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Abstract. This article investigates the error performance
of wireless communication systems that employ binary mod-
ulations and Amplify-and-Forward (AF) relaying over flat
Nakagami-m faded links with maximum ratio combining
(MRC) at destination. Specifically, we derive a simple yet
accurate closed-form approximation for the average bit er-
ror probability (ABEP) and closed-form expressions for its
tight upper and lower bounds. The effect of power imbalance
between the relayed links is also studied. Numerical investi-
gations show good agreement between proposed theoretical
results and simulations whereas our performance bounds are
shown to be tighter than previously proposed bounds for the
case of unbalanced relayed links.
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Amplify-and-forward (AF) relaying, maximal-ratio
combining (MRC), Nakagami fading, error analysis.

1. Introduction
Cooperative relaying is an efficient strategy to combat

fading and to increase communication reliability of wireless
communication links [1]. Relays can be deployed to en-
hance coverage and capacity near the cell edges and beyond
in cellular networks [2]. The Amplify-and-Forward (AF)
relay simply amplifies the received signal before transmit-
ting it to the destination. It thus provides a low complexity
low cost solution relative to the regenerative relays albeit at
the expense of undesirable noise amplification [3]. The AF
relaying schemes can be further classified as variable gain
and fixed gain/semi-blind relaying. The former mode uses
the instantaneous channel state information (CSI) of the pre-
vious hop to control the relay gain whereas the latter uses
channel statistics of the previous hop to determine relay gain.
The fixed gain AF (FG-AF) relaying scheme trades off the
diversity performance of variable gain schemes with lower
complexity in the CSI estimation and are therefore more at-
tractive due to practical considerations [4].

Cooperative communications over Nakagami-m faded
links with and without diversity combining have been ex-

tensively studied in the literature, see for example [5–8] and
references therein. In [5] the authors consider a dual-hop FG-
AF link without diversity and Nakagami-m faded channels
with arbitrary values of m; under these conditions they derive
closed-form expressions for the ABEP of binary and quater-
nary phase shift keying (PSK). In [6] the authors also consider
a dual-hop FG-AF link without diversity and the Nakagami-
m faded channels are considered to take arbitrary values of
m; under these conditions they derive a closed-form approx-
imation for the average symbol error probability (ASEP) for
M-ary phase shift keying (MPSK). In [7] FG-AF relaying
with MRC diversity at destination and Nakagami-m fading
with arbitrary m is considered; the authors derive an exact
expression of the ABEP for MPSK but it requires numeri-
cal evaluation of the moment generating function (MGF) of
the instantaneous signal-to-noise ratio (SNR) atMRC output.
The authors in [8] consider a multi-relay system with FG-AF
relaying and MRC diversity at destination. Channel fad-
ing is assumed to be independent but identically-distributed
Nakagami on all links with the same integer-valued fading
parameter m on all links. Under these fading conditions the
authors in [8] derive upper and lower bounds on the ASEP for
MPSK, which require numerical integration for their evalua-
tion.

The submittedwork considers a single relay systemwith
FG-AF relaying and MRC diversity at destination, which
operates over independent but not necessarily identically
distributed Nakagami-m faded channels. We derive a simple
yet accurate closed-form approximation for the ABEP of
coherently detected binary phase shift keying (BPSK) and
binary frequency shift keying (BFSK). It may be noted that
many works have focused on the ABEP analysis of only
one modulation scheme such as coherently detected BPSK
in [3], [9], [10] or π4 -Differential Quaternary phase shift key-
ing (QPSK) in [11]. Our analysis is more general in that it ap-
plies to both BPSK andBFSK. Furthermore, since coherently
detected BPSK and QPSK have the same ABEP [12], our
derived results are also applicable toQPSK.Our proposed an-
alytical approach is independent of the approach used by [7]
to derive the exact ABEP expressions and it yields an ex-
pression that is equally accurate but much simpler to evaluate
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Fig. 1. Cooperative diversity network under consideration.

than the exact expression of [7]. We also propose analytic
closed-form expressions for tight upper and lower bounds on
the ABEP for the same system and channel conditions. The
proposed bounds are easier to evaluate than the bounds of [8]
and at the same time they do not have the restriction to con-
sider only identically distributed Nakagami-m faded links as
observed in the analysis of [8]. The proposed expressions
are validated through simulations for various values of the
Nakagami fading parameter m and are shown to outperform
the results given in previous work, while being considerably
simpler to evaluate than the latter.

