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Abstract. This paper investigates the performance analysis
of diversity combining over flat fading channels subject to
additive impulsive noise. Specifically, the impulsive noise
follows the symmetric α-stable (SαS) distribution. Tradition-
ally, this is a difficult problem since the analytical expression
for the probability density function of a general SαS distri-
bution remains unknown. In order to tackle this difficulty, we
adopt Fourier power transform to obtain an exact bit error
rate (BER) expression for the Genie-aided receiver as well
as a BER upper bound for the conventional linear matched
filter receiver, without taking any approximation. Monte-
Carlo simulations are performed to validate our analytical
results. The simulation results show that our proposed BER
expressions are valid in the whole geometric signal-noise-
ratio (GSNR) ranges, thus outperforming the previous results
valid only at high GSNR values.
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1. Introduction
The additive Gaussian noise model has been widely

used in the analysis and design of communication systems
since it yields a simple and tractable mathematical model [1].
However, impulsive noises often arise due to automobile
spark plugs [2], lighting discharges, underwater sonar, and
network interference [3], etc., which demonstrates that the
Gaussian noisemodelmay not be accurate inmany situations.
For example, a power line communication (PLC) channel is
mainly affected by the ever-present background noise and the
occasional high-amplitude impulses. A standard model for
characterizing impulses is to assume Gaussian distributed
amplitude and Poisson distributed arrivals [4]. Moreover,
studies [5–8] showed that the multiple access interference
might result in a Symmetric-Alpha-Stable (SαS) distribution
in a multi-user network with the power-law path loss. The

SαS distribution has been used to model the co-channel in-
terference and the aggregate interference in different wireless
networks such as cognitive radio networks, UWB networks
and cooperative transmission in UWB relays [9]. In fact,
the α-stable distribution encompasses an important class of
distributions which can successfully model a number of im-
pulsive noise processes, because it satisfies the generalized
center extreme limit theorem. In particular, the Gaussian
distribution can be considered as a special case of the SαS
distribution [10]. Therefore, we consider the SαS distributed
impulsive noise in this paper.

In order to overcome the performance degradation of
communication systems over a fading channel, the receiver
diversity is usually employed. Some results of diversity com-
bining subject to non-Gaussian noise have been obtained in
[11], which investigates the performance in the presence of
flat fading plus spherically invariant noise. In [12], a statis-
tical model called Middleton’s Class-A noise was proposed
to model the impulsive noise approximately. The approxi-
mation is given by a weighted sum of multiple Gaussian dis-
tributions with different variances and amplitudes. In [13],
the authors further provided the closed-form bit-error-rate
(BER) expressions for the linear diversity combining scheme
where the noise follows the Middleton class-A distribution.
Furthermore, in [14], [15], the authors investigated the sym-
bol error rate for linear diversity combining schemes in high
signal-noise-ratio (SNR) region under the assumption of flat
fading plus symmetric non-Gaussian noise. It is noteworthy
that all the aforementioned papers assumed the existence of
the moments of the noise distribution, which cannot be guar-
anteed for α-stable probability density functions (PDFs).

In [16], the authors analyzed the BER performance for
diversity combining over a flat fading channel with the ad-
ditive noise modeled as α-stable distribution. The BER ex-
pressions therein are obtained under the high SNR region,
in which the PDF of α-stable distribution can be approxi-
mated by a simple yet accurate function. However, the re-
sults in [16] will become inaccurate when the SNR decreases,
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because the approximation used in [16] will become inaccu-
rate. To the best of our knowledge, it is still an open question
to explore the analytical error rate performance of diversity
combining schemes over flat fading channels, subject to α-
stable additive noise over entire SNR region of interest. The
key difficulty lies in the unknown closed-form expression
for the SαS distribution at arbitrary SNRs. Therefore, our
contributions in this paper are to address this difficulty and
to derive the analytical BER performance at arbitrary SNR
values. Specifically, to tackle the difficulty, we exploit the
special characteristic function (CF) of SαS distribution and
solve an equivalent problem in the “frequency” domain via
the technique of Fourier power transformation [17] for both
theMaximal Ratio Combining (MRC) receiver with full side-
information (which is called as Genie-AidedReceiver in [16],
GAR ) and the Linear Matched Filter receiver (LMF) without
making any assumption on the SNR region.

