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Abstract. All-pass networks with prescribed group delay 
are used for analog signal processing and equalization of 
transmission channels. The state-of-the-art methods for 
synthesizing quasi-arbitrary group delay functions using 
all-pass elements lack a theoretical synthesis procedure 
that guarantees minimum-order networks. We present 
an analytically-based solution to this problem that pro-
duces an all-pass network with a response approximating 
the required group delay to within an arbitrary minimax 
error. For the first time, this method is shown to work for 
any physical realization of second-order all-pass elements, 
is guaranteed to converge to a global optimum solution 
without any choice of seed values as an input, and allows 
synthesis of pre-defined networks described both analyti-
cally and numerically. The proposed method is also de-
monstrated by reducing the delay variation of a practical 
system by any desired amount, and compared to state-of-
the-art methods in comparison examples. 
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1. Introduction 
The ever-increasing performance requirements of 

modern high-speed communication systems favor analog 
solutions for real-time signal processing applications. At 
high frequencies (such as millimeter-wave frequencies) 
analog devices outperform their digital counterparts in 
terms of cost, power consumption and the maximum at-
tainable bandwidth [1]. Furthermore, the digitization pro-
cess of future wideband channels (such as the International 
Telecommunication Union 71–76 and 81–86 GHz bands) 
requires sampling speeds of at least 10 GSPS, currently 
achievable at the cost of sacrificing resolution and dynamic 
range [2]. The fundamental building block of any analog 
signal processor is a delay structure [3–5] of prescribed 
response. This quasi-arbitrary group delay function can be 
synthesized by cascading all-pass sections to obtain a delay 

function approximating the required response to within 
a constant. This synthesized network may then either be 
inserted in a system stand-alone to perform an analog sig-
nal processing function, or cascaded with an existing net-
work to reduce the group delay variation of the resulting 
combined system. This approach is compatible with several 
existing techniques [1], [6–12] for the synthesis of group 
delay networks. 

Initial methods for synthesizing continuous group 
delay functions (using analog all-pass networks) were 
aimed at reducing the group delay variation of color televi-
sion receivers [11]. These methods typically assume the 
form of design tables and graphs, as well as trial and error 
design approaches and are therefore limited to particular 
applications. 

In an effort to address these limitations, analytical 
techniques for synthesizing the group delay of an electrical 
network have been developed [3], [4], [10], [13–15]. Of 
these, only one presents a rigorous theoretical treatment to 
finding minimal-order solutions to the synthesis problem 
[13]. This is done by approximating the original system’s 
group delay characteristic, to within a specified error, using 
the real Fourier series with an optimal number of all-pass 
sections. In this method, convergence of the system of 
analytical equations is, however, sensitive to both the 
original group delay function and the choice of initial solu-
tions, often failing to converge for practical cases [13]. 
This method is also limited to the low-pass case and pro-
vides poor convergence if the bandpass signal is treated as 
an extended low-pass spectrum [7], [8]. The approach 
presented in [3], [4] solves the approximation problem by 
generating a Hurwitz polynomial, with the desired phase 
response, at specified frequencies, which are chosen 
a priori. No rigorous method of choosing these frequency 
points, such that the resulting solution is minimal-order, is 
presented. 

Due to these problems with state-of-the-art analytical 
synthesis methods, numerical approaches relying on opti-
mization algorithms have been widely sought in the mod-
ern group-delay synthesis literature [1], [5], [6], [14–17]. 
The most popular approach [14] is based on approximating 
a desired group delay curve with a summation of second-
order all-pass networks to within an arbitrary additive 
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constant. The theoretical approximation is expressed in 
terms of nonlinear constraints at specific points that are 
then perturbed to achieve quasi-equi-ripple convergence. 
Convergence of this method is sensitive to the chosen ini-
tial value set, though this shortcoming is partially allevi-
ated by a trial-and-error approach. This method also fails to 
account for deviations of practical realizations from theo-
retical models, which are of particular importance in the 
design of high-frequency systems [18]. A similar approach 
is presented in [15], with the exception that the imaginary 
components of the all-pass poles and zeros are assumed to 
be the frequency locations of the local maxima of the re-
sulting delay curve. As with the method in [14], it is im-
possible to analytically determine the initial solution set 
which guarantees convergence. Other approaches using the 
differential evolution and genetic algorithms [1], [6], [16] 
have also been proposed. Such approaches tend to be com-
putationally intensive and are prone to converge to local 
minima, as opposed to a global optimum. 