The remainder of this letter is organized as follows.
The system and channel model under consideration are in-
troduced in Section 2 and details of analytical expressions
are provided in Section 3. Results are discussed in Section 4.
Finally, some concluding remarks are given in Section 5.

2. System and Channel Model
We consider the cooperative diversity network shown

in Fig. 1 in which nodes transmit over orthogonal channels.
In the first time slot, the source transmits directly to the des-
tination and single relay. In the second time slot the relay
amplifies its received signal and transmits it to the destina-
tion, which combines the two received signals using MRC.
Let hsd , hsr and hrd denote the independent flat-fading
Nakagami-m channel coefficients with corresponding fad-
ing parameters m0, m1, and m2 for the source-destination
(s-d), source-relay (s-r), and relay-destination (r-d) links, re-
spectively. It follows that the instantaneous channel power
gains |hi j |

2, i, j ∈ (s, r, d) are Gamma distributed random
variables [7] with corresponding average values denoted by
σ2
i j, i, j ∈ (s, r, d). Using MRC at destination, the instanta-

neous SNR at the combiner output can be written as [3]

γc = γ0 +
γ1γ2

γ2 + Cc
= γ0 + γr (1)

where γ0, γ1 and γ2 are the instantaneous SNRs with cor-
responding average values γ0 =

Es

N0
σ2
sd
, γ1 =

Es

N0
σ2
sr and

γ2 =
Es

N0
σ2
rd

for the s-d, s-r, and r-d links, respectively. We
have assumed that σ2

sd
= 1 without loss of generality. Es

is the identical average transmit power at source and relay,
whereas No is the identical power spectral density of additive
white Gaussian thermal noise present at all node inputs. The
constant Cc in (1) depends on the type of fixed-gain relaying
and for the relay power gain factor chosen as [7], [4]

G2 = E
{

Es

Es |hsr |
2 + N0

}
(2)

where E denotes the statistical expectation operator, Cc can
be written as [7]

Cc =

[
m1

γ1
ψ

(
1, 2 − m1;

m1

γ1

)]−1
(3)

where ψ (.) denotes the confluent hyper geometric func-
tion [13]. Now using the functional relation between the
hyper geometric function and the incomplete gamma func-
tion, Cc can be written as [13]

Cc =
1(

m1
γ1

)m1 e
m1
γ1 Γ

(
1 − m1,

m1
γ1

) (4)

where Γ (a, x) is the incomplete gamma function [13].

3. Error Analysis
A generic expression for the ABEP for coherently de-

tected BPSK and BFSK can be written as [14], [15]

Pb = E


Γ
(
1
2, aγc

)
2Γ

(
1
2

) 
= E



erfc
(√

aγc
)

2


(5)

where Pb denotes the expected value of Pb, which is the
instantaneous bit error probability (BEP), Γ (.) is the well-
known gamma function and erfc (.) is the well-known com-
plementary error function. Furthermore, the second equality
in (5) above is obtained from [16]. Note that by setting
a = 1 in (5) the ABEP for coherent BPSK and QPSK is ob-
tained [12], whereas using a = 1

2 in (5) gives the ABEP for
coherent BFSK [17]. The presence of erfc (x) in (5) allows
us to leverage the rich literature available on its bounds and
approximations. For example, [18] presented an upper bound
for erfc (x) and its approximation, which also serves as a tight
upper-bound for x > 0.5. In [19] a lower bound for erfc (x)
was proposed. Recently, [20] proposed a new approximation
for erfc (x), which was shown to be more accurate than the
approximation of [18]. We now use these results to derive
tight upper and lower bounds as well as a simple yet accurate
approximation to the considered ABEP.

