob-
taining H-PMHT compatible measurement data, first video
for aerial vehicles is taken in true color (RGB), and then
reciprocal pixel intensity measurement (RPIM) technique is
applied to this data. By that way proper data streams, com-
posed of aerial vehicles and sky background, are obtained
for processing with H-PMHT. The obtained data has non-
linear and non-Gaussian target distribution. Thereby not
only a technique for tracking visual degraded aerial vehicles
is presented but also the performance of standard H-PMHT
against to objects with non-linear, non-Gaussian, and time-
varying point spread function is evaluated. A simulation
study is conducted for different conditions and cases, and
the results of this study is presented in the related section.
Also the obtained results with H-PMHT are compared with
the results of IMMPDA-AI which is not only a trustworthy
probabilistic algorithm but also uses amplitude information
[12], [13].

2. Measurement Data Configuration
In this study developing a video tracking application for

visual degraded aerial vehicles is aimed at. For this purpose
RGB videos of different visual degraded aerial vehicles are
shot with an ordinary camera. In calculations each frame
is taken into account separately in time sequence. The first
operation on RGB images is to convert them into intensity
images. In order to obtain intensity image, averaging method
is the simplest one. For this purpose average of the three
colors is taken to obtain intensity or grayscale image. But
in this case the RGB image turned out to be a rather black
image. Weighted method provides a solution to that prob-
lem. In the presented case two assumptions are taken into
account; the wavelength of red color is the longest of all the
three colors, and green color gives more soothing effect to
eyes than that of red and blue colors. Then the process is ad-
justed by decreasing the contribution of red color, increasing
the contribution of green color, and selecting a proper con-
tribution ratio for blue color. Thus NTSC standard for RGB
to grayscale conversion is defined as in (1), and this general
conversion method is used for obtaining intensity image in
this work.

I(x, y) = 0.2989R(x, y)+0.587G(x, y)+0.114B(x, y). (1)

After obtainig pixel intensity ratios of measurement
RGB data, the reciprocal of the pixel intensity ratios are cal-
culated andmultiplied by 255 to unify the reciprocal intensity
ratios as follows;

IR (x, y) = 255 ×
(

1
I(x, y)

)
. (2)

The obtained data is named as reciprocal pixel inten-
sity measurement (RPIM), and proper to use with H-PMHT
algorithm. As an illustration, RGB images captured from

a video data shown in Fig. 1, the related intensity image is
shown in Fig. 2. Additionally RPIM image is shown in the
form of scaled image data in Fig. 3. RPIM is composed of
data streams, and projects the physical features of the aerial
vehicle without distortion in shape and size. In this case
spread function of targets are non-linear, non-Gaussian, and
time varying.

Fig. 1. RGB image for an aerial vehicle.

Fig. 2. Intensity image of Fig. 1.

Fig. 3. RPIM image in scaled data form of Fig. 1.

3. Basic Structure of H-PMHT
The H-PMHT algorithm is introduced in [4] with its

theory and derivations. Only a general structural outline



RADIOENGINEERING, VOL. 24, NO. 4, DECEMBER 2015 1093

for H-PMHT is given here. Before giving the derivation
of H-PMHT, its parametric TkBD structure is mentioned.
In classical methods thresholding, clustering, extracting and
tracking steps are performed consecutively. On the other
hand in the TkBD method all the steps occur concurrently
[14]. TkBD combines target detection and estimation by
removing the detection algorithm from the process and sup-
plying the whole sensor frame directly to the tracker. This
improves track accuracy and allows the tracker to follow low
SNR targets [10]. The H-PMHT incorporates the ability of
TkBD into the algorithm andmakes it able to extract extended
object tracks directly from an image sequence.

In the derivation of H-PMHT intensity of sensor data is
transformed into histogram data with a quantization process.
Quantization process is an intermediate step for derivation
purposes. At the final step of derivations limit of quantiza-
tion is taken and original data is used in the implementation.
Quantized data is assumed as the number of measurements
drop within each cell. In order to obtain the total number
of measurements, summation of total cells is taken. Total
measurement is emerged from the intensities of background
scattering and objects in the sensor region. The probability
mass function for these discrete measurements is modeled as
a multinomial distribution. The probability expression in (3)
represents an individual histogram shot falls in a cell.

