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Abstract. This paper develops a box-particle implementa-
tion of cardinalized probability hypothesis density filter to 
track multiple targets and estimate the unknown number of 
targets. A box particle is a random sample that occupies 
a small and controllable rectangular region of nonzero 
volume in the target state space. In box-particle filter the 
huge number of traditional point observations is instead by 
a remarkably reduced number of interval measurements. It 
decreases the number of particles significantly and reduces 
the runtime considerably. The proposed algorithm based 
on box-particle is able to reach a similar accuracy to 
a Sequential Monte Carlo cardinalized probability hy-
pothesis density (SMC-CPHD) filter with much less 
computational costs. Not only does it propagates the PHD, 
but also propagates the cardinality distribution of target 
number. Therefore, it generates more accurate and stable 
instantaneous estimates of target number as well as target 
state than the box-particle probability hypothesis density 
(BP-PHD) filter does especially in dense clutter environ-
ment. Comparison and analysis based on the simulations 
in different probability of detection and different clutter 
rate have been done. The effectiveness and reliability of the 
proposed algorithm are verified by the simulation results. 

Keywords 
Multi-target tracking, CPHD filter, PHD filter, box-
particle filter, interval measurements 

1. Introduction 
Multi-target tracking has drawn much attention for its 

significant role in military and civilian fields. In a multiple 
target environment, the target number as well as the target 
states is important unknown information. How to track 
multiple targets with varying number during a clutter envi-
ronment has been a difficult research issue in both aca-
demic and engineering fields for a long time. With finite 
set statistics (FISST), a theoretic approach in which targets 
and measurements are modeled by random finite sets 
(RFS) [1] was introduced by Mahler recently. This ap-
proach allows multi-target tracking in the presence of clut-

ter and with uncertain associations to be cast in a Bayes 
filter. Based on this theory, Mahler then proposed the prob-
ability hypothesis density (PHD) filter [2] and the cardinal-
ized probability hypothesis density (CPHD) filter [3]. 
Compared with the PHD filter, the CPHD filter relaxes the 
Poisson assumptions in target and measurement number to 
achieve better estimation performance. Plenty of works 
have been done for their implementations [4–7], such as 
the Sequential Monte Carlo (SMC) approximation and the 
Gaussian mixture (GM) approximation. In order to achieve 
a satisfactory performance a large number of weighted 
particles are needed to approximate the intensity function 
in the SMC implementation. It results in high computa-
tional complexity and more execution time. 

In recent years, many practical applications such as 
the wireless sensor networks quantized their measurements 
to only a few bits to reduce the communication bandwidth. 
Obviously, the standard measurement model is not ade-
quate in this case. In order to solve these problems, the 
concept of box-particle (BP) filter [8], [9] based on the 
practical application background is proposed by Amadou 
Gning, Branko Ristic, and Lyudmila Mihaylova recently. 
In this approach the huge number of traditional point ob-
servations was substituted by a remarkably reduced num-
ber of interval measurements. It would certainly reduce the 
runtime without a lot loss in the performance. An interval 
measurement expresses a type of uncertainty which is re-
ferred as the set-theoretic uncertainty, vagueness or im-
precision. The box-particle filter was studied and explained 
through the Bayesian perspective by interpreting each box 
particle as a uniform probability density function (PDF) 
[10]. A single target box-particle Bernoulli filter with box 
measurements was presented in [11]. The box-particle 
PHD filter for multi-target tracking with an unknown num-
ber of targets, clutter and false alarms was derived in 
[12].The box-particle cardinality balanced multi-target 
multi-Bernoulli filter and its implementation was proposed 
in [13]. The crowd target tracking based on box-particle 
filter is proposed in [19]. Reference [21] presents an imple-
mentation of box-particle filter on extended target. Various 
works have shown that the box-particle filter can reach 
a similar performance as the traditional particle filter with 
less computational complexity and runtime [11–13], [18].  
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The main contribution of this paper is that a new kind 
of implementation of the cardinalized probability hypothe-
sis density (CPHD) filter, the box-particle cardinalized 
probability hypothesis density (BP-CPHD) filter is pro-
posed. The approach which is suitable to deal with interval 
measurements can track multiple targets and estimate the 
unknown number of targets with low computational com-
plexity and good performance. A comparison of the box-
particle probability hypothesis density (BP-PHD) filter, the 
BP-CPHD filter and the SMC-CPHD filter is performed. 
Both the two box-particle methods share a remarkably 
decreased number and less runtime than the SMC-CPHD 
filter. The BP-CPHD filter has a more accurate and stable 
instantaneous estimates of the target number than the  
BP-PHD filter, especially when the probability of the de-
tection decreases and more clutter appears. Thus, it leads to 
smaller OSPA distance.  

