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Abstract. Antenna parameters particularly relevant to 
electrically small antenna design are reviewed in this 
paper. Source current definitions are accentuated leading 
to the introduction of the source concept which advanta-
geously utilize only spatially bounded quantities. The 
framework of the source concept incorporates powerful 
techniques such as structural and modal decomposition, 
operator’s inversion and current optimization, thus open-
ing new, challenging possibilities for antenna design, 
analysis and synthesis. 
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1. Introduction 
Certain antenna parameters, including for example 

radiated power, are traditionally calculated from radiated 
fields in space. Recently, a number of papers, see e. g. [1], 
[2] have been published which attempt to use only antenna 
geometry and source distribution (electric or magnetic or 
both currents) when evaluating the performance of anten-
nas using spatially limited integrations over current density. 
This is advantageous as you do not have to deal with inte-
grals involving radiated field in the whole space. It is the 
main principle that constitutes part of the framework called 
the Source Concept and this paper summarizes some of the 
findings in the field. We concentrate only on electric 
currents flowing in vacuum. 

Brillouin [3] was probably the first scientist who pro-
posed to use source spatial currents to evaluate radiated 
power, see also [4], [5, Sec. 2.3]. An illustration of this 
procedure is provided later in Sec. 2.1.  

Radiation quality factor Q [6], which indicates the 
bandwidth potential of an antenna, is another important 
measure. It is well known [6], [7] that the stored energy of 
an electromagnetic field is infinite in frequency domain 
(a time-harmonic state) due to radiated energy. Tradition-
ally, radiated energy was subtracted from the total energy 
and the methods operated with “sphere enclosing the an-
tenna”, but without taking into account the exact shape of 
the radiator, see [8] and references therein. Geyi [9, Sec. 4] 

and later Vandenbosch [10] and Gustafsson [11] attempted 
to obtain stored electromagnetic energies directly from 
currents and their results lead to so-called measurable or 
observable energies since they are tightly connected to the 
frequency changes of an antenna’s input impedance. Prior 
to this, observable energies were proposed by Rhodes [12], 
but he still relied upon using fields in space, not source 
currents. Section 2.2 illustrates how the measurable ener-
gies can be derived in a simple and intuitive way [15], 
using only spatially localized currents.  

It should be noted that the problem of correct defini-
tion of stored energy has still not been completely solved, 
although, currently, it is being intensively studied, see e. g. 
[13]. In particular, the time-domain approach seems very 
promising [14]. 

In Section 3, a well-known Theory of Characteristic 
Modes [16] is introduced, though expressed in terms of 
a power functional involving source current density. Such 
a formulation allows the study of arbitrary current distribu-
tion (for instance one may guess for characteristic currents 
and test their properties) and may enable the study of the 
optimal composition of modal currents for minimal Q [17]. 

The last five years have allowed the capabilities of the 
Source Concept to be recognized and consequently soft-
ware tools associated with its implementation have begun 
to appear. To support this effort, the Antenna Toolbox for 
Matlab (AToM) [18] is currently being developed. The 
AToM is written entirely in Matlab, so the user can enjoy 
its semi-open architecture and friendly operation through 
graphical interface or direct access to low level functions. 
Main simulation core is based on Method of Moments [4], 
both for 3D wire and planar structures. Together with 
modal decomposition (characteristic modes), the source 
concept, feeding synthesis and powerful optimization, it 
will present a unique tool for synthesis of antennas. 

2. Source Concept 
Source concept can be introduced as a framework uti-

lizing integral equations involving spatially localized 
sources of radiation. 

It will be shown how to express input impedance, ra-
diated power, measurable energies, quality factor and char-
acteristic eigenvalues solely in terms of electric current 
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density. It must be noted that currents can be obtained from 
a full-wave simulation, by modal decomposition or even 
specified by analytical approximation. They can be the 
subject of modal and structural decomposition and optimi-
zation which created the possibility of finding optimal 
current distributions with regard to quality factor Q, gain 
G, G/Q ratio and polarization properties [19]. 

2.1 Illustration of the Source Concept 

The following example illustrates the philosophy of 
the source concept. For the sake of simplicity consider only 
the linear z-directed current which generates the θ compo-
nent in the far-field. It is well known [20] that radiated 
power can be calculated from far-field power density (the 
so called “Poynting vector method”) as 
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where Z0 is the impedance of free space. To eliminate the 
surface integral involving the radiated field, E = –jA is 
inserted into (1) 
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There are two integrals over the spatial domain of 
sources and one surface integral, which can be worked out 
in closed form 
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where R = z – zʹ has been substituted as a distance 
between interacting currents. 