Phs f =
P` (θt )
P(θt )

=

∫
B` (t ) f (τ |θt )dτ∑L(t )

`=1 P` (θt )
. (3)

B` (t) is the border of cell ` with respect to its di-
mension, and θt denotes parameter vector of the sample
probability density function (PDF) at time t. f (τ |θt ) rep-
resents a sample PDF defined over all sensor output space
(τ ∈ Rdim(C )), and it is the superposition of a background
clutter model (m = 0) and M target models. Also for all
cells (` = 1, ..., S) an additional classification is conducted.
In this context ` = 1, ..., L(t) represents the displayed cells,
and the remaining cells (` = L(t) + 1, ..., S) are said to be
truncated. Displayed cells are separated from the truncated
ones by comparing a predetermined threshold. If intensity
ratio of a cell is higher than the threshold level, the cell will
be assumed as a displayed cell. The threshold level may be
selected as zero, in this case all the cells in the sensor area are
assumed as displayed cells. Selecting threshold level higher
than the noise floor will result in a reduction of the number of
displayed cells. By the way cell elimination can be achieved,
and processing time will decrease. At low SNR values se-
lecting low threshold level may be an advantage, on the other
hand at high SNR values selecting high threshold level will
be convenient. Sample PDF (4) is assumed to be the mixture
density;

f (τ |θt ) ≡ f (τ |Xt ;Πt ) =
M∑
k=0

πtkGk (τ; Xt ), (4)

where Πt = {πtk } are defined as mixing proportions. Mix-
ing proportions form a probability vector, such as πtk ≥ 0,
and

∑M
k=0 πtk = 1. πtk represents the fraction of the total

power due to the targets k = 1, ..., M and background noise
k = 0. Gk (τ; Xt ) models the cell-to-cell variations of targets
k = 1, ..., M , and background noise for k = 0.

After obtaining probability expression for an individual
histogram point measurement (shots) falls in a cell, deriva-
tion of H-PMHT algorithm is started. H-PMHT stems from
PMHT [15], [16], and all derivations of PMHT are based
on Expectation Maximization (EM) method. Thus H-PMHT
algorithm can be outlined according to expectation (E) and
maximization (M) steps. The aim of EMprocess in H-PMHT
is to assign histogram distribution to the model components
and the precise location of shots as missing data. Addition-
ally it provides for unobserved cells that are notionally sensor
pixels for which no data was collected. The H-PMHT algo-
rithm determines the probability of the missing data in the
E-step and then refines the state estimates in the M-step. Ini-
tialization and iteration steps of H-PMHT are given below
according to E and M-steps without the derivation details.

3.1 Initialization of H-PMHT Algorithm
Before starting iterations, some initialization steps are

to be taken. At the beginning of each iterationmixing propor-
tions {π̂(0)

tk
} are determined for batch sequence {t = 1, ...,T }

as follows,

π̂(0)
tk

> 0 and

π̂(0)
t0 + π̂

(0)
t1 + ... + π̂

(0)
tM = 1. (5)

Also for target models k = 1, ..., M the following ini-
tializations take place,
- Target State Sequence: { x̂ (0)

0k , x̂ (0)
1k , ..., x̂ (0)

Tk
}

- Measurement Covariance Sequence: {R̂(0)
1k , R̂(0)

2k , ..., R̂(0)
Tk
}

- Target Covariance : Q̂(0)
k

3.2 Iteration Steps of H-PMHT Algorithm
The H-PMHT algorithm consists of iteratively repeat-

ing steps for each batch sequence t = 1, ...,T . Some of
these iteration steps come from E-step derivations, and the
remaining come from M-step derivarions. Throughout the
iterations the dynamic matrix F and measurement matrix H
are assumed as constant or time invariant. First of all the
iteration steps emerging from E-step are taken into account.

Step-1 (Expectation): The aim of this step is to find
Total Sensor Probabilities (TSPs). To accomplish this aim,
first of all Target Cell Probabilities (TCP) are calculated for
batch length t = 1, ...,T ; for all cells ` = 1, ..., S; and for
all target models, including background k = 0, 1, ..., M . For
the background and targets TCPs are calculated by using
different equations as follows.

P(i+1)
tk`

=




1
S if k = 0,∫
B` (t ) N (τ; Htk x̂ (i)

tk
, R̂(i)

tk
)dτ if k = 1, ..., M .

