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Abstract. We propose an improved capacity lower bound
for OFDM system with compressed sensing channel estima-
tion for Bernoulli-Gaussian channel. We improve the known
capacity lower bound which is based on Lasso compressed
sensing channel estimation, by replacing the Lasso based
estimate with an MMSE estimate, known to be optimal in
the MMSE sense and achievable with practical algorithms
for a broad range of system parameters setup. Additionally,
for the system with equi-powered pilot subcarriers we opti-
mize the capacity lower bound by finding the optimal average
fraction of pilot subcarriers used for channel estimation and
optimal pilot to data power ratio given the average symbol
power per subcarrier, and propose an optimization procedure
with polynomial complexity.
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1. Introduction
The pilot aided channel estimation in OFDM over block

fading channelwith rich scattering, producing nonzero values
for most of the channel taps, is a well elaborated topic [1], [2].
The increase of the utilized bandwidth in practical systems
and the introduction of compressed sensing (CS) brought
a significant interest for pilot aided sparse channel estima-
tion in OFDM and, thus, many new estimation algorithms
with suitable pilot allocation schemes were proposed [3–12].
Those works confirm the gain from using CS but they don’t
consider the capacity increase or the optimal parameter
choice in the system. These issues for the case of Lasso
based channel estimation in the asymptotic scenario were
addressed in a recent paper [13]. In [13], the authors made
a formal connection between the pilot aided OFDM channel
estimation problem for a Bernoulli-Gaussian channel and the
compressed sensing problem with partial DFT sensing ma-

trix for a Bernoulli-Gaussian unknown vector [14]. To avoid
correlation between the channel estimate and the estimation
error, in [13] a new hybrid Lasso-MMSE estimator was pro-
posed. For this estimator the MMSE was found using known
results from the Replica method [14], [15] and the asymp-
totic capacity lower bound was derived based on [1], [16].
Additionally, using the asymptotic capacity lower bound, the
authors in [13] proposed an optimization problem for find-
ing the optimal average fraction of pilot subcarriers used for
channel estimation and optimal pilot to data power ratio given
the average symbol power per subcarrier, which was solved
using grid based exhaustive search. Here we improve the
asymptotic capacity lower bound from [13] by replacing the
Lasso based Lasso-MMSE by pure MMSE estimator. The
MMSE estimation error of the MMSE estimator can also be
predicted using the Replica method [14] and can be achieved
for broad range of system parameters using the Turbo com-
pressed sensing recovery algorithm [17], [18]. The improved
asymptotic capacity lower bound sheds light on the expected
improvement from the utilization of optimal reconstruction
algorithms in compressed sensing compared to the widely
used Lasso based solutions. Additionally, we analyze the
problem of finding an optimal average fraction of pilot sub-
carriers used for channel estimation and optimal pilot to data
power ratio given the average symbol power per subcarrier
and the applicability of convex optimization procedures to
solve the problem in polynomial time.

The novelty of this paper comes from improving the
asymptotic capacity lower bound for pilot aided OFDM sys-
tem achieved by replacing the Lasso-MMSEwith the MMSE
channel estimate. Additional novelty comes from analyzing
the problem of finding the optimal average fraction of pilot
subcarriers used for channel estimation and the optimal pi-
lot to data power ratio given the average symbol power per
subcarrier in the sense of the applicability of the common
polynomial time optimization procedures.

The paper is organized as follows. In Sec. 2 we de-
rive the improved lower bound for the asymptotic capacity of
the system and formulate the problem of finding an optimal
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average fraction of pilot subcarriers used for channel estima-
tion and optimal pilot to data power ratio given the average
symbol power per subcarrier. In Sec. 3 we give numerical
results to illustrate the strengths of the improved asymp-
totic capacity lower bound and analyze the applicability of
different algorithms for solving the optimization problem.
Section 4 concludes the paper.