The rest of the paper is organized as follows. The α-
stable distribution and systemmodel are introduced in Sec. 2.
We obtain the exact BER expression for GAR in Sec. 3.1 as
well as a BER upper bound for LMF in Sec. 3.2. Monte Carlo
simulations are performed in Sec. 4 under high and moder-
ate impulsive noise scenarios. It is shown that the presented
analytical results are consistent with the simulation results in
all SNR regions. Finally, this paper is concluded in Sec. 5.

Notion: We use boldface type for vectors. E[·] denotes
the statistical expectation; | |x| |p is the p-norm of a vector x;
the distribution of a circularly symmetric complex Gaussian
randomvariable with zeromean and varianceσ2 is defined as
CN (0, σ2), and ∼means “distributed as”;<{·}, ={·} denote
the real and imaginary part of a complex, respectively; x∗

denotes the conjugate of a complex number x; x , y means
the expression y is described as x for simplicity.

2. System Model

2.1 α-Stable Distribution
We first briefly review the α-stable distribution in this

section. A real valued α-stable random variable, w, has
a characteristic function (CF) given by [18]

φw (t) = exp
(
ıδt − |σt |α (1 − ıβsign(t)ζ (t, α))

)
(1)

where
ζ (t, α) =

{
tan(πα/2) α , 1,
2
π log(t) α = 1. (2)

In (2), α ∈ (0, 2], β ∈ [−1, 1], σ ∈ (0,∞), and
δ ∈ (−∞,∞) are parameters of the characteristic exponent,
skew, scale (or dispersion γ = σα) and shift (or location),
respectively. We denote an α-stable random variable as
w ∼ Sα (σ, β, δ). Random variable w follows symmetric
α-stable (SαS) distribution if δ = 0 and β = 0. Moreover, if
σ = 1, then w is said to be standardized.

For any SαS random variable (α , 2), only its p-order
moments exist, where 0 ≤ p < α. Hence, the variance of
SαS distributed noises, is undefined. As a result, the geo-
metric SNR (GSNR) [19] is used in this paper, i.e.,

ρ =
1

2Cg

(
As

S0

)2
(3)

where As , Cg ≈ 1.78, and S0 = C
1
α −1
g σ denote the amplitude

of a modulated signal, the exponential of the Euler constant,
and the geometric power of the SαS random variable, respec-
tively. The normalization constant “2Cg” is used to ensure
that the definition of the GSNR corresponds to that of the
standard SNR if the channel noise is Gaussian.

The SαS random variable has some useful properties
as follows.
Property 1 [20, p20, Proposition 1.3.1]Any real SαS random
variable, w ∼ Sα (σ, 0, 0) can be written as compound Gaus-
sian, i.e., of the form w =

√
AG, where A and G are indepen-

dent, with A ∼ Sα/2([cos(πα/4]2/α, 1, 0) and G ∼ S2(σ, 0, 0)
(or ∼ N (0, 2σ2)).
Property 2 [20, p10, Property 1.2.1] Let X1 and X2 be inde-
pendent random variables with Xi ∼ Sα (σi, βi, µi), i = 1, 2.
Then X1 + X2 ∼ Sα (σ, β, µ), with

σ =
(
σα1 + σ

α
2

)1/α
, β =

β1σ
α
1 + β2σ

α
2

σα1 + σ
α
2

, µ = µ1 + µ2. (4)

Property 3 [20, p16, Property 1.2.15] Let X ∼ Sα (σ, β, µ)
with 0 < α < 2. Then

lim
λ→∞

P(X > λ) = Cα (1 + β)σαλ−α (5)

where Cα = Γ(α) sin(πα/2)/π, and Γ(z) =
∫ ∞

0 tz−1e−tdt.

Although a closed-form expression for the PDF,
fα (x) ∼ Sα (σ, β, 0), does not exist except for a few spe-
cial cases, asymptotic expansion is well known as x → ∞,
which is given by

fα (x)= (1+ β)αCασα |x |−α−1+O( |x |−2α−1) (6)

where we write f (x) = O(g(x)) as x → a to indicate that
lim supx→a | f (x)/g(x) | < ∞.