In this work, we present a new numerical synthesis 
procedure of minimum-order series-cascaded all-pass net-
works having a quasi-arbitrary group delay response, 
making the following contributions to the state-of-the-art: 

1) Our method does not require an initial value set. Con-
vergence is therefore not dependent on an appropriate 
selection. 

2) The resulting group delay function is an approxima-
tion of the required response to within any arbitrarily 
specified maximum delay variation across the pass-
band, extending on methods in literature [3–6], [10], 
[13], [14] where the network’s order is chosen and 
not, explicitly, the resulting maximum delay variation. 

3) The method is implementation abstracted, in that any 
theoretical, circuit, or parametrized numerical model 
description of a second-order all-pass section can be 
applied in the algorithm. 

4) Due to the underlying analytical nature of the ap-
proach, rapid convergence is achieved; typically 
within 20 iterations for practical cases (as will be 
shown in the examples). This is an order of magni-
tude fewer iterations required by more general state-
of-the-art optimization methods (genetic algorithm 
and simulated annealing), as is shown in comparative 
examples. 

To maintain generality, this paper only considers sec-
ond-order all-pass sections with complex poles and zeros, 
of which a special case is the first-order network centered 
around zero frequency. 

This paper is organized as follows. First, the problem 
of synthesizing a quasi-arbitrary group delay function is 
formulated geometrically on the complex s-plane and 
a derivation of the algorithm is presented. The proposed 
method is then demonstrated by synthesizing a linear group 
delay function with a sixth-order theoretical all-pass net-
work. Next, in order to demonstrate the flexibility of the 

algorithm, Gaussian and higher-order delay functions are 
synthesized, followed by an example synthesis of a net-
work to reduce the variation in group delay response of 
a physically measured system (in this case, a fifth-order 
hairpin resonator BPF). Lastly, the proposed method is 
compared to existing techniques in the literature and the 
improvements are demonstrated. The synthesized all-pass 
networks are implemented in lumped-element [9] form. In 
all cases, National Instruments AWR Microwave Office 10 
is used as the circuit simulator. 

2. Theory of Group Delay Synthesis 

2.1 Approach 

The group delay, as a function of frequency, of 
an ideal second-order all-pass network, may be expressed 
in terms of the quadrature all-pass pole/zero pair locations, 
by the relationship [13]: 
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where x and x represent the values of the Re and Im 
components of the poles and zeros respectively, on the   
s-plane. A quasi-arbitrary group delay function can be 
synthesized indirectly by cascading all-pass sections as 
described by (1) with a cost function c (chosen to have the 
negative of the required delay curve) to obtain a cascaded 
response referred to as an error function e. Then, by 
minimizing the variation of e, the resulting all-pass net-
work’s delay s approximates the required response to 
within a constant. Reducing the variation of an arbitrary 
continuous group delay function e by means of cascaded 
all-pass sections can be expressed mathematically as: 
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where the order of the all-pass network is 2N, Δmax repre-
sents the maximum variation in the passband of interest 
and min is a numerical minimization algorithm. This is 
further illustrated in Fig. 1. The delay cost function c can 
either represent the negative of the desired function (by 
reducing the variation Δmax, an approximation to the de-
sired function is then synthesized) or a practical system 
that is to be equalized. 

As per the introductory discussion, a theoretical basis 
is desired for finding the N initial solution sets (x, x), 
which ensure that (2) converges to a global optimum. 

Our approach in this paper simplifies the complexity 
of the minimization problem described in (2) by using 
a novel geometrical approximation to the ideal all-pass net-
work of (1), subsequently leading to an approximate analy- 
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Fig. 1. All-pass network cascaded with the cost function. 

tical solution to (2) in the form of initial all-pass pole/zero 
solution intervals. These intervals are found in such a way 
that (2) is necessarily monotonic over each interval and, as 
a result, any gradient-based optimization will always 
converge to a solution. The end result is either an equi-
ripple solution (if at all possible for the given delay 
function and desired maximum variation) or a solution with 
the fewest local minima and maxima, both of which are 
optimal results [14]. 

After an initial solution is found using the approxi-
mation to (1), it is replaced with the more accurate all-pass 
network descriptions of (1) and subsequently numerically 
optimized in the knowledge that, by the preceding step, 
a global optimum solution will be found. This results in 
an all-pass network composed of ideal all-pass quadrature 
pairs. The ideal all-pass quadrature pairs are then individu-
ally implemented in the passband of interest by using theo-
retical, circuit-simulated or otherwise parameterized nu-
merical descriptions of practical all-pass networks [9]. The 
individual second-order circuit blocks are then optimized 
to achieve 1:1 equivalence with the theoretical all-pass 
section, they are to represent in the circuit, and then 
cascaded with the original network without further 
optimization. 