Hence, the radiated power can now be alternatively 
written as follows 
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As a check, constant current I(z) = I(zʹ) =I is inserted 
and the kernel is expanded into the Taylor series. The first 
term integrates to zero and the second gives Pr = 10(kIL)2, 
a well known result [20] for an elementary dipole when 
L  0, though obtained in a completely different way. 

2.2 Complex Power and Input Impedance 

Brillouin [3] and Papas [5] have shown that the 
“Poynting vector method” and the above presented method 
(which will be revealed in its extended form involving 
reactive power as the “EMF method” [20]) are equivalent. 
Physically, the EMF method is based on shrinking the 
enclosing surface to the boundary of the antenna while 
allowing to capture the reactive components, too. 

The derivation starts with the Complex Poynting 
Theorem (PT) in frequency domain [6] 
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where Pin = Pr + jPx is complex power measured at the 
antenna ports, V is the volume of the antenna and Wm and 
We are energies of the magnetic and electric fields respec-
tively.  

The E  J* part of the above equation for input power 
may also be illustratively written in terms of dynamic po-
tentials [6] if we substitute E = –jA –   into (7): 
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in which  is scalar electric potential and  is charge den-
sity. The PT thus gives us access to radiated power and 
difference of magnetic and electric energies, the only quan-
tities which are measurable through the input impedance, 
compactly expressed as 
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where I0 is the input current at the antenna terminals. 

By inserting the continuity equation  = –J/j, the 
self-impedance may now be written as double integral 
involving current density, frequency and antenna geometry: 
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where  = k2J(r)J*(rʹ) originated from vector potential, 
Υ = J(r)ʹJ*(rʹ) originated from scalar potential and the 
integration is performed over the antenna occupying 
volume V with R = r – rʹ being the distance between 
currents1.  

Equation (10) is a departure point for the impedance 
quality factor [21]. It occurred many times, and in various 
forms and is known as the “EMF method” or EFIE for 
evaluating the impedance of an antenna using the pre-
scribed current [20] or in the MoM formulation [22]. The 
spatial derivative of current can also be transferred to 
Green’s function exp(–jkR) / R, though the resulting kernel 

                                                           
1 Modification of (10) for evaluating the mutual 

impedance is straightforward [20]. 
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Fig. 1. Distribution of current and charge along a short dipole. 

has strong singularities [5], see also (6) where such a dif-
ferentiated kernel appeared naturally. 

Inspecting equation (10) reveals that the contribution 
to the input impedance (or input complex power) is both 
magnetic (from currents, Ψ term) and electric (from 
charges, Υ term). 

The following illustrative example considers the 
evaluation of the radiation resistance of a short dipole with 
a triangular current, see Fig. 1. 

From (10) we have 
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where Rr
 and Rr

 are contributions from a current and 
charge respectively. By using two terms of the Taylor 
series for the kernel sin(kR)/R we obtain  
Rr = Rr

 – Rr
 = 30(kL)2 – 10(kL)2 = 20(kL), another well-

known result, but this is obtained only from sources. Noted 
that the closed-form calculation of reactance is much more 
delicate because the dominant (static) part of the kernel 
cos(kR)/R  1/R contains singularity. However, results for 
first-order linear sinusoidal currents are known and widely 
available [20]. 

2.3 The Radiation Quality Factor 

The untuned quality factor in the frequency domain is 
generally defined as [6] 
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where Wsto is the stored energy and where we assumed that 
power is lost only by radiation. While radiated power is 
uniquely defined, the energy of the radiating system in 
a time-harmonic state is infinite. Therefore, modified finite 
energies have been proposed by many authors, see e. g. 
[14]. Unfortunately, deficiencies such as coordinate de-
pendence [21] and negative values [23] exist. 

In (12), we may interpret Wsto as a kind of reactive 
power, hence (12) is in fact a power ratio. But in practice, 
an antenna designer is usually not primarily interested in 
the value of stored energy, but in the bandwidth. For this 
purpose, reasonable definition2 of quality factor Q, based 

                                                           
2 Another question arises of whether the quality factor 

is exactly proportional to the bandwidth. It can be shown 
[24] that it is, but only for a series/parallel single-resonant 
circuit or for higher values of Q. 

on the frequency sensitivity of input impedance, have been 
proposed [12], [25] 
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where QR and QX represent change of input resistance and 
reactance, which is dominant, respectively. 