2. System Description
We analyze the same OFDM system as in [13] that has

N subcarriers. At the transmitter the N × 1 vector X, con-
taining the data and the pilot symbols, experiences IDFT and
is then preceded by a cyclic prefix of length L (N is an in-
teger multiple of L). Afterwards, the signal is sent through
a channel with a discrete channel impulse response repre-
sented by an N × 1 vector h that has maximum L nonzero
values at the beginning of the vector followed by N − L zero
values. We use a channel model where the first L taps of h
follow the Bernoulli-Gaussian model, i.e. each of the first
L taps may assume a nonzero value with probability q, and,
when it does, its value is obtained as a zero mean circularly
symmetric complex Gaussian random variable with variance
1
Lq , leading to E[h

Hh] = 1. This way, the average number of
nonzero channel taps is equal to qL � L. The term asymp-
totic behaviour, in the paper, refers to the scenario where
N → ∞ and L → ∞, but the ratio ν = L/N remains constant
such that 0 < ν ≤ 1. At the receiver, the cyclic prefix is
removed and then the noisy signal y experiences a DFT to
obtain an N × 1 vector Y:

Y = XcH + N = XcFh + N (1)

where F is a non-unitary N ×N DFTmatrix and Xc is a diag-
onal matrix with the elements of X on the main diagonal, N
is a zero mean circularly symmetric complex Gaussian ran-
dom noise vector with covariance matrix σ2

N I, and H = Fh
with E[|Hi |

2] = 1 for i = 1, . . . , N where H = [H1, ..., HN ]T
(T denotes transpose). We assume a block fading channel
model where B OFDM symbols experience the same chan-
nel, but the nonzero channel tap positions and the values of
the channel coefficients are generated independently for each
block and only the first OFDM symbol in each block is used
in the channel estimation procedure.

The OFDM symbol used for channel estimation has M
pilot subcarriers (E[M] = pL) placed at positions m1,...,mM

(integers such that 1 ≤ m1 < . . . < mM ≤ N). In [13],
it is shown that when the pilot positions are restricted to
a subset of L = { NL (l − 1) + 1 : l = 1, 2, ..., L} and their
positions m1, ...,mM are chosen from the set L according
to a Bernoulli model with probability p then for equi-power
pilots with powers PXcp , using several straightforward math-
ematical manipulations [13], we obtain:

GL = AFLhL1 + ZL (2)

where FL is a unitary L × L DFT matrix. In (2) hL1 is
an L×1 vector generated according to the Bernoulli-Gaussian

model with probability q and variance γx =
PXcp

qσ2
N

, GL

is an L × 1 vector, ZL is an L × 1 zero mean circularly
symmetric complex Gaussian random noise vector with co-
variance matrix I and A is an L × L diagonal matrix with
nonzero entries on the main diagonal equal to one at posi-
tions (m1−1) L

N +1, ..., (mM −1) L
N +1. For the model in (2)

the asymptotic behaviour (L → ∞) for different estimators
can be predicted using the Replica method [14]. In [13] the
authors predicted the MMSE error estimate of a reconstruc-
tion algorithm obtained by augmenting the Lasso estimator
with an MMSE estimator. As explained in [14] this is not the
optimal estimator in the MMSE sense. Namely, the lowest
MMSE is obtained if using ĥMMSE

L1 , the MMSE estimate of
hL1 from (2), and that MMSE estimation error value can be
found by solving the following system of equations (equation
(346) inserted in (17b) both from [14] and equation (17a)
using (37) both from [14]):

δ2 = E[|hL1i − ĥMMSE
L1i |

2]

= qγx −
q

η2(1 + γxη2)

∫ ∞

0

te−
t

γxη2

1 + (1 + γxη2) (1−q)
q e−t

dt,

η2 =
δ2 + 1 −

√
(δ2 + 1)2 − 4pδ2
2δ2

. (3)

A solution to (3) that refers tomaximum η2, which is of inter-
est here, can be obtained by iteratively solving both equations
in (3) using a starting point with η2start ≤ 1. Even though
the values in (3) are obtained using the Replica method, for
a broad range of system parameters (as long as the ratio
p
q is not too low, the case of interest here), as presented
in [17], [18] there exists an algorithm with polynomial com-
plexity whose performance closely agrees with the theoreti-
cally predicted values, the Turbo compressed sensing recon-
struction algorithm.

