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Abstract. Monopole antennas on the earth usually use 
ground screen with simple radial wires to improve their 
radiation performance. The number of radials N is usually 
considered a constant in the screen. This paper studies the 
effect of changing N and considering it as a function of 
distance  from the monopole using a simple and yet a fast 
method. The function N() is optimized for different beam 
angles of an HF monopole antenna. The theoretical func-
tions are converted to practical functions to be formed 
using meandered lines. Practicable calculated results are 
validated by method of moments. Furthermore it is shown 
that for low angle radiation a constant N() with optimized 
radius of the ground screen is the best choice. The results 
can be used for higher frequencies, i.e. VHF and UHF 
frequency bands as well. 
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1. Introduction 
A classic area of interest in radio wave propagation is 

the monopole antenna over a lossy ground at LF, MF and 
HF bands [1]–[3]. For example for the miniaturization of 
these antennas several structures have been introduced such 
as top-loaded structures, optimized wire structures, etc. 
[4]–[8]. An important task for the improvement of antenna 
characteristics is the use of radial wires grid as the ground 
[9]–[12]. Calculation of the radiated fields of a monopole 
on a homogeneous ground is simplified using Sommerfeld 
integrals in early twentieth. Furthermore, developments on 
the applied Schelkunoff’s equivalence theorem and com-
pensation theorem (based on Lorentz reciprocity) arose, 
simultaneously and after a period of time. Subsequently, 
the effect of ground screen on the impedance calculation 
and radiation pattern was studied extensively. The most 
frequent method was the usage of compensation theorem 

that was studied by Wait and others in about a quarter of 
century [2], [11]. Some other approaches are used for this 
purpose such as equivalence theorem [13] and extinction 
theorem [14]. A comparatively new approach is the method 
of moments (MoM) which is outspreaded by the enhance-
ment of computers [15]–[17]. Nevertheless, there are still 
some limitations for this method. As an example for the 
optimization of large structures the required time by this 
method may be considerable. Therefore, the previously 
introduced analytical methods or the combination of the 
analytical and numerical methods may provide the best 
solution for optimization and the results can be validated 
using new numerical codes. An interesting conversation 
about the comparison between this method and previous 
methods can be found in [18].  

The use of a radial wire grid is a special kind of 
ground screens that is assumed to have identical impedance 
in ϕ direction of cylindrical coordinates [2], [19], [20]. The 
number of wires is usually in order of 100 and does not 
change in ̂  direction (Fig. 1). A financial approach to the 

optimization of the number of radial wires is introduced in 
the past [21] with constant number of radials. This number 
is considered constant because of two reasons. First, if the 
total current is considered I0 the current distribution will be 
JS() = I0 /(2) and this current is identical to the conduc-
tor density for constant number of radials through . It is 
observed that, this is not an accurate conclusion, since the 
effect of ground loss, reflections and wires radiation are 
neglected. Second, implementation of varying N is difficult 
and in some cases impossible. This will be resolved using 
meandered lines. 

This paper studies the effects of changes on the num-
ber of radial wires in  direction and looks for a function 
that produces a radiation pattern with a determined beam 
elevation angle for a quarter wave monopole antenna. The 
proposed ground screens may be used for HF, VHF, UHF 
and higher frequencies. HF band is selected to indicate the 
results, since it has low and high angle applications and 
similar results may be obtained for higher frequencies by 
scaling the structures.  
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It will be seen that the effect of this change in the 
number of wires is very significant on the radiation pattern 
of a monopole antenna for large radius screens. This ap-
proach is uninhibited to study for a discrete function as can 
be seen at the end of [13] and [14]. Therefore, the number 
of radial wires is shown by N() and this positive function 
is to be optimized. It is considered that the total length of 
the wires is constant and equal to lgs and the radius of the 
ground screen is also constant and equals a. The obtained 
function may be hypothetical for real antennas but gives 
good understanding of the effect of ground screen imped-
ance. The next step is to use appropriate limits to make the 
function more practical and construct the function by me-
andered lines. 

2. Mathematical and Physical 
Background 

2.1 Background Formulation  

The impedance of a ground system with N radial 
wires can be obtained using an approximately equivalent 
system, wire grid with the separation d = 2 / N [2]. The 
schematics of wire grid and radial wires are indicated in 
Fig. 1 (a) and (b), respectively. A key equation to provide 
the equivalent impedance for the ground system with wire 
radius Rw and distance d or total number N,  
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is introduced by Wessel [21] and generalized by Macfar-
lane [22]. This impedance is considered parallel to the 
ground impedance, 
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that is a function of angle as indicated in Fig. 1(c). 
Consequently, the total impedance  
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is a function of  and . The ground loss is shown by  in 
(2) which is usually used for a conductive material. Any-
way we observe in some references that a complex number 
is used for r = ʹr – jrʹʹ. It can be obtained from  explicit-
ly as 
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Now if we indicate the far-fields in the absence of the 
screen by F0(), by multiplying the correction function on 
F0(), the far-fields with the screen for a quarter wave 
monopole will be calculated as [2],  
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(a)             (b) 