Using the erfc (x) upper-bound proposed in [18] and
applying the monotonicity property of expectation for two
random variables X ≤ Y ⇒ E [X] ≤ E [Y ] [21], we ob-
tain an upper-bound on the ABEP in (5) that can be formu-
lated as

Pb ≤ E
[
PUB
b

]
≡

1
12

E
[
2e−4aγc + e−2aγc + 3e−aγc

]
. (6)

Similarly using the lower bound on erfc (x) proposed in [19]
and applying the monotonicity property of expectation,
a lower-bound on the ABEP in (5) can be obtained as

Pb ≥ E
[
PLB
b

]
≡

1
12

E
[
e−4aγc + e−2aγc + 2e−

4
3 aγc

]
. (7)
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Now to derive a simple yet accurate approximation for the
ABEP in (5), the order 3 polynomial approximation of
erfc (x) given in [20] is used to obtain

Pb ≈ E
[
Paprx
b

]
≡

1
2

E
[
c1e−caγc + c2e−2caγc + c3e−3caγc

]

(8)

where c1 =0.3357, c2 =0.3361, c3 =0.0305, and c =1.0649
are curve fitting coefficients [20]. Noting that e−caγc =
e−caγ0 × e−caγr and using the statistical independence of γ0
and γr , the expectation can be operated in (6), (7), and (8)
to simplify results. First using the series expansion of e−x

from [13], E
[
e−caγ0

]
can be written as

E
[
e−caγ0

]
=

∞∑
n=0

(−1)n

n!
E

[
(caγ0)n

]
(9)

where the nth moment of (caγ0) can be written using [22] as

E
[
(caγ0)n

]
=
Γ (m0 + n)
Γ (m0)

(
caγ0
m0

)n
. (10)

Substituting (10) into (9) and using the Pochhammer’s sym-
bol representation (m0)n =

Γ(m0+n)
Γ(m0) [16], we get

E
[
e−caγ0

]
=

∞∑
n=0

(m0)n
n!

(
−

caγ0
m0

)n
,

= 1F0

(
m0;−;−

caγ0
m0

)
.

(11)

Here, 1F0(α;−; z) is the Confluent Hypergeometric
function [13]. All other exponential functions with γ0 in
their exponent can be dealt accordingly.

To evaluate E
[
e−caγr

]
we exploit the statistical inde-

pendence of γ1 and γ2; then use e−x = Γ(1, x) [13] and the
series expansion of Γ (1, x) [13] to obtain,

E
[
e−caγr

]
= 1 −

∞∑
n=0

(−1)n

n! (1 + n)
E

[
(caγ1)1+n

]

× E


(
γ2

Cc + γ2

)1+n
. (12)

Now the (1+n)th moment of (caγ1) in (12) can be simplified
by using (10) and after employing the Pochhammer’s symbol
representation of Γ (m1 + 1 + n), (12) simplifies to,

E
[
e−caγr

]
= 1 − caγ1

∞∑
n=0

(m1 + 1)n
n! (1 + n)

(
−

caγ1
m1

)n
× E



(
γ2

Cc + γ2

)1+n
. (13)

Let γ22 ≡
γ2

Cc+γ2
, then its (1 + n)th moment can be defined

using the MGF approach as [14]

E
[
(γ22)1+n

]
≡

1
n!