The rest of the paper is organized as follows. The 
necessary backgrounds on interval methodology, the RFS 
theory and the CPHD filter are described in Sec. 2. The 
box-particle PHD filter and the box-particle CPHD filter 
are presented in Sec. 3. Simulation results are performed in 
Sec. 4. Finally, conclusions are drawn in Sec. 5.  

2. Background 
This section introduces the random finite set, interval 

analysis and the SMC-CPHD filter. 

2.1 Random Finite Sets 

In a multiple target scenario, the number of the target 
may vary over time due to the appearance or disappearance 
of a target. As a result, the dimensions of the state space 
vary with the number of targets. Since the number of tar-
gets and the number of measurements are a random 
process, the state set and the observation set can be repre-
sented by the RFSs of multi-target state space and multi-
target observation space, respectively, 

    1 ( )Z x , , x XN k
k k k F   ,  (1) 

    1 ( )Z z , , z ZM k
k k k F   ,   (2) 

where N(k) and M(k) is the number of targets and the num-
ber of measurements at time k. F(X) and F(Z) denote the 
sets of state space X and the observation space Z, respec-
tively. In this paper, we assume that if targets or clutter are 
detected, the sensor does not report the conventional meas-
urement Zk and it will report a closed interval [Zk] instead, 
which contains the target originated point measurement Zk 
with some probability. The set of all such closed intervals 
on Z, denoted by IZ is the interval measurement space. Due 
to the imperfect detection process M(k)  0 interval meas-
urement 1 ( )[ ] , ,[ ]M k

k kz z are collected at time k . The inter-

val measurements can be represented by a finite set:   
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k

M k
k kz z F      (3) 

where  IZF is the space of finite subsets of IZ . If the 
state RFS at time k – 1 is Xk – 1, and the state RFS Xk at 
time k can be expressed by 
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where Skk – 1(x) is the RFS of survival targets from time 
1k   to time k , and k is the RFS of targets which birth at 

time k . The target spawned by a previous target is not 
considered in this paper. The multi-target measurements 

k  is modeled by RFS as 
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where k(x) is the measurement set generated by the true 
targets, and k represents the measurement set from the 
clutter. To deal with the heavy computational burden in 
processing the joint probability density function of Xk and 
Zk directly, Mahler proposed the probability hypothesis 
density (PHD) filter which can approximate the probability 
density of multi-target RFS with its first-order moment [2]. 
Thereafter, he proposed the cardinalized probability hypo-
thesis density (CPHD) filter [3]. These two filters can be 
implemented by GM or SMC approximations.  

2.2 Interval Analysis 

This section will briefly introduce the interval analy-
sis which used in this paper. More details on this field are 
available in [14]. The original idea of interval analysis is to 
deal with intervals of real instead of real numbers for exact 
computation in the presence of rounding errors. Box-parti-
cle filter based on interval analysis is suitable to deal with 
the interval measurements. A real interval [ ] [ , ]x x x is 
defined as a closed and connected subset of the set of real 
numbers. x  and x  represent the lower bound and the 
upper bound of the interval. The arithmetic operations 
between numbers and the operations between sets have 
been extended to intervals. In a multi-dimensional vector 
form, it becomes a box [ ]x defined as a Cartesian product 
of l  intervals: [x] = [x1]  [x2] … [xl]. In this paper, the 
operator | [ ] | will be used as the volume | [ ] |x of a box [ ]x . 
And mid  [ ]x denotes the center of a box. 

A box [x] through a nonlinear transformation in gen-
eral has a non-box shape. In order to remain in the realm of 
boxes, an inclusion function of a given function f is defined 
such that the image of a box [x] is a box [f]([x]) containing 
f ([x]). The inclusion function is used so that the size of the 
box [f]([x]) is minimal but still covers the whole image of 
the box [x] in this paper. The inclusion function is able to 
reduce the calculation and make the process to converge 
faster. Another significant concept is contraction [8], which 
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will be used in the definition of likelihood functions and 
the update step of the proposed filters. In this paper, the 
Constraint Propagation (CP) [13] will be used, for the sake 
of its good suitability in the context of tracking problems. 