2.2 Theoretical Derivation 

We will first find a simplification to (1) as mentioned 
above. Equation (1) may be simplified by assuming that 
x >> BW/2 and by removing the negative frequency 
pole/zero pair, without appreciably affecting the group 
delay curve at positive frequencies, where BW is the band-
width of interest. Next, using the additive property of dif-
ferentiation and the symmetry of the pole/zero pair about 
the Im jω-axis, it can be shown that the group delay of 
a single pole and a pole/zero pair is equivalent, provided 
that: 
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where px and zx are the locations of the xth pole and zero 
pair, respectively. An approximation to (1) can therefore be 
found by approximating the group delay of a single pole in  

 
Fig. 2. Graphical illustration of theorem 1. 

the II quadrant of the s-plane, as described by theorem 1 
below. The derivation is presented in Appendix 1. 

Theorem 1. Assume that a single pole exists in the II 
quadrant of the complex s-plane at point P1. Further as-
sume that  is the group delay caused by the pole at P1 at 
a frequency  = P2 where P2 is any point on the positive 
Im j-axis of the s-plane. Then: 
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where the error of the approximation is: 
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Theorem 1 is demonstrated graphically in Fig. 2 
where the error of approximation approaches zero as  
approaches its maximum. This relationship forms the basis 
of the synthesis algorithm presented in this paper. 

Having derived an approximation to (1) the problem 
of (2) can be solved. To realize a final cascaded system e 
(Fig. 1) with equi-ripple variation in group delay, appropri-
ate selections for quad, x must be made. Since c is assumed 
to be a piecewise smooth function, the introduction of 
quad, x to satisfy (2) necessarily implies the introduction of 
new local minima and maxima to e. Furthermore, by the 
equi-ripple requirement, a local minimum must be fol-
lowed by a local maximum. The minimization problem can 
therefore be restated as: finding optimal locations for new 
local minima in e, while simultaneously controlling the 
peaks of resulting subsequent local maxima, such that the 
desired maximum p-p delay variation of e is obtained. 

An algorithm is developed for introducing such local 
minima and maxima with second-order all-pass networks, 
whereby a sequence of iterations successively introduces 
new poles px in the II quadrant of the s-plane, until the 
desired peak group delay variation in (2) is obtained. These 
poles are then later replaced by quadrature all-pass pairs as 
per the transformation of (3), to preserve the initial sys-
tem’s magnitude response. 

To introduce a new local maximum or minimum at 
a specific frequency of the group delay function e, a pole 
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must be placed on a semi-circular curve on the s-plane, as 
described by the following theorem which is derived in 
Appendix 1. 

Theorem 2. Assume that e(ω) represents the group 
delay of some system of interest. Suppose that a local 
maximum or minimum is required at ω = ωmx. Then a new 
pole px must be placed in the s-plane anywhere on the 

curve  px xr


  where βx is the angle with the +jω-axis and 
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The location of px, as expressed in terms of rectangular 
coordinates, in a right hand coordinate system is equiva-
lently: 
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Theorem 2 is illustrated in Fig. 3. 

As βx is traversed from π/2 to 0, the maximum peak 
delay value introduced by px first decreases (since the per-
pendicular distance from px to the Im jω-axis increases) 
and then increases again (after the apex of the semi-circle 
is traversed), as per theorem 1. The introduced delay value 
therefore begins and ends at . When βx > βcx, ωmx is 
a local maximum and as βx decreases ωmx transforms to 
a local minimum exactly once (see Appendix I for deriva-
tion), where βcx can be found by: 
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The foregoing discussion is further illustrated with 
Fig. 4. 

The next step involves selecting one pole from the in-
finite set of allowed values for px, with βx < βcx, such that 
the local maxima preceding (at ω = ωlx) and succeeding (at 
ω = ωrx) the newly introduced local minimum are both 
equal in magnitude and not greater from the local minimum 
than by the maximum allowed variation value, Δmax, as 
further illustrated in Fig. 5: 

 
Fig. 3. Graphical illustration of theorem 2 on the s-plane. 

 
Fig. 4. Graphical illustration of theorem 2 in the frequency-

time domain. 