∫ ∞

0
SnM 1

γ22
(S) dS (14)

where M 1
γ22

(.) is the MGF of 1
γ22

written as [22]

M 1
γ22

(S) =
2
(
Ccm2
γ2

S
) m2

2 e−S

Γ (m2)
Km2

*.
,
2

√
Ccm2

γ2
S+/

-
(15)

where Kν (.) is the modified Bessel function of second kind
and order ν [13]. Substituting (15) into (14) we get,

E
[
(γ22)1+n

]
=

2
Γ (m2) n!

(
Ccm2

γ2

) m2
2

×

∫ ∞

0
S

m2
2 +ne−SKm2

*.
,
2

√
Ccm2

γ2
S+/

-
dS. (16)

After substituting (16) into (13) and simplifying we get

E
[
e−caγr

]
= 1 −

(
2caγ1

) (
Ccm2
γ2

) m2
2

Γ (m2)

×

∫ ∞

0
1F1

(
1 + m1; 2;−

caγ1S
m1

)

× S
m2
2 e−SKm2

*.
,
2

√
Ccm2

γ2
S+/

-
dS

(17)

where we have used the fact that (1 + n) n! = (1 + n)! =
(2)n Γ (2) and employing 1F1(α, γ; z) which is theConfluent-
Hypergeometric function [13]. Now we evaluate the integral
part of (17) separately and write it as

Φ ≡

∫ ∞

0
1F1

(
1 + m1; 2;−

caγ1
m1

S
)

S
m2
2

× e−SKm2
*.
,
2

√
Ccm2

γ2
S+/

-
dS. (18)

The integral in (18) seems quite complicated but it can be
simplified by considering the relayed-link fading parameter
m2 to be non-integer1. The function Km2 (.) can then be
written as [23]

Km2
*.
,
2

√
Ccm2

γ2
S+/

-
=
Γ (−m2)

2

(
Ccm2

γ2
S
) m2

2

× 0F1

(
−; 1 + m2;

Ccm2S
γ2

)
+
Γ (m2)

2

(
Ccm2

γ2
S
)−m2

2

× 0F1

(
−; 1 − m2;

Ccm2S
γ2

)
(19)

1The case of integer m2 can be treated without loss of performance as m2 + δ for sufficiently small δ. For example, setting δ = .01 admits convergent
analytical expressions while channel fading on the r-d link remains practically unchanged. Numerical results shown in the next section also validate this
approach.
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where 0F1(−; β; z) is the Confluent Hypergeometric function
whose series expansion [13] simplifies (19) as

Km2
*.
,
2

√
Ccm2

γ2
S+/

-
=
Γ (−m2)

2

(
Ccm2

γ2
S
) m2

2

×

∞∑
n=0

1
n! (1 + m2)n

(
Ccm2S
γ2

)n

+
Γ (m2)

2

(
Ccm2

γ2
S
)−m2

2

×

∞∑
n=0

1
n! (1 − m2)n

(
Ccm2S
γ2

)n
.

(20)

Substituting (20) in (18) and rearranging the terms, we have

Φ =

Γ (m2)
(
Ccm2
γ2

)−m2
2

2

∞∑
n=0

1
n!

(
Ccm2
γ2

)n { Γ (−m2)
(
Ccm2
γ2

)m2

Γ (m2) (1 + m2)n

×

∫ ∞

0
Sm2+ne−S 1F1

(
1 + m1; 2;−

caγ1
m1

S
)

dS

+
1

(1 − m2)n

∫ ∞

0
Sne−S 1F1

(
1 + m1; 2;−

caγ1
m1

S
)

dS
}
.

(21)

The integrals in (21) can be evaluated using [13] to obtain

Φ =

Γ (m2)
(
Ccm2
γ2

)−m2
2

2

∞∑
n=0

(
Ccm2
γ2

)n {
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

×

(
Ccm2
γ2

)m2

2F1

(
1 + m1, 1 + m2 + n; 2;−

caγ1
m1

)
+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

caγ1
m1

) }
.