Insert Zin = 2Pin /I02  to obtain 
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 is the frequency derivative of the 

apparent input power. The port current I0 is assumed to be 
constant. 

Indeed the quality factor Qz can be evaluated by dif-
ferentiation of the input impedance obtained from the elec-
tromagnetic field simulator. However, we can use (10) to 
great advantage and perform the derivation in (13) analyti-
cally3. It is then possible to insert a modal or even arbitrary 
current density and examine how much a given part of the 
antenna affects the overall Q. 

The result is composed of three complex terms (which 
we loosely call measurable or observable energies [13]) of 
different nature 
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The structure of the first term Ŵme is similar to the Zin, 
but includes the sum of parts Ψ and Υ. This strongly re-
sembles the Foster theorem [21] where the reactance deri-
vation produces a sum of energies. It should be stressed 
that the Foster theorem is valid only for a lossless reactance 
network, which is not the case of an radiating system. This 
term is nonzero, even for non-radiating system and it com-
prises a major contribution. 

The second term Ŵr arises from the frequency change 
of Green’s function and is associated with radiation, see 
discussion in [15]. It is zero for a non-radiating system. The 
third term Ŵk accounts for the change of current density 
with frequency [13] and is, again, zero for a non-radiating 
system. 

                                                           
3 This derivation will be performed in k instead of  

in order to keep the easy notation of (10). 
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Fig. 2. The module of measurable energies for a dipole of 

length L. In general, the radiation term Ŵr is small. 
The Ŵk term is small in resonance, where the current 
distribution is stable and peaks in antiresonances. In 
resonance, the dominant contribution comes from 
Ŵme. 

 
Fig. 3. Untuned quality factors for a thin-wire dipole. 

We define the measurable energies, available from the 
antenna terminals and consider input impedance, or only 
input reactance, as 
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The behavior of Ŵme, Ŵr, Ŵk, Ŵz, and Ŵx, is illus-
trated in the case of a thin-wire dipole with a prescribed 
sinusoidal current, see Fig. 2. For easy plotting we show 
only modules of terms (16)–(18). 

Various quality factors were calculated from the 
above energies. They all agree very well in resonance, as 
seen in Fig. 3.  

Explicitly, the simplest version of the measurable 
quality factor considers only an imaginary part of the Ŵme 
term and reads 
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3. Modal Decomposition 
The characteristic modes [16] are a handy framework 

for the source concept. Eigen-currents Jn and their corre-
sponding eigenvalues n are usually defined through the 

weighted eigenvalue equation involving real and imaginary 
parts of the impedance operator (10) [16]. Alternatively, 
they can also be expressed as a basis which minimizes the 
following source concept power functional: 
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where n is the Rayleigh quotient, which is equal to char-
acteristic number n when a true characteristic current Jn 
enters into (22). The functional is minimized by character-
istic currents that simultaneously maximizes radiated 
power and minimizes reactive power, representing external 
resonances of the radiator. For very special cases, a station-
ary solution of (22) can be obtained even in closed form. It 
is clear that we may assign antenna parameters (energies, 
powers, losses, directivities, near and far fields) directly to 
the modes and gain extra physical insight into the antenna 
behavior. In [26] we derived the so-called coupling matrix 
mn which connects the modes with the real world and is 
represented by modal excitation coefficients Vm [27] 
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This matrix is a good subject for efficient optimiza-
tion since it is possible to move the feeding along a given 
structure, control the amount of modal parameters and 
quickly evaluate total behavior, which became just simple 
matrix operation. The radiation quality factor Q, radiation 
efficiency and directivity can, then, be compactly ex-
pressed using modal quantities as [26], [28] 
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where Ŵe
mn and Ŵm

mn are modified modal energies, Pr
mn is 

modal radiated power, PL
mn is modal lost power and 
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in (26) is related to the modal radiation intensity. 

4. Conclusions 
An overview of the source concept definition has 

been presented. The source concept, as proposed, considers 
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all parameters expressed solely as a function of the source 
quantities, namely the electric and magnetic currents. This 
approach offers many appealing properties, notably fast 
and uncomplicated evaluations via bilinear integral forms, 
the possibility to perform structural and modal decomposi-
tion, linear, quadratic and heuristic optimization and other 
advanced techniques of a current’s modification and analy-
sis. Recent applications of various antenna parameters 
expressed by source current have been mentioned in con-
junction with potential applications. 
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