 
Fig. 5. Graphical illustration of the group delay synthesis 

algorithm. 

    e e maxlx mx      , (9) 

    e e maxrx mx      . (10) 

Before solving for ωmx and βx the behavior of the group 
delay at any point other than at ωmx, as βx changes in Fig. 3, 
is found to be: 

          
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The solution to (9) and (10) is split into two parts; 
first ωmx is found by assuming β = βcx and solving (9); then 
βx is found by solving (10). Substituting (11) into (9) it can 
be shown that: 
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Since (12) has an impractically lengthy analytical solution 
and since e may be numerical in nature, a numerical solu-
tion is justified. An interval for ωmx where a unique solu-
tion can exist is found thereby systematizing the numerical 
approach: 

  (max):mx lx mx    (13) 

where ωmx(max) is the first zero crossing of c1 (itself a func-
tion of ωmx) greater than ωlx. A simple numerical root-
finding algorithm is used to solve for ωmx in the interval of 
(13). The next step is that of finding βx such that (10) is 
satisfied. Similarly to the previous discussion, (11) is sub-
stituted into (10) and βx is found using numerical root-
finding methods in the interval: 
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  : 0x cx  . (14) 

This step concludes solving (9) and (10) for the xth 
pole, px. Through a sequence of iterations, c is traversed 
over the entire bandwidth starting from the band edge with 
the larger group delay, resulting in the desired variation 
over the entire band of interest. Each new px reduces the 
delay variation to the specified maximum value, over 
a portion of the bandwidth,   [lx : rx]. This procedure 
is illustrated in Fig. 5, where two poles are introduced, 
starting at the lower frequency band edge. 

We summarize the synthesis unit step as shown in the 
flow diagram of Fig. 6. 

 
Fig. 6. The synthesis unit step (S(x)). 

Vector p


 is the collection of all n poles px calculated thus 

far in the progression of the algorithm. For brevity, only 
traversal starting at the lower frequency band edge is de-
scribed. The unit step is used iteratively by the main algo-
rithm of Fig. 8, both to introduce new poles and also to re-
synthesize previously calculated poles. To simplify nota-
tion, the unit step is represented by the functional block of 
Fig. 7. In Fig. 8, q is set as the maximum allowed fractional 
variation between iterations of px, allowing for a successful 
termination of the algorithm. 

If the left- and right-most peaks of the group delay are 
approximately equal, equations for finding mx and βx, in 
certain cases, have no solution (for the desired maximum 
variation). This problem can be averted by simply rais-
ing/pre-distorting one band edge with an additional pole 
before proceeding with the algorithm of Fig. 8. 

Finally, each individual quad,x may be replaced by 
a more accurate parametric or numerical description of the 
delay element, provided that the delay function can be 
approximated by (1). 

 
Fig. 7. Synthesis unit step function block diagram. 

 
Fig. 8. Proposed numerical group delay synthesis algorithm. 

3. Application Examples 

3.1 Example 1: Synthesis of a Linear Group 
Delay Function 

We now demonstrate the proposed algorithm of Fig. 8 
by synthesizing a network with a linear increase in group 
delay from 2 ns to 4 ns, as may be required when imple-
menting a Fourier transform [1]. This can be done by re-
ducing the variation of the negative of the desired response 
(cost function) over the desired passband, as illustrated in 
Fig. 9. 

The initial peak group delay variation of e is 2000 ps 
and the desired final variation is set to 300 ps. From Fig. 9, 
l1 = 1.256 × 1010 rad/s and by using (12) and (13) it is 
found that m1 = 1.618 × 1010 rad/s with βc1 = 0.9553 rad. 
Then (10), (11) and (14) are used to calculate β1 = 
0.4286 rad. The initial starting location for p1 is therefore 
(–1, 1) = (0.994, 17.790) × 109. This value is then opti-
mized numerically using a simple monotonic gradient-
based  optimizer  (no  longer  using  the  approximation  of 

 
Fig. 9. Desired linear group delay and cost function. 
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 Iteration 

Variable of interest 1 (p1) 2 (p2) 3 (p1) 4 (p2) 5 (p3) 

lx / 1010 rad/s 1.2557 1.8067 1.2576 1.8085 2.1878 

mx / 1010 rad/s 1.6180 2.0293 1.6387 2.0878 2.3519
βcx / rad  0.9553 1.0035 0.9860 0.9892 1.0051 
βx / rad  0.4286 0.5410 0.4636 0.5310 0.5830 

p ,initial/ 109 (0.994,17.790) (0.703, 21.132) (1.145, 17.782) (0.766, 21.765) (0.581, 24.155) 

p ,optimized/ 109 (0.995,18.397) (0.697, 21.561) (1.188, 18.698) (0.764, 22.151) (0.581, 24.482) 

Tab. 1. First five iterations of the group delay synthesis algorithm. 