(6)
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Total cell probabilities (7) are obtained by summing the
product of TCPs andmixing proportions for all targetmodels,
including background,

P(i+1)
t`

=

M∑
k=0

π̂(i)
tk

P(i+1)
tk`

. (7)

Lastly, TSPs are obtained by using displayed cells as
follows,

P(i+1)
t =

L(t )∑
`=1

P(i+1)
t`

. (8)

Step-2 (Expectation): Expected measurements are
calculated for batch length t = 1, ...,T and for all cells
` = 1, ..., S.

z̄(i+1)
t`

=




zt`, 1 ≤ ` ≤ L(t),

‖ Zt ‖ (
P (i+1)
t`

P (i+1)
t

) L(t) + 1 ≤ ` ≤ S. (9)

‖ Zt ‖ represents L1 norm of displayed cells
{B1(t), ..., BL(t ) (t)} and it is defined as follows,

‖ Zt ‖=
∑L(t )

`=1 zt` .

Step-3 (Maximization): Cell-level Centroids (ClCs)
are calculated by using (10),

z̃(i+1)
tk`

=
1

P(i+1)
tk`

∫
B` (t )

τ N (τ; Htk x̂ (i)
tk
, R̂(i)

tk
)dτ, (10)

and by using ClCs synthetic measurements are obtained as
follows,

z̃(i+1)
tk

=

∑S
`=1

[
z̄(i+1)
t`

(Ptk`)
]
z̃(i+1)
tk`∑S

`=1

[
z̄(i+1)
t`

(Ptk`)
] where

{
Ptk` =

P(i+1)
tk`

P(i+1)
t`

}
.

(11)

Step-4 (Maximization): For regular batch length t =
1, ...,T and target models (not including background) syn-
thetic measurement covariance matrices (12) are obtained.

R̃(i+1)
tk

=
R̂(i)
tk

π̂(i)
tk

∑S
`=1 z̄(i+1)

t`
(Ptk`)

. (12)

This time for batch length t = 0, ...,T − 1 synthetic measure-
ment covariance matrices are calculated as follows,

Q̃(i+1)
tk

=
P(i+1)
t+1

‖ Zt+1 ‖
Q̂(i)

k
. (13)

Step-5 (Maximization): Mixing proportions are cal-
culated as follows,

π̂(i+1)
tk

=
π̂(i)
tk

∑S
`=1 z̄(i+1)

t`
(Ptk`)∑M

k ′=0 π̂
(i)
tk ′

∑S
`=1 z̄(i+1)

t`
(Ptk ′`)

. (14)

At this point EM process is completed and in the fol-
lowing steps of the iteration smoothing process and obtaining
estimated values take place.

Step-6: At this step of the iteration a Kalman smoother
filter is applied. This portion of the algorithm is composed of
forward and backward filters. The forward Kalman smoother
filter calculated for t = 0, ...,T − 1 is applied by using syn-
thetic measurements in order to refine target state estimates.
At this point dummy expectation is taken as ỹ(i+1)

0 |0 (k) = 0 and
dummy covariance is taken as P(i+1)

0 |0 (k) = 0. The equations
of forward filter are given below;

P(i+1)
t+1 |t (k) = FP(i+1)

t |t
(k)F∗ + Q̃(i+1)

tk
,

W (i+1)
t+1 (k) = P(i+1)

t+1 |t (k)H
(
HP(i+1)

t+1 |t (k)H∗ + R(i+1)
t+1,k

)−1
,

P(i+1)
t+1 |t+1(k) = P(i+1)

t+1 |t (k) −W (i+1)
t+1 (k)HP(i+1)

t+1 |t (k),

ỹi+1
t+1 |t+1(k) = F ỹ(i+1)

t |t
(k)

+W (i+1)
t+1 (k)

(
z̃(i+1)
t+1,k − HF ỹ(i+1)

t |t
(k)

)
. (15)

The equation of backward filter for t = T − 1, ..., 1 is
given as follows;

x̂ (i+1)
tk

= ỹ(i+1)
t |t

(k) (16)

+ P(i+1)
t |t

(k)F∗
(
P(i+1)
t+1 |t (k)

)−1 (
x̂ (i+1)
t+1,k − F ỹ(i+1)

t |t
(k)

)
.

At the end of this step estimated target states are ob-
tained for the selected batch period.

Step-7: At the last step estimated measurement and
target covariance matrices are obtained. First cell-level mea-
surement covariance is calculated as

R̂(i+1)
tk`

=∫
B` (t ) N

(
τ; Htk x̂(i)

tk
, R̂(i)

tk

) (
τ − Htk x̂(i+1)

tk

) (
τ − Htk x̂(i+1)

tk

)∗
dτ

P(i+1)
tk`

.