2.3 The SMC-CPHD Filter 

The cardinalized probability hypothesis density 
(CPHD) filter which relaxes the Poisson assumptions in 
target and measurement number is proposed by Mahler. 
Not only does it propagate the PHD, but also propagates 
the cardinality distribution of target number. Therefore, it 
generates more accurate and stable instantaneous estimates 
of the target number and admits more false alarm processes 
than the PHD filter does. Both the Sequential Monte Carlo 
(SMC) and the Gaussian mixture (GM) approximations can 
be used to implement the CPHD filter. In this section we 
will introduce the SMC approximation. The description 
and detailed analysis of SMC-CPHD is available in [7]. 
The evaluation for SMC-CPHD has been done using 
ground truth data obtained by a marker-based motion cap-
ture system [23]. The SMC-CPHD recursion is briefly 
summarized as follows:  

1) SMC-CPHD prediction: The distribution of the tar-
get number as well as the target state must also be propa-
gated. Assume that the particle set from the previous time 
k – 1 is 1,( ) ,( )

1 1 1{( , )} kNper i per i
k k iw x 
   , where ,( )

1
per i
kw  is the corre-

sponding weights of the persistent particles. Nk – 1  repre-
sents the number of particles. The newborn particle set is 
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kw   and Nk,new  represents the 

corresponding weights and number of newborn  particles. 
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Nk = Nk – 1 + Nk, new is the whole number of the particles. 
( )

1 1( | )i
k|k kf   x  and  

S 1P ( )i
kx  are the single target transition 

density and the probability of target survival, respectively. 
pkk – 1(n) is the predicted cardinality distribution of the 
target number. M is the transfer matrix and pbirth(n) is the 
probability for n new targets to appear between scan 1k   
and k derived from the birth model. 

2) SMC-CPHD update: Assume that the predicted 

particle set at time k  is ( ) ( )
/ 1 / 1 1{ , } kNi i

k k k k iw   x . The update 

equation of the state intensity and the cardinality distribu-
tion is realized as follows. pc(m) denotes the probability for 
m false alarms. 
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where the conditions  D and –D are short hand notations 
for target detected and not detected, respectively. L[] de-
notes likelihood function. The likelihood ratios above can 
be found in [15]. In this paper, the interval measurement is 
used in the SMC-CPHD filter. Thus the generalized likeli-
hood is different from the traditional SMC-CPHD filter. 
The generalized likelihood function under uncertain meas-
urement satisfies the following formula [21]. Assume that 
inf([z]) and sup([z]) represent the lower and upper limits of 
the interval measurement [z], respectively.  

    
x

-
, , = , ,x Q N t Q dt

     (13) 

ϕ(x,μ,Q) represents the cumulative distribution function of 
Gaussian distribution N(t,μ,Q) with mean μ and variance Q. 
Therefore, the generalized likelihood of the SMC-CPHD 
filter under interval measurement is as follows. R is the 
variance of Gaussian distribution N(z, xkk – 1,

 Q).  
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Applying this to equation (11), we can easily get the 
weight of the particle. The generalized likelihood of the 
BP-CPHD filter is different from that of the SMC-CPHD 
filter. It will be introduced in the following of the paper. 

3. Implementations 
For varying number multi-target tracking in clutter 

environment, PHD and CPHD filter based on random finite 
sets provides good solutions [2], [3]. Their implementa-
tions include Sequential Monte Carlo (SMC) approxima-
tion and the Gaussian mixture (GM) approximation. Box-
particle filter emerging recently provides a new implemen-
tation for PHD filter [12], [18]. On the other hand, 
compared with the PHD filter, the CPHD filter relaxes the 
Poisson assumptions in target and measurement number to 
achieve better estimation performance. Therefore, we pro-
pose a box-particle implementation for CPHD filter in this 
section. 

3.1 The Box-Particle PHD Filter 

The sequential Monte Carlo implementation details 
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using a box particle representation are presented in the 
following.  

1) Prediction: Suppose that the particle set from the 
previous time is denoted by 1,( ) ,( )

1 1 1{( ,[ ] )} kNper i per i
k k iw x 
   . 