 

Theorem 1 in (2)) and found to be (–1, 1) = 
(0.995, 18.397) × 109. 

The aforementioned results are summarized in Tab. 1. 
The first unit step is concluded with the desired variation 
satisfied over the interval   [l1 : r1] = 
[1.26:1.82] × 1010 rad/s, as shown in Fig. 10. We repeat the 
unit step procedure as per the algorithm of Fig. 8. The 
second unit step is concluded with the desired delay varia-
tion satisfied over the interval   [1.83 : 2.14]  × 1010 

rad/s, as shown in Fig. 11. The next step involves 
removing a previously synthesized pole and recalculating 
its position as per the modification e  e – quad,x  shown 
in Fig. 6. Figure 12 shows the group delay profile after this 
subtraction is performed. 

We now repeat the unit step procedure and re-com-
pute the erased pole as shown in Tab. 1 under iteration 
three. A comparison of iterations one and three reveals the 
improvement in the approximation of the location of pole 
p1. The group delay synthesis algorithm repeats in this 
manner until the values of p1, p2 and p3 converge (the 
threshold is set at q = 3%, which is arbitrarily chosen). 

 
Fig. 10. Iteration 1 of the delay synthesis algorithm. 

 
Fig. 11. Iteration 2 of the delay synthesis algorithm. 

For brevity, all iterations are not shown in detail. The 
algorithm ends after 9 iterations with the final cascaded 
error group delay shown in Fig. 13. By removing the cost 
function response c, the resulting synthesized linear group 
delay function s is shown in Fig. 14. Convergence of the 
three poles is shown in Fig. 15. 

 
Fig. 12. Iteration 3 of the delay synthesis algorithm – removal 

of pole p1. 

 
Fig. 13. Cost and error delay functions. 

 
Fig. 14. Desired and synthesized linear group delay functions. 
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Fig. 15. Convergence of the pole components – measured as 

the distance of each respective pole from the origin of 
the s-plane. 

 
Fig. 16. Pole locations used to synthesize the linear delay func-

tion of Fig. 14. Pole locations: p1 = (–11.879, 1.870), 
p2 = (–8.535, 2.245), p3 = (–6.141, 2.503). 

The resulting error function variation is 278 ps over 
the entire bandwidth whereas the specified variation was 
300 ps. Agreement can be further improved by specifying 
a threshold criterion more stringent than q = 3%. 

In order to synthesize the desired linear all-pass net-
work, the obtained poles (as shown in Fig. 16) can be used 
to calculate the all-pass quadrature pair locations by using 
the transformation in (3). 

3.2 Example 2: Synthesis of Gaussian and 
Quadratic Delay Functions 

We now proceed to synthesize more complicated 
examples, namely Gaussian and quadratic delay functions, 
with peak delays of 2 ns and 1 ns respectively, as shown in 
Fig. 17(a) and Fig. 18(a). The cost functions c are con-
structed (desired variation of the error function is set to 
130 ps and 80 ps respectively), resulting in the equi-ripple 
error curves e as shown in Fig. 17(b) and Fig. 18(b). Syn-
thesized pole locations are shown in Fig. 17(c) and 
Fig. 18(c), while their convergence to the final solution is 
further illustrated in Fig. 17(d) and Fig. 18(d). Finally, the 
resulting Gaussian delay approximation is shown in 
Fig. 17(a) and the quadratic approximation in Fig. 18(a). 

To illustrate the numerical process of synthesizing the 
Gaussian delay response, iterations that produce new poles, 
are shown in Fig. 19. This illustrates the systematic ap-
proach of the proposed algorithm, where the error delay 
curve is effectively “stitched-up” into its final form by the 

inclusion of each subsequent second-order all-pass section. 
The accuracy of the approximation of Theorem 1 is con-
firmed by the correspondence of the dotted group delay 
curves (representing an approximate group delay using 
theorem 1) to the solid curves. 

3.3 Example 3: Equalization of Measured 
BPF Group Delay Response with Circuit 
Co-simulation 

The proposed algorithm is now demonstrated by re-
ducing the delay variation of physical S-parameter meas-
urements; in this case on a fifth-order coupled hairpin res-
onator BPF with a fractional bandwidth of 6.8% and mag-
nitude and group delay responses as shown in Fig. 21(a-b). 
The generated ideal equalization poles are implemented 
separately in a circuit solver, using lumped-element sec-
ond-order all-pass sections [9], as shown in Fig. 20. 