(22)

Now substituting (22) into (17) we get

E
[
e−caγr

]
= 1 −

(
caγ1

) ∞∑
n=0

(
Ccm2
γ2

)n {
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

×

(
Ccm2
γ2

)m2

2F1

(
1 + m1, 1 + m2 + n; 2;−

caγ1
m1

)
+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

caγ1
m1

) }
.

(23)

Combining the results of (11) and (23), E
[
e−caγc

]
can then

be expressed as

E
[
e−caγc

]
= 1F0

(
m0;−;−

caγ0
m0

)
×

[
1 −

(
caγ1

) ∞∑
n=0

(
Ccm2
γ2

)n
×

{
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2
γ2

)m2

× 2F1

(
1 + m1, 1 + m2 + n; 2;−

caγ1
m1

)
+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

caγ1
m1

) }]
.

(24)

Using (24) in (8) the ABEP approximation is obtained as

Pb ≈
c1
2 1F0

(
m0;−;−

caγ0
m0

)
×

[
1 −

(
caγ1

) ∞∑
n=0

(
Ccm2

γ2

)n
×

{
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2

γ2

)m2

× 2F1

(
1 + m1, 1 + m2 + n; 2;−

caγ1
m1

)
+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

caγ1
m1

) }]

+
c2
2 1F0

(
m0;−;−

2caγ0
m0

)
×

[
1 −

(
2caγ1

) ∞∑
n=0

(
Ccm2

γ2

)n
×

{
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2

γ2

)m2

× 2F1

(
1 + m1, 1 + m2 + n; 2;−

2caγ1
m1

)
+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

2caγ1
m1

) }]

+
c3
2 1F0

(
m0;−;−

3caγ0
m0

)
×

[
1 −

(
3caγ1

) ∞∑
n=0

(
Ccm2

γ2

)n
×

{
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2

γ2

)m2

× 2F1

(
1 + m1, 1 + m2 + n; 2;−

3caγ1
m1

)
+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

3caγ1
m1

) }]
.

(25)

Similarly using (24) in (6) and (7) the closed-form up-
per and lower-bounds on the ABEP are obtained as (26) and
(27), respectively.

4. Numerical and Simulation Results
In this section some numerical and simulation results

are provided to support the accuracy of the proposed ana-
lytical expressions. For plotting purposes, the first 15 terms
of the infinite sums in (25)-(27) have been used. All sim-
ulations were carried out using the Matlab computational
software, whereas the analytical expressions of [7] and [8]
were evaluated using the Mathematica software.

In Fig. 2, the proposed ABEP approximation is plotted
for the case of SNR-balanced links, i.e., γ2 = γ1. Fur-
thermore, Fig. 2a considers m2 = 0.5 a non-integer value
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Pb ≤
1
6 1F0

(
m0;−;−

4aγ0
m0

) [
1 −

(
4aγ1

) ∞∑
n=0

(
Ccm2
γ2

)n {
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2
γ2

)m2

2F1

(
1 + m1, 1 + m2 + n; 2;−

4aγ1
m1

)

+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

4aγ1
m1

) }]

+
1
12 1F0

(
m0;−;−

2aγ0
m0

) [
1 −

(
2aγ1

) ∞∑
n=0

(
Ccm2
γ2

)n {
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2
γ2

)m2

2F1

(
1 + m1, 1 + m2 + n; 2;−

2aγ1
m1

)

+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

2aγ1
m1

) }]

+
1
4 1F0

(
m0;−;−

aγ0
m0

) [
1 −

(
aγ1

) ∞∑
n=0

(
Ccm2
γ2

)n {
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2
γ2

)m2

2F1

(
1 + m1, 1 + m2 + n; 2;−

aγ1
m1

)

+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

aγ1
m1

) }]
. (26)

Pb ≥
1
12 1F0

(
m0;−;−

4aγ0
m0

) [
1 −

(
4aγ1

) ∞∑
n=0

(
Ccm2
γ2

)n {
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2
γ2

)m2

2F1

(
1 + m1, 1 + m2 + n; 2;−

4aγ1
m1

)