Next we define the complex isometric SαS [16] random
variables used in the rest of this paper.
Definition 1 If both GR , <{G}, GI , ={G} are
independent identically distributed (i.i.d.) random vari-
ables following the zero mean Gaussian distribution with
variance σ2 (i.e., GI,GR ∼ N (0, σ2)), and A ∼

Sα/2([cos(πα/4]2/α, 1, 0) is independent of GR and GI , then

w =
√

A(GR + ıGI ) (7)
is said to follow the complex isometric SαS distribution de-
noted by w ∼ CSα (σ, 0, 0).

2.2 System Model
The considered system model employs one transmit-

antenna and L receive-antennas. Specifically, the received
signal corrupted by the SαS impulsive noise can be described
by the following equation
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yl =
√
ρhls + wl, l = 1, ..., L , (8)

where ρ, hl, s and wl represent GSNR, channel fading co-
efficient, the transmitted signal and the impulsive noise, re-
spectively. Specially, ρ is the GSNR defined by (3). The l th

channel fading coefficient, hl , follows CN (0, 1) distribution.
The transmitted signal s ∈ {−1, 1} is chosen from a binary
phase shift keyed (BPSK) constellation. The l th channel im-
pulsive noise wl follows the i.i.d. CSα (1, 0, 0) distribution
since any scale is subsumed in ρ.

By Definition 1, wl can be written as

wl =
√

Al (GR
l + ıG

I
l ), l = 1, · · · , L (9)

where Al ∼ Sα/2([cos(πα/4]2/α, 1, 0) and {GR
l
,GI

l
} ∼

N (0, 1) (or Gl ∼ CN (0, 2)).

3. Performance Evaluation
We evaluate the BER performance of different combi-

nation schemes in this section. Section 3.1 focuses on the
genie-aided receiver and Section 3.2 focuses on the LMF
receiver.

3.1 Genie-Aided Receiver
Let h = [h1, · · · , hL], A = [A1, · · · , AL] denote the in-

stantaneous channel realizations and a-priori knowledge of
the impulsive noises at the receiver, respectively. The so-
called Genie-Aided Receiver (GAR) has complete a-priori
knowledge of A and h [16]. Therefore, the received signal in
(8) can be rewritten as

yl
√

Al

=

√
ρ

Al
hls +

wl
√

Al

, l = 1, · · · , L . (10)

Since wl/
√

Al ∼ CN (0, 2), the formulation in (8) reduces to
diversity combining with Gaussian noise, for which, the opti-
mum combining scheme is maximal ratio combining (MRC),
with the lth combining coefficient equal to h∗

l
/
√

Al . Hence,
the decision rule is given by

λGAR = <



L∑
l=1

ylh∗l
Al



Rŝ=1
ŝ=−1 0 . (11)

As a result, the corresponding BER conditioned on A and h
is given by

BERGAR(ρ|A, h) = Q
*..
,

√√√
ρ

L∑
l=1

|hl |2

Al

+//
-

(12)

where Q(·) is the Gaussian Q-function which can be ex-
pressed as [21, pp. 182],

Q(x) =
1
π

∫ π/2

0
exp

(
−

x2

2 sin2 θ

)
dθ, x > 0. (13)

Since {hl, l = 1, 2, · · · , L} are i.i.d. [16] and hl ∼
CN (0, 1), |hl |2 follows the exponential distribution with
mean 1. The identity Eh

[
exp

(
−

∑L
l=1 λl |hl |

2
)]
=

∏L
l=1 (1 + λl)−1 is easily obtained because of the following

derivation,

Eh


exp *

,
−

L∑
l=1

λl |hl |2+
-


= Eh



L∏
l=1

e−λl |hl |
2


=

L∏
l=1
Ehl

[
exp

(
−λl |hl |2

)]
=

L∏
l=1

1
1 + λl

.

(14)

Using this identity and the Q(·) function in (13), we obtain
the average BER of GAR with respect to h as

Eh[BERGAR(ρ|A, h)] =
1
π

∫ π/2

0
*
,

L∏
l=1

Al

Al + ρθ
+
-
dθ (15)

where ρθ , ρ

2 sin2 θ
.