(17)

Estimated measurement covariance matrix is calculated
as follows;

R̂(i+1)
tk

=

∑S
`=1

[
z̄(i+1)
t`

(Ptk`)
]
R̂(i+1)
tk`∑S

`=1

[
z̄(i+1)
t`

(Ptk`)
] (18)

The last operation of the iteration is to obtain estimated
target covariance matrices for all the target models except
background,

Q̂(i+1)
k

=∑T
t=1

(
‖Zt ‖

P (i+1)
t

) (
x̂(i+1)
tk

− Fx̂(i+1)
t−1,k

) (
x̂(i+1)
tk

− Fx̂(i+1)
t−1,k

)∗
∑T

t=1

(
‖Zt ‖

P (i+1)
t

) . (19)

4. Simulation Study
In this study standard H-PMHT algorithm is used with

RPIM data indigenous to visual degraded aerial vehicles.
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This study is realized in two dimensional space for location,
and an intensity information adding on each two dimensional
cell segment, which can be regarded as a third dimension.
However this work is considered as a two-dimensional ap-
plication, and the assumptions in [7] can be conducted. The
most important issue of this assumptions is x and y axes are
statistically independent and become salutary to remind here.
Furthermore in this study there is no pre-information about
point spread function of the objects. Mostly they don’t have
linear-Gaussian distribution, although they are likely to keep
their original shapes.

In order to realize the process first RPIMdata is obtained
for different real life video data of degraded air vehicles in
daylight with sky background. As an additional explanation,
in RPIM data background clutter mostly stems from dark-
grey clouds, and dark-blue sky behind grey shading clouds.
Then tracking process is applied to each RPIM data by using
H-PMHT algorithm. For benchmarking the obtained results
each scenario is reapplied to a trustworthy probabilistic algo-
rithm IMMPDA-AI. This algorithm is a combination of IMM
estimator and PDA technique [2,3], and by adding amplitude
information, the results obtained with IMMPDA-AI will be
proper for comparing the results of H-PMHT. By the way
RPIM data performance of the H-PMHT is compared with
the performance of a proven probabilistic technique, which
also uses intensity data of RPIM.

Hence IMMPDA-AI is a point measurement tracking
technique, the RPIM data is modeled for meeting this re-
quirement without violating a fair comparison. In order to
establish measurement data for using with IMMPDA-AI, first
mean value of total sensor area intensity ratio (E{SA}) is cal-
culated. Threshold is selected 10% higher than the mean
value, and the resulting value is taken as amplitude infor-
mation threshold (AIthr). Hence the number of point mea-
surements is brought into a reasonable level for comparison.
Then whole the sensor area is divided into 5 × 5 pixel units,
and mean intensity values of each pixel unit (E{PU }) are
calculated.

E{SA} =
∑

TotalPixel I(x, y) E{PU } =
∑

5x5 I(x,y)
5×5 ,

AIthr = 1.1 × E{SA} (20)

Mean intensity values of each pixel unit compares with
the threshold magnitude. If mean intensity of a pixel unit
is higher than amplitude information threshold; E{PU } ≥
AIthr, then it is taken as a measurement, otherwise it is not
assumed as a measurement. For each measurement, mean in-
tensity of the related pixel unit E{PU } is taken as amplitude
information.

For carrying out the tracking process of visual degraded
aerial vehicles, RPIM data is obtained for different environ-
mental conditions and aerial vehicle types. For this purpose
video data is obtained for different aerial vehicles for different
conditions in daylight. Video data was taken in "640 × 480"
resolution by using a 14.1 Mega-pixel, ordinary camera, and

no mast was used in order to prevent shooting vibration. Af-
ter obtaining RPIM data from the original video data, sensor
area for tracking purposes is selected "200 × 200" pixels.