The initial delay variation is measured as 4026 ps and 
a desired maximum variation of 1100 ps is set for the error 
function e. This requirement results in a three-section 
equalizing all-pass network with parameter values as sum-
marized in Tab. 2. A finite Q-factor of 400 is assumed for 
the inductors and capacitors. Values for the circuit ele-
ments are calculated directly from the theoretical second-
order all-pass sections [9], [12], [18]. All of the individu-
ally tuned all-pass sections are cascaded in series (without 
further optimization) to obtain the final all-pass network as 
shown in Fig. 1. The equalized curves are shown in 
Fig. 21(a-b). 

The size and accuracy of component values required 
in Tab. 2 rule out implementation with discrete surface 
mount devices. This is true, in general, for microwave 
filters operating at C-band frequencies [20]. However, the 
required values are feasible on-chip using MIM capacitors 
and spiral inductors [21]. Furthermore, in the microelec-
tronic realization, the Q-factors of the inductors may be 
achieved by either active enhancement of on-chip coil 
inductors [22] or implementation of active inductors with 
gm-C type impedance inversion of fixed MIM capacitors 
[23], [24]. In both cases careful control of process toler-
ances (on-chip MIM capacitors have absolute and relative 
tolerances of ±25% and ±0.1% respectively), to ensure the 
desired group delay response, is necessary [21]. One ap-
proach is by means of post-production tunable CMOS 
varactors. 

A resulting ripple of 1058 ps is obtained in Fig. 21(b). 
This is equivalent to a group delay variation reduction of 
74% and 72% respectively. 

The reduced group delay is achieved at the cost of 
a 2.3 dB insertion loss increase. This increase is, however 
constant across the band, which is characteristic of dissipa-
tive resistive losses attributed to the finite Q-factor of the 
lumped elements. The effect of a finite Q-factor on the 
insertion loss and resulting group delay variation of the 
cascaded system is further illustrated in Fig. 23. 
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Fig. 17. (a) Desired Gaussian delay function and the synthesized 10th-order all-pass approximation thereof. (b) Group delay cost and error 

functions. (c) Pole locations: p1 = (–2.040, 1.942), p2 = (–1.247, 2.389), p3 = (–1.020, 2.706), p4 = (–0.915, 2.969), p5 = (–0.767, 3.198). 
(d) Convergence of the pole components – measured as the distance of each respective pole from the origin of the s-plane. 

 
Fig. 18. (a) Desired quadratic delay function superimposed onto the synthesized 10th-order all-pass approximation. (b) Group delay cost and 

error functions. (c) Pole locations: p1 = (–2.188, 1.362), p2 = (–1.817, 1.960), p3 = (–1.639, 2.467), p4 = (–1.513, 2.923),  
p5 = (–1.244, 3.337). (d) Convergence of the pole components – measured as the distance of each respective pole from the origin of the 
s-plane.
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Fig. 19. Progression of the group delay synthesis algorithm at iterations: (a) 2; (b) 5; (c) 12; and (d) 32 as per Fig. 17 (d). Solid curves are 

obtained using (1), dotted curves using the approximation of theorem 1. 

 
Fig. 20. Lumped-element second-order all-pass section. 

 

 Section quad,x  

Parameter 1 2 3 

1 /sL (pH) 354.4 352.4 433.3 

2 /sL (pH) 766.1 757.2 936.1 

2 /sC (pF) 1.273 1.226 0.9533 

2 /C (fF) 70.92 70.12 86.61 

/L (nH) 3.178 3.071 2.376 

/C (fF) 308.1 303.9 378.6 

Tab. 2. Parameter values for the three-element equalizing 
network. 

 
Fig. 21. (a) Magnitude response of the initial (dotted curve) and equalized (solid curve) filter. (b) Original group delay measurement.  

 



360 P. J. OSUCH, T. STANDER, A GEOMETRIC APPROACH TO GROUP DELAY NETWORK SYNTHESIS 

 

 
Fig. 22. Equalization pole locations: p1 = (–1.975, 2.647), p2 = (–2.049, 2.711), p3 = (–2.632, 2.765). (b) Convergence of the equalization pole 

components – measured as the distance of each respective pole from the origin of the s-plane. 

 

 
Fig. 23. Percentage delay variation reduction and insertion loss 

increase of the cascaded system as a function of the  
Q-factor. 