The fact that {Al, l = 1, · · · , L} are i.i.d. [16], the aver-
age BER of the GAR with respect to h and A is thus given
by

BERGAR(ρ) =
1
π

∫ π/2

0

(
EA

[
A

A + ρθ

])L
dθ (16)

where random variable A represents any element of
A. Let fα/2(A) denote the PDF of A with
Sα/2

(
[cos(πα/4)]2/α , 1, 0

)
distribution, the expectation on

the right-hand side of (16) can be rewritten as

EA

[
A

A + ρθ

]
=

∫ ∞

0

A
A + ρθ

fα/2(A)dA . (17)

Unfortunately, the closed-form expression of fα/2(A) does
not exist, except for α = 1. Eq. (17) cannot be evaluated via
direct integration, however, it can be obtained with numeri-
cal integral calculation. Under the high GSNR assumption
(ρ → ∞), the authors of [16] obtained an approximated ex-
pression of (17). Substituting the PDF fα/2(A) as suggested
by (6) into (17), we get

EA

[
A

A + ρθ

]
≈ Γ

(
1+

α

2

) (
ρ

2

)− α2
sinα θ . (18)

As shown in Fig. 1, the greater GSNR ρ (or α), the
higher the approximation accuracy. In particular, (18) gives
a good approximation only in the case of the larger GSNR and
moderate impulsive noise. Meanwhile, its approximation ac-
curacy degrades very fast in the case of low GSNR or severe
impulsive noise. Therefore, the approximation errors cannot
be neglected if the GSNR ρ is medium or small. In order
to address this problem, in this paper, we exploit the Fourier
power theorem (FPT) [17] to obtain an exact expression of
(17). Suppose f (t) and g(t) are two real functions, and the
corresponding Fourier transforms are F (ω) and G(ω), re-
spectively. According to the FPT, the following formula is
workable,∫ ∞

−∞

f (t) · g(t)dt =
1

2π

∫ ∞

−∞

F (ω) · G∗(ω)dω (19)

where (·)∗ denotes the conjugation of a complex function.
We obtain the following result via the FPT.

Theorem 1 The exact BER expression of the Genie
Aided Receiver is given by
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(a) α = 0.5, ρ = 0dB (b) α = 0.5, ρ = 10dB (c) α = 0.5, ρ = 30dB

(d) α = 1.5, ρ = 0dB (e) α = 1.5, ρ = 10dB (f) α = 1.5, ρ = 30dB

Fig. 1. The numerical integral calculation (17) (dotted line) against the approximated version (solid line) (18) with various α and ρ values, where
the label of vertical axis is EA

[
A

A+ρθ

]
.

BERGAR(ρ) =
1
π

∫ π/2

0

(
1 −

ρθ
σ
×∫ ∞

0
e−ω

α/2
sin

(
ρθ
σ
ω + tan(

πα

4
)ωα/2

)
dω

)L
dθ

(20)

where σ , [cos(πα/4)]2/α, and ρ is GSNR.

Proof: The core of proof is to obtain the closed-form
expression of (17). Let g(A) , A sin2 θ

A sin2 θ+ρ/2 =
A

A+ρθ
, then the

expectation on the left-hand side of (17) can be rewritten as∫ ∞
0 fα/2(A) · g(A)dA.

We cannot solve directly this integral value since there
is no closed-form expression for fα/2(A). As we know, the
PDF and the CF of a stochastic process compose a Fourier
transform pair. Fortunately, the Fourier transform of fα/2(A)
(i.e., its CF) and the Fourier transform of g(A) have closed-
form expressions. Therefore, we solve this problem by using
the FPT and obtain the exact expression for (17), which is
given as

EA

[
A

A + ρθ

]
= 1−

ρθ
σ

∫ ∞

0
e−ω

α
2 sin

(
ρθ
σ
ω+tan

(
πα

4

)
ω

α
2

)
dω.

(21)
For the details of the proof, please refer to Appendix 6.1.