,( )
1

per i
kw   is the corresponding weight and Nk – 1 represents 

the number of particles. The newborn particle set 
,,( ) ,( )

1 1 1{ ,[ ]} k newNbir m bir m
k k mw   x  is obtained from the measurement 

[Zk – 1] of the previous scan k – 1. The number of the new-
born particles is Nk,new. More details about producing the 
new particles can be found in [12]. 
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1 ,k k k newN N N   is the whole number of the box-parti-

cles. These particles mentioned above are propagated 
through the motion model and inclusion function. The 
survival probability is PS. 
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2) Update: The update of the state intensity is realized 
as follows, which has a similar scheme of the SMC-PHD 
filter. The probability of target detection PD is assumed to 
be constant, and the number of false detections per scan is 
modeled by a Poisson distribution with mean . The prior 
probability of false detection is modeled by c([zj]). 
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A different likelihood function from that of SMC-
PHD filter is presented here. 
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The function ( )
| 1[ ]([ ],[ ])i

cp k k jh x z  returns a contracted ver-

sion of ( )
| 1[ ]i

k kx  with its corresponding measurement [ ]jz , 

if no [ ]jz  is found, this particle is not contracted. The 

contraction approach here we used is: [ ] [ ] [ ]zy y y   

[ ] [ ] [ ]zx x x  . The contraction approach is widely used. 

Reference [18] provides a contraction example. More in-
formation on contraction step can be found in [16]. For 
interval measurements [ ]jz , compute the correction term 

below: 

1 .
/ 1 ( ) ( ) ( )

| 1 D | 1 | 1
1

([ ])

([ ])
([ ] | [ ])P ([ ])

k k new

j

N N
k k j i i i

k j k k k k k k
i

c

g w


  

  


 
   
  


z

z
z x x

 

(21) 

Normalize the weights 
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3) Estimate: The state and number of the targets is 
estimated in this step. 
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mid[] means finding the center of the box [ ] . N̂k is the 

estimated number of the target. In prediction and update 
steps, the first order moment of multi-target RFS, rather 
than multi-target multi-Bernoulli density mentioned in 
reference [13] is propagated. 

4) Resampling:Assume that N is the number of the 
resampled particles, instead of replicating box-particles 
which have been selected more than once in the resampling 
step as the traditional particle filter does, we divide them 
into N equally weighted box-particles and resample them 

times to obtain particle set    
1

1
{ ,[ ]}i i N

k k iw x
N  from 

  ( )
| 1 1ˆ{ ,[ ]} ki

k k
i N

k iw  x . Here a random dimension is picked to be 

divided for the box-particle which has been selected. The 
details are introduced in [13]. 

5) Clustering: The box particle is changed to point 
particle according to mid([xk

i]). For these obtained point 
particles, we use the K-means clustering method [24] to get 
N̂k cluster centers as the position of the targets. 

3.2 The Box-Particle CPHD Filter 

The box-particle implementation to the CPHD filter is 
presented in the following. The basic concepts of box-par-
ticle approximation of the CPHD filter are essentially the 
same as that of the PHD filter.The difference is that the 
distribution of the target number must also be propagated. 

1) Prediction: The states and weights of the particles 
were propagated through the same approach as the BP-
PHD filter. Suppose that at time k – 1 the particle set is 

1,( ) ,( )
1 1 1{( ,[ ] )} kNper i per i

k k iw x 
   . The newborn particle set 

,,( ) ,( )
1 1 1{ ,[ ]} k newNbir m bir m

k k mw   x  is generated from the measure-

ment set from the previous scan k – 1. In this paper, five 
particles are produced for each measurement [z]. The new-
born particle is generated around the previous measure-
ment with a corresponding weight according to (24). Pb is 
the probability of birth. More details can be found in [12]. 
These particles mentioned above are propagated through 
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the motion model and inclusion function. The survival 
probability is PS. 
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The prediction equation for the cardinality distribution can 
be written in terms of a transfer matrix M: 
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Pbirth(n) is the probability for n new targets to appear 
between scan k – 1 and k derived from the birth model. For 
a constant scan rate, the matrix M is constant and can be 
calculated in advance.  