When δ2, the value of the MMSE estimation error,
is available, using the derivation procedure from [13] the
asymptotic capacity for an OFDM system with channel state
information to receiver only, is bounded as:

C ≥ (1−
pν
B

)E

log2(1 +

|Ĥi |
2γ0

(1 + pν
B (Sp − 1))(1 + δ2

Sp
)

)


(4)

where Sp = PXcp/PXcd
is the pilot to data symbol power

ratio, Ĥi is the estimate of Hi and γ0 =
pν
B PXcp+(1− pν

B )PXcd

σ2
N

is the average signal to noise ratio. Assuming exponential
distribution of |Ĥi |

2, the asymptotic capacity is bounded as:

C ≥ (1 −
pν
B

)e−
1
P1 expint(

1
P1

) log2 e = C (5)

where P1 =
γ0 (1−δ2

1+ pν
B (Sp−1)
γ0Sp

)

(1+ pν
B (Sp−1))(1+ δ2

Sp
)
and expint(x) =

∫ ∞
x

e−t
t dt.

For fixed q and γ0, which are considered as system pa-
rameters, the optimal values of Sp and p can be found by
maximizing the right-hand side of (5):
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max
p,Sp

C

s. t. qγx −
q

η2(1 + γxη2)

∫ ∞

0

te−
t

γxη2

1 + (1 + γxη2) (1−q)
q e−t

dt

=
η2 − p
η22 − η2

(6)

where the constraint is associated with (3) and is obtained by
solving for δ2 in the second equation of (3).

3. Numerical Results
The numerical results are obtained usingMatlab. In the

numerical results we compare the capacity lower bound ob-
tained using the MMSE estimation with the capacity lower
bound obtained when using the Lasso-MMSE estimator [13]
and capacity lower bound for the MMSE estimation with L
pilot symbols (p = 1), which has a closed form solution
and the lowest complexity of all three considered estimators.
To obtain the results we used a grid based search where the
search of p was in the interval [1.5q 1] with a step of 0.025,
and the Sp was in the interval [0.4 13] with a step of 0.2.
If not stated differently, we set B = 2.

In Fig. 1 we show the improvement in the optimized
capacity lower bound due to the used estimators for the case
when q = 0.1. The figure shows that the increase in capac-
ity lower bound is significant for high γ0 and this increase
can be observed for both Lasso-MMSE over the MMSE with
p = 1 andMMSEwith p < 1 over Lasso-MMSE. This shows
that the performance of a Lasso based compressed sensing
estimation can be significantly improved.

To better understand the system performance shown in
Fig. 1, in Fig. 2 we show the obtained optimal values of p
and Sp as a function of γ0 for the three approaches.

Figure 2 shows that in both systems, that use Lasso-
MMSE and MMSE with p < 1, the increased γ0 leads to
reduced number of used pilots (decreased p), and increased
power of the pilot symbols (increased Sp). Although the
general trends are the same, the MMSE based system shows
more pronounced behaviour. For the MMSE estimator with
p = 1 the value of Sp decreases with the increase in γ0.

In Fig. 3 we show the performance of the systems for
variable q when γ0 = 250. Figure 3 shows that the increase
in q decreases the system optimized capacity lower bounds
for all estimators. The improvement for the system using
MMSE estimator over the system with Lasso-MMSE estima-
tor is almost constant in the observed region. Interestingly,
the system using Lasso-MMSE estimator shows improved
performance over the MMSE with p = 1 only for low values
of q and with the increase in q, the performance of both sys-
tems converge. This restricts the area where the utilization of
Lasso based estimation can be implemented with reasonable
gain over the system with p = 1.
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bound for MMSE estimator
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Fig. 1. Optimized capacity lower bound as a function of the av-
erage signal to noise ratio γ0.
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(a) Optimal p as a function of γ0
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(b) Optimal Sp as a function of γ0
Fig. 2. Optimal p and Sp vs γ0 for q = 0.1.
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Fig. 3. Optimized capacity lower bound as a function of the spar-
sity of the channel q.
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(a) Optimal p
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(b) Optimal Sp

Fig. 4. Optimal p and Sp as a function of q, when γ = 250.

For the system seting used in Fig. 3, in Fig. 4 we show
the values for the optimal p and Sp .