Remark 1: If GSNR ρ is large enough to make (18)
satisfied, then the BER of GAR can be further simplified as

BERGAR(ρ) ≈
Γ

(
1 + α

2

)L
Γ

(
1+Lα

2

)
√

4πΓ
(
1 + Lα

2

) (
ρ

2

)−Lα/2
(22)

which is consistent with the previous result in [16, see Eq.
(10)].

3.2 Linear Matched Filtering
This subsection analyzes the BER performance of lin-

ear matched filtering (LMF). The decision rule of LMF is
the maximum ratio combining when the noise is Gaussian,
which is given by

λLMF =

L∑
l=1
<{ylh∗l } ≷

ŝ=1
ŝ=−1 0. (23)

Since the SαS noise has infinite variance, the LMF is no
longer optimal. Therefore, it is important to quantify its
performance under the SαS noise.

By definition, BER of LMF is

BERLMF(ρ|h) = Pr (λLMF > 0|s = −1, h) (24)

where λLMF is the decision statistic, and h =

[h1, · · · , hL] , hl ∼ CN (0, 1) is the instantaneous channel
realizations. Substituting (8), (9) into (23), λLMF can be
written as

λLMF = s
√
ρ| |h| |22 +

L∑
l=1

√
Al

(
GR

l hR
l + GI

l hI
l

)
(25)

where p-norm | |h| |p ,
(∑L

l=1 |hl |
p
)1/p

, p > 0 and GR
l
,GI

l
∼

N (0, 1). Now, conditioned on h and A, G
′

l
, GR

l
hR
l
+

GI
l
hI
l
∼ N (0, |hl |2), which together with Property 1, yields

√
AlG

′

l
∼ Sα (|hl |/

√
2, 0, 0). Using Property 2 to obtain∑L

l=1
√

AlG
′

l
∼ Sα ( 1√

2
| |h| |α, 0, 0), and introducing a standard-

ized SαS random variable v ∼ Sα (1, 0, 0), the λLMF can be
represented in terms of v. Noting s = −1 in (24), the decision
statistic, λLMF, is rewritten as
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λLMF = s
√
ρ| |h| |22 +

1
√

2
| |h| |αv > 0

⇒ v >
√

2ρ| |h| |22/| |h| |α .
(26)

Hence, we will derive exact BER expressions for BER upper
and lower bounds of LMF in the following theorem.

Theorem 2 The BER upper and lower bounds of LMF
are given by

BERUB
LMF(ρ) =

1
2
−

√
2ρL

α−2
2α Γ

(
L + 1

2
)

πΓ(L)
× (27a)∫ ∞

0
e−ω

α
M

(
1
2
+ L,

3
2
,−

1
2
ρL

α−2
α ω2

)
dω,

BERLB
LMF(ρ) =

1
2
−

√
2ρΓ

(
L + 1

2
)

πΓ(L)
× (27b)∫ ∞

0
e−ω

α
M

(
1
2
+ L,

3
2
,−

1
2
ρω2

)
dω

where M (a, b, z) is the first kind of Kummer confluent hy-
pergeometric function (KCHF) [23, Chap. 18.6].
Proof: λLMF is represented in terms of a standardized SαS
random variable v ∼ Sα (1, 0, 0). Using the Hölder inequality
and averaging over all channel realizations, we can derive the
BER upper-bound as

BERUB
LMF(ρ)=

∫ ∞

0
fχ2L (x)

∫ ∞

σz x

fα (v)dvdx (28)

where fχ2L (x) represents the PDF of a χ distribution with
2L degrees of freedom, and σz ,

√
ρL

α−2
2α .

Since there is no closed-form expression for the PDF
fα (v) of v, to the best of the authors’ knowledge, this integral
value is very difficult, if not impossible, to obtain via direct
integration. In [24–26], some approximations to the PDF of
the SαS distribution are proposed. Since the approximation
uses simple formula to calculate the PDF, its accuracy can
be further improved. Moreover, it is still very complicated
to calculate (28) by using approximation method. Again, we
turn to solve an equivalent problem in “frequency” domain
by using the FPT. Noting that the integral lower limit of fα (v)
is σz x instead of 0, we cannot directly use the FPT. For the
details of the proof, please refer to Appendix 6.2.