2) Update: Assume that the predicted particle set at 
time k is ( ) ( )

/ 1 / 1 1{ ,[ ]} kNi i
k k k k iw   x . The update equation of the 

state intensity and the cardinality distribution is realized as 
follows. pc(m) denotes the probability of m false alarms. 
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where the conditions D and –D are short hand notations for 
target detected and not detected, respectively. The 
likelihood ratios above are given by: 
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Here, not only the first order moment of multi-target 
RFS, but also the cardinality distribution is propagated in 
prediction and update steps. 

3) Contraction: A contraction algorithm is used to ob-
tain a contracted version of ( )

| 1[ ]i
k kx  with its corresponding 

measurement [zj]. Given the contraction function 
( )

| 1[ ]([ ],[ ])i
cp k k jh x z , and [ ] [ ] [ ] [ ] [ ]x x y y    x , 

[z] [ ] [ ]z zx y  , if no [zj] is found, this particle is not con-

tracted. The contraction approach here we used is: 
[ ] [ ] [ ]zy y y  , [ ] [ ] [ ]zx x x  . More information on con-

traction step can be found in [16]. Normalized step and the 
estimates of the target state is the same as that of BP-PHD 
filter. For the BP-CPHD filter the MAP estimate may pro-
duce more accurate and stable estimates of target number 
N̂k. The cardinalized distribution, rather than the weights of 
particles, is used to estimate the number of targets here. It 
is different from BP-PHD filter. 

   
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k
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,  (40) 

  ˆ argsupk kN p n .   (41) 

4) Resampling and clustering: Assume that N is the 
number of the resampled particles, instead of replicating 
box-particles which have been selected more than once in 
the resampling step, we divide them into N equally 
weighted box-particles and resample them times to obtain 

particle set    
1

1
{ ,[ ]}i i N

k k iw x
N   from   ( )

| 1 1ˆ{ ,[ ]} ki
k k

i N
k iw  x . In this 

paper we randomly pick a dimension to be divided for the 
selected box-particle . The K-means clustering method [24] 
is still used in the BP-CPHD filter to get the position of the 
targets. The key steps of the BP-CPHD filter are summa-
rized in Tab. 1. 

4. Numerical Studies 
Numerical studies for the proposed box-particle 

CPHD filter are given in this section. We evaluate filter 
performance using the optimum sub pattern assignment 
(OSPA) distance comparing with the SMC-CPHD filter 
and BP-PHD filter. Interval measurements are utilized to 
all the three methods. 
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Tab. 1. Algorithmic flow of the box-particle CPHD filter. 

4.1 Simulation Setup 

Consider a five target scenario on the surveillance re-
gion. The targets are moving according to the nearly con-
stant velocity motion model in two dimensions and the 
prediction of the persistent particles can be modeled by:  

 1|[ ] [ ]k k k w   x F x .  (42)
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 T[ ]= [ ],[ ],[ ],k x x y y x  is the target state interval ,  [ ],[ ]x y  

and  [ ],[ ]x y   are the target position interval and velocity 

interval, respectively. The state noise w is white Gaussian 
noise with a covariance matrix Q = diag ([0.5, 0.1]). The 
inclusion functions are hidden in (42) for the individual 
dimension of the state space. What we can see from (42) is 
that every variable only appears once for each dimension 
and all operations are continuous, so these natural inclusion 
functions are minimal and the propagated boxes have 
minimal size. The point measurements function is 

( ) [ , ]T
kh x yx , so an interval measurement at time k  is 

defined as: 

 [ ] [ ( ) 0.45 , ( ) 0.55 ]k k k k kh h    z x v x v   (43)
 

where, assume the interval length is Δ = [25, 23]T. The 
measurement noise vk is white Gaussian noise with 
a covariance matrix R = diag ([2.52, 2.52]). The initial posi-
tion, velocity and moving duration of the targets are listed 
in Tab. 2. In this paper, we needn’t to initialize all the tar-
gets, for the sake of that the new box particles are gener-
ated from the measurements of the previous time. The first 
target is initialized as follows: m = [–500, 20 ,–80, –25]T, 
and P = diag ([10, 2, 10, 2]). m and P represent the mean 
vector and variance matrix, respectively. For the SMC-
CPHD filter, 2000 particles are sampled from ,( )N m P . 