The performances of H-PMHT and IMMPDA-AI were
analyzed by using different real-life scenarios with single
chopper or aircraft with visual degraded paint. After taking
numerous video data of visual degraded aerial vehicle, eval-
uation parameter diversity and requirements were taken into
account for scenario selection. By the way various scenarios
were constructed in order to evaluate the performances of al-
gorithms against to environment, speed and target geometry.
Hence environmental conditions directly affect the signal to
noise ratio (SNR), different SNR values were used, and these
were considered as relatively low levels. Beside different
aerial vehicles were taken into account, by the way different
velocity rates, different pixel-spreading level of target and
deviation from linear-Gaussian shape were obtained. Each
scenario contained 21 scans, one for initialization, and the
remaining 20 scans for tracking process. The initialization
equation for measurement covariance is given in (21) and ρ2

- measurement error variance is 16 pixel2. The initialization
equation for target covariance is given in (22); ∆ - number
of frames between samples of video data is 2 frames, and
σ-scale factor is 1 pixel,

R(0)
t1 = ρ

2
[

1 0
0 1

]
, (21)

Q(0)
1
= σ2



∆3/3 ∆2/2 0 0

∆2/2 ∆ 0 0

0 0 ∆3/3 ∆2/2

0 0 ∆2/2 ∆



. (22)

Initialization values for mixing proportions are selected
as π̂(0)

t0 =
1
2 for background and π̂(0)

t1 =
1
2 for target. The

initialization values are invariably used for all scenarios. Se-
lected scenario parameters are summarized in Tab. 1.

Scenario 1 2 3 4 5 6 7
Vel. (pxl/frame) 2.7 4 3.4 3 2.4 1.5 3.2

SNR (dB) 4.9 4.7 3.9 2.6 3.7 7 7.6
Tgt.Area(pxl2) 200 260 232 84 75 40 350

Tab. 1. Scenario parameters.

Before giving the results of the tracking processes
for the considered scenarios, trajectory of target cen-
troids and corresponding estimation values of H-PMHT and
IMMPDAF-AI algorithms for a particular scenario are pre-
sented. Therefore, target trajectories throughout the simu-
lation process and the estimation values obtained by using
H-PMHT and IMMPDAF-AI algorithms for the second sce-
nario are given in Fig. 4.
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Fig. 4. Target centroids and estimations throughout scenario-2.

Also for giving a general idea about error profiles,
the RMS values of estimation errors of H-PMHT and
IMMPDAF-AI algorithms for the above trajectory are shown
in Fig. 5.

Fig. 5. RMS estimation errors for scenario-2.

The performances of the algorithms are primarily eval-
uated by " hit on the target (HoT)" and RMS estimation error.
Additionally CPU time should also be added as a third com-
ponent for assessment. The processor of the computer used
in simulations is Intel-Core i5-3470 CPU with 4 cores at
3.20 GHz. The computer has 4 GB RAM, the OS is Win
7 Professional, and its instruction set is 64-bit. In Tab. 2
simulation results of algorithms with respect to secenarios
are given for evaluation and comparison. In the table mean
values of the algorithms RMS estimation errors with refrence
to target centroids throughout the scenarios are given in the
column of deviation from target centroid "Dev.Trg.Cent".

While establishing Table 2, displayed cell intensity ra-
tio threshold for sensor measuremetnts used in H-PMHT,
and amplitude ratio threshold for point measurements used
in IMMPDA-AI were taken as the sum of mean intensity ratio
of the sensor area and 10% of maximum intensity (23).

ITrh = E{ISA} + (0.1 × Imax). (23)

Scenario Algorithm HoT Dev.Trg. CPU
Number (%) Cent.(pxl) time(s)

1 H-PMHT 100 3.4 298.2
IMMPDA-AI 55 8.98 0.6

2 H-PMHT 100 3.9 302.6
IMMPDA-AI 100 7.9 0.3

3 H-PMHT 100 3.52 294.8
IMMPDA-AI 60 10.15 0.1

4 H-PMHT 100 2.3 291.5
IMMPDA-AI 55 8.5 0.4

5 H-PMHT 85 3.6 296.8
IMMPDA-AI 10 8.7 0.2

6 H-PMHT 90 3 296
IMMPDA-AI 30 5.6l 0.4

7 H-PMHT 100 2.95 294.6
IMMPDA-AI 100 7.2 0.3

Tab. 2. Results of simulation.

It is seen from Tab. 2 that CPU time is rather high for
H-PMHT, and relatively low for IMMPDA-AI. These oper-
ational differences come directly from the structures of the
algorithms. IMMPDA-AI is a conventional point tracking
algorithm, on the other hand H-PMHT conducts the track-
ing process by using all sensor area. In fact IMMPDA-AI
is a time-tested, real-time, and approved algorithm. On the
other hand H-PMHT is still a conceptual algorithm and its
progress has not been sufficient to reach real-time applica-
tions. However, the results obtained with H-PMHT are su-
perior to IMMPDAF-AI with regard to HoT ratios and RMS
Estimation Error values.