 
(c) 

Fig. 1. Schematics of (a) wire grid and (b) radial wires for impedance calculation, (c) the antenna with ground system (P) and the antenna (Q) 
to be used for compensation theorem. 
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where Wʹ(, k) can be obtained using compensation theo-
rem and numerical methods. As indicated in Fig. 1(c) 
a dipole is considered at the considerable distance R from 
the monopole antenna with the ground screen of area S. 
Consequently, the difference between the impedances are 
obtained using 
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Mutual impedance for the first antenna is known and 
is given by [2] 

  j 20 1 2
q

j
sin , .

2
kRl l

Z e W r Z
R


  


 (7a) 

For the second antenna, the mutual impedance is 
therefore considered to have the form 
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with an unknown W’. Also for a point on the ground sur-
face with distances R’ and  from the first and second an-
tennas respectively, with kR’>> 1 and Z / 02<< 1, we 
have 
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and we can conclude for the second antenna (note that we 
do not have k >> 1)  
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An equation with a surface integral will be obtained 
by substituting (7) and (8) in (6). A classic problem which 
can be found in several reports such as [23] is to form 
a standard integral equation using ellipsoidal coordinates 
[24] and the stationary phase method [25]. Anyway, with 
the assumption of a symmetric ground screen, it produces 
a Volterra integral equation of the second kind [2] 
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  (10) 
and the detailed derivation is provided by Green in [23]. 
Wʹ(, ) can be considered unity for small screens on high 
lossy ground, however should be solved for general 
screens. Now this is not a problematic task, while many 
numerical methods are available. Therefore, Wʹ(, )  is 
calculated for three kinds of grounds with poor, normal and 
high conductivity in Fig. 2(a) to Fig. 2(c). Wʹ(, ) is closer 
to 1 when the conductivity of ground increases. In addition, 

it can be observed that for high conductive grounds the 
dependency of Wʹ(, ) on  is reduced. Therefore the 
effect of ground screen or radial wires is negligible for high 
conductive grounds.  

Finally, F0() can be replaced by either of E0() and 
H0(). Norton separated the far-field and indicated that for 
large distances we have [3] 
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and 
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and r1 is the distance of observation point from the antenna. 

2.2 Physical Background 

The best ground for low angle radiation of a mono-
pole antenna is an infinite size PEC plane that produces the 
maximum directivity of 5.17 dB at  = 90°. However, 
ground plane size is limited in practice and therefore the 
beam angle rises as indicated in Fig. 3(a) for a ground 
plane with a radius of say 5. The frequency is 10 MHz, 
and the ground has the conductivity  = 0.003 S/m for all 
calculations and simulations of the paper from now on. 
Therefore the height of the monopole is 7.5 m and the ra-
dius of the ground screen or the radial wires’ lengths are 
150 m. The impedance of a PEC plane is zero and it makes 
Zʹ zero in (5) and therefore this is the best situation for low 
angle radiation (large s). Nevertheless, in many practical 
situations a metallic plane cannot be used for the antenna 
especially for large size screens. The metallic plane can be 
replaced by radial wires for large size ground screens as 
indicated in Fig. 3(b).  

Radiation pattern of a quarter wave monopole with 
150 radials of 5 long is shown in Fig. 3(c) as an example. 
The calculated (Cal.) results are obtained from the intro-
duced method in (5) and the MoM of FEKO has been used 
for simulation (Sim.). Some oscillations with five concave 
parts are observed in the calculated and simulated radiation 
patterns. It can be shown that the number of concave parts 
is dependent on the length of radials a in . The only part 
in (5) that has a dependency on a is the integral with the 
limits 0 and a. In addition, we do not observe any oscilla-
tions in Wʹ curves in Fig. 2. Therefore the sources of these 
oscillations in (5) can be Zʹ(, ) and J1 (k sin) those are 
dependent on both of  and . However for a constant N, 
Zʹ(, ) cannot produce oscillations since the only depend-
ency of Zʹ(, ) on  is in (1) which is not an oscillating 
function. Anyway, it will be observed that Zʹ(, ) may 
have some effects on the oscillations when N is considered 
as the function of . In this situation Zʹ(, ) is not 
obtained from (3) explicitly and will be obtained using the 
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(a) 

 
(b) 

 
(c) 

Fig. 2. Wʹ of a 150m ground screen at 10 MHz with N = 150 
and Rw = 5 mm on a lossy ground with (a)  = 
0.0003 S/m, (b)  = 0.003 S/m and (c)  = 0.03 S/m. 

equivalency principle as will be discussed shortly. Conse-
quently, radiation pattern will be a complicated function of 
N() and  which can be modified by varying N() and can 
be maximized at a given . The fields at the given  is 
actually obtained by superposition of the fields from wires 
at all distances, s, from the antenna. Note that changing 
N() can produce maximums at desired elevation angles 

since it will appear with different phases,  22 / 4k   , 

at different distances  in the integral, (5). 