+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

4aγ1
m1

) }]

+
1
12 1F0

(
m0;−;−

2aγ0
m0

) [
1 −

(
2aγ1

) ∞∑
n=0

(
Ccm2
γ2

)n {
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2
γ2

)m2

2F1

(
1 + m1, 1 + m2 + n; 2;−

2aγ1
m1

)

+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

2aγ1
m1

) }]

+
1
6 1F0

(
m0;−;−

4aγ0
3m0

) [
1 −

(
4
3

aγ1

) ∞∑
n=0

(
Ccm2
γ2

)n {
Γ (−m2) Γ (1 + m2 + n)

n!Γ (m2) (1 + m2)n

(
Ccm2
γ2

)m2

2F1

(
1 + m1, 1 + m2 + n; 2;−

4aγ1
3m1

)

+
Γ (1 + n)

n! (1 − m2)n
2F1

(
1 + m1, 1 + n; 2;−

4aγ1
3m1

) }]
. (27)

for the Nakagami fading parameter of the r-d link, whereas
Fig. 2b considers the case of integer-valued fading parame-
ter, m2 = 2. For comparison purposes, the simulated ABEP
and the exact ABEP expression of [7] are also shown in both
sub-figures. It can be observed from these figures that the
proposed expression is in excellent agreement with simula-
tions and the exact ABEP expression of [7]. It may be men-
tioned here that in Fig. 2b, the graphs for simulated ABEP
and the expression of [7] are plotted using the exact value
m2 = 2, whereas the proposed analytical expression is evalu-
ated by setting m2 = 2.01, i.e., δ = 0.01. The excellent match
with [7] and simulations in Fig. 2b validate the effectiveness
of our approach mentioned previously in footnote1 to handle
integer m2.

In Fig. 3, the proposed ABEP approximation is plotted
for balanced links as well as the case of power-imbalance
between the relayed links, i.e., γ2 , γ1. Such an imbalance
can arise for example in strong line-of-sight scenarios such
that γ1 > γ2 when relay is located closer to source than to
destination and γ1 < γ2 for relay closer to destination. Fig. 3
shows that the power imbalance is beneficial to system er-

ror performance when γ1 < γ2, whereas γ1 > γ2 can have
higher error rates than the balanced case due to relay satu-
ration effects as also noted in [4, 8]. From Fig. 3 it can be
observed that the proposed ABEP approximation provides
an accurate evaluation of the ABEP for both balanced and
unbalanced relayed links.

Figure 4 shows the sufficiency of using 15 terms of
the infinite sums in (25) for plotting the numerical results.
From the figure it can be observed that for the balanced
case γ2 = γ1 and the unbalanced case γ2 > γ1 stable val-
ues of the approximation are obtained using only 5 terms
of the infinite sums. However, the other unbalanced case
γ1 > γ2 requires 15 terms of the infinite sums. This behav-
ior can be explained by the expression appearing in first pair
of square brackets in (25) and noting that an identical expla-
nation applies to the other two square bracket pairs in (25).
For γ2 > γ1 and γ2 = γ1 both the factor

(
Ccm2
γ2

)n
and the

sum enclosed within curly braces decrease with increasing n
such that 5 terms of the infinite sums are sufficient to get sta-
ble and accurate values. The summand terms within the curly
braces decrease with increasing n due to the factorial of n and



RADIOENGINEERING, VOL. 25, NO. 1, APRIL 2016 111

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DirectLinkAverageSNR : γ0[dB]

P
b
[M

R
C
]

 

 
Proposed Approximation (25)
Analytical: [7, Eq.(15)]
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(a) Link m-parameters: (m0,m1,m2) = (1.5, 2, 0.5).
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Analytical: [7, Eq.(15)]
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(b) Link m-parameters:(m0,m1,m2) = (0.5, 1, 2).