KCHFbelongs to an important class of special functions
in the mathematical physics. By exploiting some properties
of KCHF [23, Chap. 18.6], we draw the following remark.

Remark 2: KCHF automatically evaluates to sim-
pler functions for certain parameters, e.g., for L = 1,
M

(
1
2 + L, 3

2,−z
)
= e−z . Thus, (27) can be simplified as

BERLMF (ρ|L = 1) =
1
2
−

√
ρ

2π

∫ ∞

0
e−ω

α− 1
2 ρω

2
dω. (29)

Furthermore, if α = 1, then (29) can be further simplified as

BERLMF (ρ|α = 1, L = 1) =
1
2
−

1
2

e
1

2ρ erfc*.
,

√
1

2ρ
+/
-

(30)

where the complementary error function erfc(x) =
2
π

∫ ∞
x

e−t
2dt .

Remark 3: When GSNR ρ is large enough to make
fα (v) ≈ αCαv−α−1 established, upper-bound of LMF can be
obtained by direct integral from (28), yielding

BERUB
LMF(ρ) ≈

CαΓ
(
L − α

2

)
Γ(L)

L1−α/2 (2ρ)−α/2 (31)

which is consistent with Theorem 2 in [16].

We will show in Section 4 that the BER upper bound
(27b) is in fact very tight for the LMF receiver via numerical
simulations.

4. Simulation Results
In this section, we verify the results of Theorems 1

and 2 by performing Monte Carlo simulations. To com-
pare with [16], the BERs of GAR and LMF receivers are
calculated and compared against the theoretically predicted
values/bounds given in Theorems 1 and 2. The impact of
electromagnetic interference from household appliances on
digital subscriber loop systems is shown to be well modeled
by the SαS distribution [27]. Similarly, we also assume that
α = 1.43which corresponds to the value estimated in [28] for
modeling radio frequency interference in laptop receivers. To
simulate a “highly impulsive” scenario which corresponds to
a path loss exponent of 4 (2/α) in an environment where the
interfering nodes are scattered according to a spatial Poisson
point process on a two dimensional plane [3], α = 0.5 is also
considered. The MATLAB code of the SαS distribution is
obtained from [29].

Figure 2 shows the performance of GAR over channels
with severe (or moderate) impulsive noise where the BER
curves based on simulation and theoretical expression (20)
are plotted. It is observed that the simulation results match
with the theoretical formula (20) in the whole GSNR range.
More specifically, the BER performance of GAR gets better
when the number of receiver antenna L increases. Especially
in the high GSNR, e.g., ρ > 10 dB, the BER drops faster.
On the other hand, the performance of GAR with severe im-
pulsive noise is orders of magnitude apart from one with
moderate impulsive noise.

Figure 3 shows that the simplified theoretical expression
(22) presented in Remark 1 is no longer accurate in the low
GSNR range, e.g., ρ < 10dB for moderate impulsive noise
or even ρ < 30dB for severe impulsive noise. It means that
it needs higher GSNR to meet the simplified BER formula
(22) in severe impulsive noise.

The performance of LMF is examined in Figs. 4–5,
where it is demonstrated that the theoretical LMF upper-
bound is tight in the whole GSNR range for the cases of mod-
erate and severe impulsive noise, respectively. It is observed
that the LMF upper-bound is tighter when L is smaller or α
is larger. Simulation results show that increasing the number
of antennas from one to two bring more performance gain
as compared to increasing the antennas number from two to
three in the case of moderate impulsive noise (e.g. α = 1.43),
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Fig. 2. Performance of GAR with L = 1, 2, 3.
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Fig. 3. The simplified expression (22) against the proposed expression (20) for GAR.
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Fig. 4. Performance of LMF with L = 1, 2, 3.
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Fig. 5. Performance of LMF with the proposed upper-bound expression (27b), where L = 3.

and the performance gap is limited when further increasing
the number of antennas. In the case of severe impulsive noise
(e.g. α = 0.5), however, increasing the number of receive an-
tennas is detrimental to the system performance as shown in
Fig. 4(a). The behavior of LMF is very different from that of
GAR, where employing more antennas always brings higher
diversity gain and always improves the system performance.