3. Finding the Optimum Function 
We would like to change the numbers of radials 

theoretically and observe the resulting radiation pattern. 
An immediate method is to consider N as a function of  
and substitute the constant N in (1), (5) and the integral 
equation in (7). This is not an accurate method however. 
A better approach is to calculate the fields of each radius  
by it’s N() and subtract it by the calculated fields of  
 – d with N() and integrate from zero to a 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. A monopole antenna on the ground; (a) radiation 
pattern of a /4 monopole on the infinite PEC plane 
and on a PEC plane with 5 radius over the normal 
lossy ground , (b) the schematic and (c) calculated and 
simulated radiation patterns of a /4  monopole with 
150 radial wires. (Conductivity of the normal ground is 
 = 0.003 S/m). 
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where FCN is the field of an antenna with constant number 
of radials with a given N and a and FVN is the field of the 
antenna with variable number of radials N().  

The function FVN does not have a general closed form 
solution and involves an integral equation that has to be 
solved numerically. Therefore, for the calculation of this 
integral it should be discretized. For each section, two 
integral equations should be solved. In the discrete form it 
will be  
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Now FVN can be obtained for an arbitrary N(). 
However,  there  are  some  limitations  for  this  function, 
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which can be formulated as 

 
 
 

 

min 

max

gs

0

 

d
a

N N

N N

l N


  

 







 

 (13) 

For example for the constant N(), it should be equal 
to lgs / a. Also Nmin should be sufficient to keep the angle 
between wires low and preserve the accuracy of (1). Here 
we assume Nmin = 60 (which leads to 6° difference between 
neighboring wires), Nmax = 500 and (12) has 50 sections. 
Now one can establish an optimization with the compo-
nents of N() as the variables and the goal function 
FVN = req to be maximized at req.  

Consequently, the schematic of ground screen with 
optimum number of radials with 5 screen radius for the 
maximum beam angle () of say 45° is illustrated in Fig. 4. 
It is clear that this schematic is hypothetical since the wires 
are not connected. A practical structure will be introduced 
in the next section. The obtained function in Fig. 4 is 
almost independent from the characteristics of the ground, 
because as explained in the second section the fields are 
calculated using compensation theorem and the impedance 
of the screen is considered parallel to the impedance of the 
ground. Therefore, the results can be similar for other kinds 
of grounds such as poor or high conductive grounds. In 
addition, we are not required to assume a frequency for our 
calculations if the dimensions are given in terms of  and 
ʹʹ is used instead of . Therefore the results may be 
applied for all frequencies. However if we use , it has to 
be scaled with frequency to produce similar results at all 
frequencies as can be observed in (2) and (4). 

4. Practical Modification and Results 
It is clear that changing N() as the calculated func-

tion in previous section is not practical. Therefore, in this 
section we introduce a practical solution for this function 
that meets approximately the advantages of previously 
introduced functions. For example we can choose the func-
tion as 
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The schematic of radial wires and the practical sub-
stitution is shown in Fig. 5. In the practical structure the 
open wires are put in the circuit as the meandered lines. 
Therefore we should have la  lm and lm = n, n = 1, 2, 3,… 
in Fig. 5 to meet the boundary condition for the currents at 
point A. Some examples of the calculated and simulated 
radiation patterns of a /4 antenna on the specified ground 
screen with lm =   on a normal ground is given in Fig. 6. It 

can be observed that changing l1 in (14) affects the oscilla-
tions of the radiation pattern. Now by controlling these 
oscillations one may obtain the radiation pattern with the 
desired angle of maximum directivity. In addition, it can be 
seen that the difference between calculated and simulated 
results are less than 1 dB at least for  larger than 20°. Con-
sequently, this method can be used for the functions as  

 
 

 

 

 

1 1 1

1 1 1 1 1

1 1 2 2

2 1 2 2 2

1 1

1

1

, 0 / 2 

2 1 , / 2

, / 2

2 1 , / 2

, / 2

2 1 , / 2

,

k k k

k k k k

k

N l m

n N l m l

N l l m

n N l m l
N

N l l m

n N l m l

N l a



  
    
   
     

   


   
  

 

 
 

 
 



 
 


 (15) 

where ni  and mi (i = 1, 2, 3,   ) are integers and a is the 
radius of the ground screen. N() is illustrated in Fig. 7 for 
the optimum radial wires for the angles 75°, 65°, 55°, 45°, 
35° and 25° respectively as well as the practical sugges-
tions associated with (15). The suggestions indicate that 
N() equals 73 in half domain and in the other half it is 219 
which means N1 = 73 and ni = 1 for all the structures. To 
keep the total wire lengths constant N1 should have been 
assumed to be 75, while it makes lgs = 7500 as we had for 
the constant N() = 150. The reduction of N1 is to compen-
sate the additional wires for the meandered lines as can be 
seen in Fig. 5. 