Also an additional analysis for determining the effects
of the threshold values on the performance of the algorithms
has taken place. In this analysis threshold values of both
algorithms were taken the same for comparison fairness.
Four scenarios are selected to obtain the effects of thresh-
old on the performances of algorithms with respect to SNR
and target geometry. The limits of analysis are defined as
E{ISA} < Trh < ITrh for lower and ITrh < Trh < AImax for
higher values of intensity ratio threshold. The performances
go slightly better for higher values of the threshold up to the
upper limit (max. value of amplitude information). Beyond
this value IMMPDA-AI doesn’t work, because no data will
exist. Max value of RPIM data intensity is higher than AImax,
because of this H-PMHT continues to work at this region un-
til not enough measurement data remains. On the other hand,
the performance deteriorates for decreasing values between
E{ISA} < Trh < ITrh. Deterioration rate for lower values
depends on SNR and target area for H-PMHT. For low val-
ues of SNR and target area the deterioration rate is high,
on the other hand for high values of them the deterioration
rate is low. Only slight changes occur in the performance of
IMMPDA-AI at the lower threshold values.

The analysis results are given in Tab. 3 under two se-
lected thresholds; 90% of ITrh for lower, and 110% of ITrh for
higher intervals. These values also characterize the behavior
of higher and lower portions. The deterioration threshold
ratios for H-PMHT at higher values are also given in the
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table. It is seen from the table that SNR has an important
effect on the deterioration threshold level of H-PMHT. The
additional analysis shows that both SNR and target size have
a non-negligible contribution on H-PMHT performance for
different values of the threshold. Also CPU-time usage de-
creases for higher values of intensity ratio threshold because
of falling off process data. On the other hand, CPU-time
usage increases for lower values of intensity ratio threshold.

Perf. for Perf. for Det.Trh.
Scenario Low ITrh High ITrh H-PMHT

Trh = Trh =
0.9 × ITrh 1.1 × ITrh % of ITrh

# 4 H : (15%) H : 100%
Low SNR Dev.Trg.:31.9 Dev.Trg.:2.15 125%
Low Trg. I : (55%) I : (55%)
Area Dev.Trg.:9.5 Dev.Trg.:8.7
# 6 H : (90%) H : (95%)

High SNR Dev.Trg.:3.1 Dev.Trg.:3 150%
Low Trg. I : (30%) I : (20%)
Area Dev.Trg.:5.47 Dev.Trg.:5.8
# 7 H : 100% H : 100%

High SNR Dev.Trg.:3.8 Dev.Trg.:2.5 160%
High Trg. I : (100%) I : (100%)
Area Dev.Trg.:7.2 Dev.Trg.:7.2
# 3 I : (100%) I : (100%)

Low SNR Dev.Trg.:3.7 Dev.Trg.:3.5 155%
High Trg. I : (60%) I : (60%)
Area Dev.Trg.:10.2 Dev.Trg.:9.9

Tab. 3. Effects of threshold on the performance of algorithms
(H:H-PMHT)/(I:IMMPDA-AI).

5. Conclusion
In this study a new approach is applied to track vi-

sual degraded aerial vehicles in daylight. To accomplish
this process, video data for visual degraded aerial vehicles
is transformed into RPIM data, and H-PMHT algorithm is
applied for tracking. The results are taken for different sce-
narios with respect to SNR, maneuver, and vehicle geometry.
The obtained results with H-PMHT are satisfactory for each
scenario, and capable of continuing tracking even though in
low SNR, non-linear and non-Gaussian target shapes, and
high speeds. By analyzing the results, the expected values
obtained with H-PMHT do not only hit on the target, but also
try to go on for the target centroids.

The results are compared with amplitude information
added IMMPDA. The comparisons have been accomplished
by using a reasonable and practical intensity ratio threshold.
It is determined that the performance of H-PMHT is superior
to the performance of IMMPDA-AI. An additional analysis
has been taken place for determining the effect of intensity
ratio threshold on the performance of the algorithms. Also
the results show that the performance of H-PMHT is still
better than the performance of IMMPDA-AI.

In the considered scenarios only a single target have
been used, whereas in some practical situations multiple-

target tracking is required. In fact the H-PMHT is naturally
amultitarget algorithm. Future work is planned to implement
multitarget tracking with H-PMHT by using RPIM data. And
another future work is planned to reduce processing time and
finally adapt H-PMHT for real-time applications.
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