Fig. 2. BPSK ABEP approximation for power-balanced links, γ2 = γ1. Furthermore, γ1 = 5γ0.
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Fig. 3. BPSKABEP approximation for balanced and unbalanced
links. Link m-parameters are m0 = m2 = 0.5. Link
SNRs are γ1 = γ0 = 17 dB.
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Fig. 4. Convergence of ABEP approximation for balanced and
unbalanced links. Link m-parameters are m0 = m1 =
m2 = 0.5. Link SNRs are γ1 = γ0 = 1 dB.
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Proposed Approximation (25)
Proposed Upper Bound (26)
Proposed Lower Bound (27)
Vien UB: [8, Eq.(10)]
Vien LB: [8, Eq.(31)]

Fig. 5. Comparison of BPSK ABEP upper and lower bounds.
Linkm-parameters arem0 = m1 = m2 = 2. Link SNRs
are γ2 = 5γ1 and γ1 = γ0.
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Fig. 6. BFSK ABEP approximation and bounds. Link m-
parameters are: (m0, m1, m2) = (2.3, 1.7, 0.5). Link
SNRs are γ2 = γ1 = γ0.
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the Pochhammer’s symbol appearing in the denominators
and n appearing as second parameter of the hypergeomet-
ric functions within the curly braces. However, for the case
γ1 > γ2 and small values of γ1 such as γ1 = 1 dB shown in
Fig. 4, the factor

(
Ccm2
γ2

)n
grows with increasing n, whereas

the magnitude of the sum within curly braces decreases with
increasing n as before. Furthermore the product of

(
Ccm2
γ2

)n
and the sum within curly braces evaluates to negative quan-
tities for a few initial values of n and evaluates to positive
quantities for subsequent values of n such that the infinite sum
converges to a positive stable value for 15 terms, as observed
in Fig. 4 for the case γ1 > γ2. Although convergence has
been discussed here in the context of (25), the explanations
are also applicable to the infinite sums in (26) and (27) due to
similarity in the mathematical form of these expressions.

In Fig. 5, our proposed upper and lower bounds on the
ABEP are plotted in comparison with the bounds derived
in [8] for integer-valued m parameters of the Nakagami faded
links. The bounds of [8] are plotted in Fig. 5 using the exact
value m2 = 2, whereas the proposed bounds plotted in the
same figure are obtained by setting m2 = 2.01, i.e., δ = 0.01.
It can be observed from Fig. 5 that our proposed upper bound
is tighter than the upper bound of [8] at high SNRs, whereas
at low SNRs both bounds have identical performance. How-
ever, our bound has the additional advantage of being much
simpler to evaluate than the upper bound of [8], which re-
quires numerical integration for evaluation. It can also be
observed from Fig. 5 that our proposed lower bound is much
tighter than the lower bound of [8]. This follows from the
fact that the latter is based on the Harmonic/Geometric mean
inequality, which loses its tightness as the power imbalance
between the relayed links increases. It is pertinent to men-
tion here that the bounds of [8] are only valid for identically
distributed Nakagami faded links with the same integer value
of m on all links, whereas our proposed bounds do not have
these restrictions.

In Fig. 6, the ABEP approximation for BFSK and its
bounds are plotted for the case of γ2 = γ1 = γ0. The sim-
ulation ABEP is also plotted in the same figure. It can be
observed fromFig. 6 that the analytical and simulation results
are in excellent agreement, which validates the accuracy of
our analytical expressions.

5. Conclusion

We have derived a simple yet accurate closed-form ap-
proximation and tight upper and lower bounds for the ABEP
of BPSK and BFSK for an FG-AF relaying system, with
MRC at destination, operating over independent but not nec-
essarily identically distributed Nakagami-m faded channels.
The proposed analytical expressions are in good agreement
with simulations and are also shown to perform better than
similar expressions previously proposed in the literature.
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