While the box particle number for the BP-PHD filter and 
BP-CPHD filter is only 35. The probability of target sur-
vival and target birth is SP 0.99  and P 0.01b   respec-

tively. The clutter is modeled as a Poisson RFS with the 
mean r per scan over the surveillance region. The parame-
ters of the OSPA distance are set to be p = 2 and c = 70. 
Figure 1 shows the true target trajectories together with 
interval measurements in the presence of the clutter in x-y 
plane. The average computation time of one Monte Carlo 
trial for the three filters is listed in Tab. 3. 
 

Target Initial position and velocity Start time End time 
1 (500,20,-80,-25) 1 34 
2 (-600,18,80,10) 7 60 
3 (-550,19,-550,10) 25 52 
4 (200,-20,-40,10) 16 40 
5 (-300,20,700,-25) 30 56 

Tab. 2.  The initial position, velocity and moving duration. 
 

Filter SMC-CPHD BP-CPHD BP-PHD 
Running time(s) 166.0843 30.0348 17.0552 

Persistent particle number 2000 35 35 
Newborn particle number 500 5 5 

Tab. 3.  Average running time and the number of particles. 

4.2 Experiments  

1) Comparing the performance of the three filters 
with different number of clutter: To evaluate the average 
performance, 50 Monte Carlo (MC) trials are performed. 
True targets trajectories and tracking results are shown in 
Fig. 2. Set the mean number of the clutter r = 3,8,12, re-
spectively. In this experiment the probability of detection is  

Algorithmic flow of the box-particle CPHD filter 

1. Given 1,( ) ,( )
1 1 1{( ,[ ] )} kNper i per i

k k iw x 
  

. 

2. Create newborn particle set from the previous measurement 
,,( ) ,( )

1 1 1{ ,[ ]} k newNbir m bir m
k k mw   x  with corresponding weight defined by 

(26); 

Prediction 

3. Propagate the particles ( )
| 1[ ]i

k kx  for i = 1,…,Nk according to (27); 

4. Compute the weight ( )
| 1
i

k kw   for i = 1,…,Nk according to (28); 

5. Compute the cardinality  / 1k kp n  according to (29); 

Update 

6. Box particle contraction: [ ] [ ] [ ]zy y y  , [ ] [ ] [ ]zx x x  . 

7. Compute the generalized likelihood 
( )

| 1L ([ ] | [ ])i
k j k kz x  for every 

particle ( ) ( )
/ 1 / 1 1{ ,[ ]} kNi i

k k k k iw   x  and every measurement [zj] 
according to (33); 

8. Compute the weight ŵk
(i) for i = 1,…, Nk  according to (31); 

9. Compute the cardinality pk(n) according to (32); 

Estimate 

10. Get the center of the particle according to mid([xk
i]); 

11. Compute the number of the target N̂k according to (41); 

12. Use K-means clustering method to get N̂k cluster centers as the 
position of the targets. 

13. Weight normalization: ŵk
(i) for i = 1,…, Nk. 

14. Resample N equally weighted particles from   ( )
| 1 1ˆ{ ,[ ]} ki

k k
i N

k iw  x . 

Output 

15. Particles obtained from resample    
1

1
{ ,[ ]}i i N

k k iw x
N   . 
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Fig. 1. True target trajectories together with interval 

measurements in the presence of the clutter in x-y 
plane. The solid lines are the true target trajectories 
and the start position for each track is shown with 
circular. The measurements are visualized as boxes. 
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Fig. 2.  (a) True targets trajectories and tracking results of 

SMC-CPHD (+), BP-PHD (*) and BP-CPHD (o). 
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Fig. 2.  (b) True targets trajectories and tracking results of 

SMC-CPHD (+), BP-PHD (*) and BP-CPHD (o) in X 
and Y directions. 

set to Pd = 0.99. The mean estimated target number and 
mean OSPA distances for different filters are shown in 
Fig. 3(a) to Fig. 5(b). It can be seen that the OSPA values 
of the SMC-CPHD filter and the BP-CPHD filter are in 
general lower than that of the BP-PHD filter with different