Figure 5 shows that the theoretical BER upper-bound
of LMF in (27b) is tighter than that of [16] in the whole
GSNR range. In the case of severe impulsive noise, although
GSNR is greater than 20dB, the theoretically derived LMF
bound in [16] differs seriously from the simulation results
while our upper-bound is always identical to the simulation
results. However, in the case of moderate impulsive noise,
when GSNR is greater than 10dB, they are almost identical.

5. Conclusions
In this paper, we analyze the BER performance over

fading channels with SαS impulsive noise. By exploiting the
characteristic function of α-stable distribution and solving
an equivalent problem in the frequency domain based on the
Fourier power transform, we successfully derive the exact
BER expressions for both GAR and LMF receivers. Exten-
sive numerical results validate our analytical results, which
outperform the existing results that are based on asymptotic
approximation.

6. Appendix

6.1 Proof of Theorem 1
Noting that fα/2(A) = 0 when A < 0 , we can extend

the range of variable A to satisfy the condition of the Fourier
power theorem, i.e.,∫ ∞

0
fα/2(A)g(A)dA =

∫ ∞

−∞

fα/2(A)g(A)dA. (32)

The characteristic function of fα/2(A), denoted by
φ(ω; α/2, 1, σ, 0), is known as

φ(ω;
α

2
, 1, σ, 0) = e−|σω |

α
2 (1−ı tan( πα4 )sign(ω)) . (33)

And the Fourier transform of g(A) is

F
[
g(A)

]
=

∫ ∞

−∞

A
A + ρθ

exp(ıωA)dA

= 2πδ(ω) − ıπsign(ω)ρθ exp(−ıωρθ ).
(34)

Hence, using the FPT, we obtain

∫ ∞

−∞

fα/2 (A)g(A)dA =
1

2π

∫ ∞

−∞

F
[
fα/2 (A)

]
F∗

[
g(A)

]
dω

=
1

2π

∫ ∞

−∞

φ(ω;
α

2
, 1, σ, 0)

(
2πδ(ω) − ıπsign(ω)ρθe−ıωρθ

)∗
dω

= 1 +
ıρθ
2

∫ ∞

−∞

e−|σω |
α
2 (1−ı tan( πα4 )sign(ω))+ıωρθ sign(ω)dω

= 1 +
ıρθ
2

∫ ∞

−∞

e−|σω |
α
2 cos(ωρθ + tan(

πα

4
) |σω |

α
2 sign(ω))sign(ω)dω

−
ρθ
2

∫ ∞

−∞

e−|σω |
α
2 sin(ωρθ + tan(

πα

4
) |σω |

α
2 sign(ω))sign(ω)dω.

(35)
Noting that the integrand of the imaginary term is of odd
symmetry, resulting in zero imaginary part. Meanwhile, the
integrand of the real term is of even symmetry, thus,∫ ∞

−∞

fα/2(A)g(A)dA

= 1 − ρθ
∫ ∞

0
e−ω

α
2 cos( πα4 ) sin

(
ρθω + sin(

πα

4
)ω

α
2

)
dω

= 1 −
ρθ
σ

∫ ∞

0
e−ω

α
2 sin

(
ρθ
σ
ω+tan(

πα

4
)ω

α
2

)
dω.

(36)
Therefore, substituting (36) into (16), we obtain the BER of
the GAR.

6.2 Proof of Theorem 2
In this Appendix, we prove Theorem 2. Defining

g(h) , | |h| |22/| |h| |α (37)
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for brevity and using the Hölder inequality given by

| |h| |2 ≤ ||h| |α ≤ L
1
α −

1
2 | |h| |2 , (38)

we can derive bound
L

1
2−

1
α | |h| |2 ≤ g(h) ≤ ||h| |2 . (39)

Moreover, defining x ,
√

2| |h| |2 ∼ χ2L , which represents
a χ distribution (the square root of a χ2 distribution) with
2L degrees of freedom, we obtain √ρL

1
2−

1
α x ≤

√
2ρg(h) ≤

√
ρx and thus the following upper and lower bounds condi-

tioned on h,
Pr

(
v >
√
ρx

)
≤ Pr

(
v >

√
2ρg(h)