The sixth-order equalizing all-pass network is synthe-
sized in only 10 iterations due to the natural reduction in 
group delay variation experienced in practical filters be-
cause of finite resonator Q-factors. 

4. Comparison of the Proposed 
Method with Existing Approaches 
The Gaussian delay function synthesis (Fig. 17 (b)) 

and practical BPF delay equalization (Fig. 21 (b)) exam-
ples described above are repeated here, this time using 
existing approaches in literature, in order to illustrate the 
shortcomings stated in the introduction. 

The methods in [1], [5], [6], [13], [16], require as in-
put the desired number of poles as well as their starting 
locations. Here the starting values of the ωx components 
are evenly sub-divided across the bandwidth of interest 
while the starting x components are all set such as to 
create a peak delay equal to the maximum initial delay 
variation of the cost function. This choice can be justified 
by observing the pole locations synthesized in earlier 
examples. 

Using this initial pole placement, the theoretical 
treatment presented in [13] is first applied to find an all-
pass network for the Gaussian cost function (Fig. 17 (b)). 
No convergence could be obtained for any number of poles 

without reducing the bandwidth by 16.6% (right-hand edge 
is removed). Fig. 24(a) shows the resulting group delay 
when five all-pass poles are used over this reduced band-
width. A ripple of 786 ps is achieved over the originally 
specified passband as opposed to the 126.6 ps demon-
strated in Sec. 3.2 using our proposed method. 

In a similar manner an equalizing network is synthe-
sized for the BPF delay response (Fig. 21 (b)), using two 
all-pass poles (no convergence could be obtained for three 
poles) as shown in Fig. 24(b). 

The above two examples illustrate the following 
shortcomings associated with the approach in [13]: 

1) There is no explicit control over the resulting 
maximum error delay variation. 

2) Often the method does not converge to a solution (de-
pending on the delay cost function and specified num-
ber of all-pass sections). In the preceding examples, 
this prevented the synthesis of the Gaussian delay to 
within the desired error ripple of 130 ps and the 
equalization of the BPF to within the specified ripple 
of 1100 ps, since the bandwidth and number of all-
pass sections had to be adjusted to ensure conver-
gence. 

Numerical approaches aimed at finding optimal solu-
tions in a large search space have gained prevalence in the 
modern group-delay synthesis literature [1], [5], [6], [14], 
[15], [16]. Here we will investigate two such approaches 
which are well suited to the synthesis problem, namely the 
genetic algorithm and simulated annealing technique. The 
maximum ripple of the error function is plotted versus the 
genetic algorithm generation in Fig. 24(c) and versus the 
simulated annealing iteration in Fig. 24(d), for a single run. 
A limit of 1000 generations and 2000 iterations are im-
posed on the two numerical algorithms. A solution is found 
to the BPF delay equalization problem after 100 genera-
tions (genetic algorithm) and 150 iterations (simulated 
annealing). On the other hand, an optimal Gaussian group 
delay response is not successfully synthesized – no im-
provement occurs after the 300th generation and the 400th 
iteration respectively. 
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Fig. 24.  (a) Cost and error group delay functions (Gaussian). (b) Initial and equalized group delay responses (practical BPF). (c) Genetic 

algorithm applied to the minimization of the Gaussian and BPF delay error functions. (d) Simulated annealing applied to the 
minimization of the Gaussian and BPF delay error functions. (e) Probability distribution of the deviation from the specified passband 
ripple for the Gaussian synthesis problem. (f) Probability distribution of the deviation from the specified passband ripple for the BPF 
delay synthesis problem. 

 

It is important to note that separate runs converge to 
different end results, due to the random initial seed values 
intrinsic to the aforementioned algorithms. Probability 
distributions of maximum error ripples, for the aforemen-
tioned synthesis problems, as shown in Fig. 24(e) and 
Fig. 24(f), are computed from a sample of 500 separate 
runs. The standard deviation is shown for each bin. A limit 
of 1000 generations and 2000 iterations is imposed on the 
two numerical algorithms. 

These results illustrate that convergence to a global 
optimum is a matter of finite probability and cannot be 
guaranteed (Figure 24(e) and 24(f) show the large number 
of local minima that typically exist in the search space). 
For example, in the Gaussian synthesis problem, 10 param-
eters are optimized. If each parameter is assigned to a sub-
set of 100 points about the initial starting value then 1020 

function evaluations are required to cover the entire search 
space. A simulation of 1000 generations requires roughly 
20000 function evaluations, which covers only 2 × 10–16 of 
the search space. Further, the search space partitioning 
could be too course and fail to find the solution altogether. 