number of clutter. And the mean OSPA distances increase 
slowly along with the increase of the number of clutter. 
The larger the number of the clutter, the worse the perfor-
mance of the filters is. The OSPA has a little big value 
when there is a newborn target appearance. The BP-CPHD 
filter and the SMC-CPHD filter share a similar average 
OSPA distance. However, the BP-CPHD filter needs much 
less particle number and runtime than the SMC-CPHD 
filter as seen in Tab. 3. Both of the box-particle methods 
use less time and smaller number of particles than the tradi-
tional Sequential Monte Carlo method. Figure 3(a) shows 
that all the three methods are able to get a relative accurate 
estimate of target number when r = 3. When the number of 
the clutter rise to r = 8 and 12, the BP-CPHD filter and 
SMC-CPHD filter have an advantage over the BP-PHD 
filter especially in estimating target number. It can be seen 
from Fig. 4(a) and Fig. 5(a). Compared to CPHD, PHD is 
more sensitive to clutter. The cardinalized distribution, 
rather than the weight of particle, is used to estimate the 
number of targets in CPHD. It reduces the influence of 
clutter to estimate the number of targets. This experiment 
demonstrates that the proposed algorithm is superior to the 
other two methods in different clutter rates. In addition, the 
runtime of three filters is increased with the increase in the 
number of the clutter because more measurements gener-
ated by the clutter need to be handled. 
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Fig. 3.  (a) Mean estimated number of target under r = 3 and 

Pd = 0.99. 
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Fig. 3. (b) Mean OSPA distance  under  r = 3 and Pd = 0.99. 
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Fig. 4.  (a) Mean estimated number of target under r = 8 and 

Pd = 0.99. 
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Fig. 4. (b) Mean OSPA distance under r = 8 and Pd = 0.99. 
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Fig. 5. (a) Mean estimated number of target under r = 12 and 

Pd = 0.99. 
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Fig. 5. (b) Mean OSPA distance under r = 12 and Pd = 0.99. 

2) Comparing the performance of the three filters 
with different probability of detection: In this experiment 
below we investigate the performance of BP-CPHD filter, 
BP-PHD filter and SMC-CPHD filter with different prob-
ability of detection Pd = 0.95 and 0.90, respectively. The 
number of the clutter is set to r = 3. Figure  6(a) and (b) 
show that the estimated number for all the three methods 
are inaccurate under a low probability of detection. The 
lower the probability of detection, the worse the estimate of 
the target number is. It’s obvious that the traditional SMC 
methods outperformed the other two box-particle methods. 
This is because the number of particles the traditional SMC 
method used is much larger than that of the box-particle 
methods. Though the probability of detection is low, there 
are still a lot of particles to approximate the filter in the 
traditional SMC methods for its large particle number. 
However, for Box-particle filter, with the decline of detec-
tion probability the box-particle number detected is not 
enough to approximate the probability density function. 
Therefore it needs increase of the box-particle number to 
improve the tracking performance. Of cause the adding 
box-particle number is relatively small compared to the 
thousands of particle number. Figure 6 also demonstrates 
that the performance of the BP-CPHD filter and the SMC-
CPHD filter is better than that of the BP-PHD filter. These 
results lead to the conclusion that the proposed BP-CPHD 
filter is more reliable than BP-PHD filter. Furthermore, 
taking the runtime into consideration comprehensively, the 
BP-CPHD filter has a good performance. 
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Fig. 6.  (a) Mean estimated number of target under r = 3 and 

Pd = 0.95.  

0 10 20 30 40 50 60
0

1

2

3

4

5

6
Target number

Time step(s)

T
ar

ge
t 

nu
m

be
r

 

 
True number

BP-CPHD
SMC-CPHD

BP-PHD

 
Fig. 6. (b) Mean estimated number of target under r = 3 and 

Pd = 0.90. 
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5. Conclusions 
This paper presents a novel approach for nonlinear 

multi-target tracking based on box particles, called box-
particle CPHD (BP-CPHD) filter. It is based on the random 
finite set theory, and the interval analysis is used to get 
a box-particle implementation of the CPHD filter. Com-
pared with the SMC-CPHD filter, the number of the parti-
cles is decreased greatly. As a result, it is able to guarantee 
a similar accuracy with less average running time. Experi-
ments demonstrate that the BP-CPHD filter has a higher 
degree of accuracy and more accurate estimate to the num-
ber of targets than the BP-PHD filter, especially in dense 
clutter environment. Experiments in different probability of 
detection imply the box-particle based filters need increase 
of the box-particle number to achieve good tracking perfor-
mance in low detection probability. In addition, the number 
of the clutter had an influence on the runtime. So the esti-
mates of the clutter number should be taken into considera-
tion to make the BP-CPHD algorithm agree with actual 
situation in the future.  
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