)
= BERLMF(ρ|h) ≤ Pr

(
v> L

α−2
2α
√
ρx

) (40)

where fχ2L (x) = 21−Le−x
2/2x2L−1Γ−1(L). Averaging over

all channel realizations, with respect to the distribution of h
(or x), we obtain the BER upper and lower bounds

BERUB
LMF(ρ) = Ex

[
Pr

(
v > L

α−2
2α
√
ρx

)]
(41a)

=

∫ ∞

0
fχ2L (x)

∫ ∞

L
α−2
2α
√
ρx

fα (v)dvdx ,

BERLB
LMF(ρ) = Ex

[
Pr

(
v >
√
ρx

)]
(41b)

=

∫ ∞

0
fχ2L (x)

∫ ∞

√
ρx

fα (v)dvdx .

However, (41) is hard to solve directly. Therefore, we
turn to solve an equivalent problem in “frequency” domain by
using the FPT. Denoting σ2

z , ρL
α−2
α for brevity, we obtain

the BER upper bound as

BERUB
LMF (ρ) =

∫ ∞

0
fχ2L (x)

(∫ ∞

σz x
fα (v)dv

)
dx

=

∫ ∞

0
fα (v) *

,

∫ σ−1
z v

0
fχ2L (x)dx+

-
dv

=

∫ ∞

0
fα (v) *

,
1 − Γ−1 (L)Γ *

,
L,

v2

2σ2
z

+
-

+
-

dv

=
1
2

*
,
1 −

∫ ∞

−∞

fα (v)Γ−1 (L)Γ *
,
L,

v2

2σ2
z

+
-

dv+
-

=
1
2
−
Γ−1 (L)

4π

∫ ∞

−∞

e−|ω |
α
×

√
8σzΓ

(
1
2
+ L

)
M

(
1
2
+ L,

3
2
, −

1
2
σ2
zω

2
)

dω

=
1
2
−

√
2σzΓ

(
L + 1

2
)

πΓ(L)
×∫ ∞

0
e−ω

α
M

(
1
2
+ L,

3
2
, −

1
2
σ2
zω

2
)

dω

(42)

where Γ(a, z) =
∫ ∞
z

ta−1e−tdt presents the incomplete
gamma function, and M (a, b, z) denotes the first kind of
the Kummer confluent hypergeometric function. M (a, b, z)
has the series expansion as

∑∞
k=0

(a)k
(b)k k! zk , where (a)k =∏k−1

i=0 (a+ i) = Γ(a+ k)/Γ(a) are Pochhammer symbols with
(a)0 = 1 [23].

If GSNR ρ is large enough to make fα (v) ≈ αCαv−α−1

established, BERUB
LMF(ρ) can be obtained by direct integral

from (41), yielding

BERUB
LMF(ρ) ≈

∫ ∞

0
fχ2L (x)

∫ ∞

σz x

αCαv−α−1dvdx

=
CαΓ

(
L − α

2

)
Γ(L)

L1−α/2 (2ρ)−α/2
(43)

which is consistent with Theorem 2 in [16]. However, when
GSNR ρ is small, the upper-bound given by (43) yields large
deviation. The reason is explained as follows.

The PDF of the SαS distribution, fα (v), does not have
a closed-form expression. The requirement of asymptotic ex-
pansion (5) in Property 3 is that v is large enough, v > θ as
example (here, θ is a constant associated with α). Therefore,
the requirement of (43) is σz x > θ. Note that x is a ran-
dom variable following a χ2L distribution. The probability
of meeting the requirement (43) is given by

Pr
(
x > σ−1

z θ
)
= Γ

(
L,

θ2

2σ2
z

)
Γ
−1(L)

= Γ *
,
L,
θ2L

2−α
α

2ρ
+
-
Γ
−1(L).

(44)

This means that σz x > θ is satisfied with probability of al-
most 1 when GSNR ρ is large enough, while for a general
ρ, fα (v) ≈ αCαv−α−1 is not true with a certain probability.
Meanwhile, the true value of fα (v) is far less than αCαv−α−1

when v < θ, especially at the neighborhood of v = 0.
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