Only 1.8% of the genetic algorithm solutions for the 
Gaussian synthesis problem are optimal. On the other hand, 
an optimum solution is found to the simpler BPF equaliza-
tion problem 76% of the time. This might still be insuffi-
cient for certain applications, such as the adaptive delay 
equalization of a practical system. 

The proposed method of this paper overcomes the 
aforementioned limitations by, in each case, converging to 
an optimal solution with an order of magnitude fewer 
iterations. 
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5. Conclusion 
An analytically-based numerical method for synthe-

sizing quasi-arbitrary group delay functions using mini-
mum-order series-cascaded all-pass networks is presented. 
The method is compatible with any physical implementa-
tion of a second-order all-pass delay network and is shown 
to converge to a globally optimum, equi-ripple solution, 
requiring an order of magnitude fewer iterations than state-
of-the-art methods. It is also shown that current methods 
relying on the genetic and simulated annealing algorithms 
do not always converge to a global optimum (as the pro-
posed method does). As proof of concept, linear, quadratic 
and Gaussian delay functions are synthesized, to within 
any arbitrarily specified maximum error of approximation. 
The proposed method is further demonstrated by reducing 
the group delay variation of a physically measured fifth-
order hairpin resonator BPF with 6.8% relative bandwidth, 
by 72%. 
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6. Appendix I 

6.1 Derivation of Theorem 1 

Consider a single pole in the s-plane as shown in 
Fig. 25. Point P1 represents the location of the pole of 
interest. Points P2 and P4 are arbitrary locations on the 
Im jω-axis separated by a differential distance Δω. The 
group delay of a linear system described by an S-parameter 
matrix can be calculated from the S21 parameter as follows: 

 21S







 . (15) 

Equation (15) can be expressed as: 

  2 121 21

0 0
lim lim

S
   

  
     

  


 

 
  

, (16) 

allowing the relationship between  and the geometrical 
representation of Fig. 25. 

As ω is traversed from P2 to P4 by the differential Δω, 
the angle S21 increases by a corresponding differential 
amount. The ratio of these two differential changes is the 
group delay of S21. The distance of P1 from P2 determines 
the resulting differential ratio, or group delay. With the aid 
of Fig. 26 and using the approximation presented in (16), 
we first find the relationship between Δ and 2 3P P  as fol-
lows: 

 
Fig. 25. Geometry of the group delay response of a single pole. 

 
Fig. 26. A geometrical representation of the group delay caused 

by a single pole. 

 
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Next, a relationship between 2 3P P and   can be 

found: 
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 (Sin rule)
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 (18) 

In order to impose the required simplicity of this ap-
proximation it is assumed that a  /2 rad. This implies 
that the approximation is only valid for ω  ωpx  (where ωpx 
is the imaginary component of the pole px at point P1 in 
Fig. 26). The validity of the approximation is only im-
portant near this point – as justified by the requirement of 
(9) and (10). Therefore we may now write: 

 2 3 .P P r         

 
1

.
r





 


 

From (16):  

 
1

px r
    (19) 
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6.2 Derivation of Theorem 2 

Let ω = ωmx  be the location of the xth desired local 
minimum of e  on the jω-axis. The frequency ω = ωmx  is 
a local minimum or maximum if, and only if, 

    e quad,

mx mx

x
 

            

   
 

. (20) 

Using theorem 1 we can replace the right hand side of (20) 

with  quad, 1 21 / , where .x px pxr r P P    Let: 

   1

mx

e c
 

 
 


   

 (21) 

where 1c  is a constant. From Pythagoras we know that: 

  22 2 2
px px pxr      . (22) 

It therefore follows from (20) - (22): 
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This equation can be rewritten as: 

 

1

3

1

px mx
pxr

c

  
  
 

. (24) 

In order to simplify this result, polar co-ordinates are 
introduced, where βx is defined as shown in Fig. 27. 

Equation (24) may now be written as: 
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where the first solution is trivial. 

 

Fig. 27. Definition of βx. 

6.3 Derivation of (8) 

A turning point is a local minimum if and only if 
’’(ω) is continuous at ωmx and if both the following condi-

tions are met (second derivative test):  ' 0
mx 

 


  and 

 '' 0.
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Since the first condition has already been satisfied (in 
theorem 2) the following restriction must be applied to 
ensure that the second condition is met: 
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The above may be re-written as: 
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This expression can be simplified by using the polar 
coordinate representation: 
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