Figure 4 shows that, for the systems using Lasso-MMSE
estimator and MMSE estimator with variable p, with the in-
crease of q the optimal values of p increase and the optimal
values of Sp decrease and for the system with Lasso-MMSE
estimator they become very close to those for system using
MMSE estimator and p = 1. Also, for the system that uses
Lasso-MMSE the ratio p/q is constantly higher than 3, and
for the system with MMSE it is close to 2. Similar behaviour
for the ratio p/q in the optimal solution, was observed in all
the experiments. Thus, for the MMSE estimation, p is never
too close to q and the iterative solution to (3) is the optimal
one [17–19].

To find a polynomial time optimization procedure for
solving (6) we investigated the convexity of the optimization
problem in different points of the considered region. By nu-
merically evaluating the Hessian matrix of the problem and
its eigenvalues, we found that the problem is neither convex
nor concave, and thus, the convex optimization approaches
are not guaranteed to converge to a global solution. Nev-
ertheless, we found that the for all the tested scenarios for
different values of γ0 and q, the capacity lower bound ex-
hibits a behaviour similar to the one shown in Fig. 5.

Figure 5 shows that the capacity lower bound has struc-
ture with a single region where its value is very close to the

(a) C in the range
(2.4170, 3.3970)

(b) C in the range
(3.2273, 3.3970)

(c) C in the range
(3.3325, 3.3970)

(d) C in the range
(3.3800, 3.3970)

Fig. 5. C shown in different ranges of its value when q = 0.1
and γ0 = 25.
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Fig. 6. Relative capacity lower bound increase as a function of
the number of OFDM symbols per channel block B,
when q = 0.1 and γ0 = 250.

optimal for a large area of p and Sp values and there are not
any local maxima away from this central region. That is why
we propose to use any algorithm for nonlinear constrained
convex optimization (here we used the fmincon Matlab func-
tion with the active-set algorithm with a starting point at
p0 = 3q and Sp0 = 6 (the starting points do not significantly
influence the optimization process as long as p0 > 2q and
Sp0 is not too high)). For very high values of Sp and low
values of p there is another local maximum forC but its value
is much lower than the one in the observed region.

To illustrate the effectiveness of the proposed way of
estimating the optimal values of p and Sp and the optimized
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(a) Optimized p
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(b) Optimized Sp

Fig. 7. Optimized values for p and Sp when γ0 = 250 and
q = 0.1.

capacity lower bound, in Fig. 6 we show the relative increase
of the optimized C for the three considered estimators, as
a function of the number of OFDM symbols per channel
block B.

Figure 6 shows that the nonlinear constrained convex
optimization for (6) provides the same value (to numerical
precision due to the grid resolution and the numerical prop-
erties of the optimization algorithms) for C as the grid based
optimization, but uses an algorithm with a polynomial com-
plexity. Additionally, the figure shows that as B increases the
relative capacity lower bound increase is reduced, which is
due to the larger number of OFDM symbols experiencing the
same channel, so low percentage of the overall subcarriers
are used as pilot subcarriers and further lowering this num-
ber (using improved channel estimation) does not increase
the capacity significantly. Also, the MMSE estimator almost
doubles the relative capacity lover bound increase compared
to the Lasso-MMSE estimator, meaning that there is much
space to improve in estimationwhen usingLasso basedCS.

To further observe the performance of the convex opti-
mization applied to (6), in Fig. 7 we show the optimal values
for p and Sp as a function of B.

Figure 7 shows that the optimized values of p and Sp ob-
tained by nonlinear convex constrained optimization closely
match those obtained by the grid based search. Also, in
Fig. 7(b), the convex optimization shows values of Sp which

are smoother than those of the grid based optimization (ob-
tained as a consequence of the grid with insufficient res-
olution). This shows that the convex optimization can be
efficiently used to solve (6).

4. Conclusion
We proposed an improved capacity lower bound of

an asymptotic capacity of an OFDM pilot aided communi-
cation system with no channel state information at the trans-
mitter on the Bernoulli-Gaussian channel. The improvement
is obtained through the substitution of the estimation error
of the Lasso-MMSE estimator with the one obtained using
theMMSE estimator. Additionally, we analyzed an approach
to obtain the optimized capacity lower bound with respect to
the fraction of used pilot symbols and the pilot to data power
ratio and found that the optimization problem is neither con-
cave nor convex. Nevertheless, the optimization can easily
be carried out with a solution sufficiently close to the optimal
one, using nonlinear constrained convex optimization.
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