 
Fig. 4. Schematic of the radial wires structure optimized for 

45°. 

 
Fig. 5. Theoretical representation of (14) with the proposed 

practical substitution. 
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Fig. 6. Radiation patterns of the antenna on radial wires with N() defined in (14) and l1 = 60, 105, 150 m, respectively. 

  
Fig. 7. Optimum number of radials for the angles 75°, 65°, 55°, 45°, 35° and 25° respectively and practical suggestions for each N(). 

 
Fig. 8. Schematic of the practical radial wires structures for the beam angles 75° and 25°. 

 
Fig. 9. Calculated radiation patterns of the antenna with theoretical and practical radial wires structures optimized for the maximum beam 

angles of 75°, 65°, 55°, 45°, 35° and 25° respectively. The Calculated results of the antenna with practical radial wires are validated by 
FEKO simulation results. 

 

In addition, it can be observed that for the structures with 
beam angles of 75°, 65°, 55°, 45°, 35° and 25° we have 
k = 1, k = 1, k = 2, k = 2, k = 3 and k = 4, respectively and 
for 55°, 35° and 25°, lk  equals a. The schematics of the 
practical ground screens with the functions shown in Fig. 7 
are represented in Fig. 8 with meandered lines for the beam 

angles 75° and 25°. The radiation patterns of theoretical 
and practical radial wires structures for the given beam 
angles are provided in Fig. 9 and the practical results are 
validated with the simulation of the meandered structures 
using MoM in FEKO. Radiation patterns of the structure 
with a beam angle of 45° are indicated in Fig. 10 at 9 MHz,  
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Fig. 10. Simulated radiation patterns of the antenna with beam 

angle of 45° at 9 MHz, 10 MHz and 11 MHz. 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Comparison between simulated radiation patterns of 
the antennas with 150 radial wires, practically 
optimized radial wires and length optimized radial 
wires for the beam angles of a) 75°, b) 65° and c) 55°. 

10 MHz and 11 MHz as an example to indicate the fre-
quency dependency. It can be observed that the difference 
in direction of maximum gain is about 5° at these frequen-
cies for this structure. 

Nevertheless, some limitations can be observed for 
practical implementation of low and high angle structures 
(high angles correspond to small values of  and vice 
versa). For the high angle structure with the desired beam 
direction at  = 25°, there is a local maximum on this angle 
and the gains at  = 45° to 80° are higher. Anyhow, it can 
be observed that the gain of this structure at  = 25° is 
higher than other angles. Also for low angle structures we 
can see that the beam angle cannot exceed  = 70°. More-

over it can be observed from Fig. 11(a) that the improve-
ment of the gain is not significant compared with that of 
the initial structure with constant N() = 150. It could be 
predicted from the first diagram of Fig. 7 while the theo-
retical optimum function is widely distributed and we can-
not find the practical structure as other angles. 

The best solution for low angle radiation is to choose 
an appropriate screen size. It can be recognized from Fig. 7 
that the wires after  = 105 m are trivial. Therefore it is 
shown in Fig. 11(a) that the radiation pattern of the antenna 
with 214 radial wires of 105 m gives the best response at 
low angles keeping lgs unchanged. Also for 65°, 300 radial 
wires of 75 m and for 55°, 340 radial wires of 66 m are the 
best as shown in Fig. 11(b) and (c). It can be seen in 
Fig. 11(c) that the beam angle cannot be reduced below 
60°. Consequently, the initial radial wires with optimized 
length or the ground screen size are the best for low angle 
radiation and the meandered lines can be used for higher 
angles. 

5. Conclusion 
The optimum functions for numbers of radial wires of 

a quarter wave monopole for arbitrary elevation angles 
between  = 25° to  = 75° with the ground screen radius 
of 5 are presented in this paper. We considered HF band 
for our simulations without loss of generality, however the 
results can be applied for all radio frequencies. It is indi-
cated that for low elevation angle radiation simple radial 
wires are the best practical solution and the ground screen 
size should be optimized. For higher elevation angles be-
tween  = 25° to  = 45° the proposed meandered lines are 
the best solutions. Also the proposed method cannot be 
used for very high elevation angles since the gain of a mo-
nopole is indeed low at these angles. 
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