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Abstract. This paper focuses on real-time tracking of 
multiple extended targets in clutter based on labeled multi-
Bernoulli filter. To address this problem, a novel approach 
is proposed within the recently presented box-particle 
framework. Unlike the traditional point-particle approach, 
the measurements of extended targets are modeled as in-
terval measurements in this work, and the corresponding 
likelihood function is given based on interval analysis. 
Then, labeled multi-Bernoulli recursion for extended 
targets is implemented by box particles, referred to as  
BP-LMB filter. Furthermore, BP-MM-LMB filter is pro-
posed to better accommodate the uncertainty of target 
dynamics by integrating the BP-LMB filter with interacting 
multiple models (IMM) algorithm. Simulations demon-
strate that the proposed approach can significantly reduce 
the number of particles and well track multiple extended 
targets with less runtime. 

Keywords 
Box particle, labeled multi-Bernoulli, multi-target 
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1. Introduction 
Standard tracking algorithms assume that one target 

generates at most one point measurement. However, in 
many practical situations this assumption is not appropriate 
[1], [2]. Due to the increasing resolution of radar and opti-
cal sensors, one target may produce multiple point meas-
urements. Such target is referred to as extended target. 
Extended target tracking is a prevalent task. Recently, the 
random-finite-set (RFS) based multi-target tracking algo-
rithms have attracted extensive attention [3]. Based on RFS 
framework, the probability hypothesis density (PHD), 
Cardinalized PHD (CPHD) and multi-target multi-Ber-
noulli (MeMBer) filters have been proposed [4–6]. How-
ever, these filters only provide unlabeled estimates at each 
time, and additional post-processing is needed to form 
target tracks. To overcome the issue, the labeled RFS is 
introduced in [7] by augmenting the state of each target 

with a track label. Subsequently, the Generalized Labeled 
Multi-Bernoulli (GLMB) and the δ-GLMB RFS were pro-
posed as the specific subclasses of labeled RFS [8]. As 
an accurate and computationally efficient approximation of 
the δ-GLMB filter, the labeled Multi-Bernoulli (LMB) 
filter has been proposed in [9]. Both Gaussian Mixtures 
(GM) and sequential Monte Carlo (SMC) techniques have 
been implemented for these RFS based filters [6], [10]. The 
traditional SMC is carried out by point particles (PP). The 
GM implementation is constrained to linear Gaussian sce-
narios, and the SMC implementation can be applied to 
some nonlinear non-Gaussian scenarios. However, in many 
practical applications, the targets usually exhibit strong 
maneuver, and the combination of interacting multiple 
models (IMM) algorithm and RFS based filter is adopted to 
cope with such rapidly maneuvering targets [11]. In the 
IMM algorithm, multiple single-model filters are needed. 
Consequently, the traditional SMC implementation is com-
putationally expensive, especially when the number of 
targets is large or the IMM algorithm is adopted. This 
motivates us to search for computationally cheaper alterna-
tives. 

For interval measurements, the box-particle (BP) ap-
proach has a potential to significantly reduce computational 
cost [12]. Thus, we focus on tracking multiple extended 
targets by box-particle approach in this work. In tracking 
applications, the measurements may be affected by three 
sources of uncertainty: stochastic, data association and set-
theoretic uncertainty [13], [14]. The uncertainty originating 
from random noise is referred to as statistical uncertainty. 
The data association uncertainty is the uncertainty as to 
which measurements are corresponding to the target. Tradi-
tional tracking algorithms, such as PHD filter and LMB 
filter, have been designed based on both stochastic and 
association uncertainty. However, they ignore the effect 
brought by set-theoretic uncertainty. Because of unknown 
biases and other reasons, interval measurements, rather 
than traditional point measurements, can be usually ob-
tained. The box-particle approach based on the interval 
analysis framework can well accommodate above triple 
uncertainty. In the Bayesian perspective, box particles can 
be interpreted as supports of uniform probability density 
functions (PDF). 
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In fact, the interval measurements are common for 
extended targets. An extended target can generate several 
point measurements based on Poisson model, and they 
randomly distribute around the center of target extent [2]. 
Consequently, the unambiguous position coordinates of 
target center cannot be extracted. On the contrary, the 
interval measurements or ambiguous target regions are 
available. 

In this paper, we apply box-particle approach to im-
plement the LMB recursion for extended targets. Firstly, 
the interval measurement model of extended target is mod-
eled, and the likelihood function within interval analysis 
framework is given. Secondly, the box-particle implemen-
tation of LMB filter for linear extended targets (BP-LMB 
filter) is derived. Then, to better accommodate maneuver-
ing extended targets, the BP-LMB filter and interacting 
multiple models (IMM) algorithm are combined, and  
BP-MM-LMB filter is proposed. Simulations demonstrate 
that the proposed approach can reach similar accuracy with 
considerably less computational costs in comparison with 
point-particle approach. 

The remainder of the paper is organized as follows: 
Section 2 reviews the theories of Poisson model of ex-
tended target, LMB filter and interval analysis. Section 3 
proposes the BP-LMB filter and BP-MM-LMB filter. The 
results and analysis of the experiments are mainly pre-
sented in Section 4. Section 5 draws conclusions. 

2. Background 
This section provides a brief review of Poisson model 

of extended target, LMB filter and interval analysis. More 
details can be found in [2], [9], [12]. 

2.1 Poisson Model of Extended Target 

In the multi-target tracking scenario, the tracking is 
often performed on point measurements after threshold 
segmentation. The target measurement set of extended 
target is usually modeled by Poisson model. The cardinal-
ity distribution is [2]  
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where   is the mean number of point measurements. The 
point measurements originating from the extended target 
can be randomly drawn from Gauss spatial distribution 
around target center. 

2.2 LMB Filter 
A multi-Bernoulli RFS X can be seen as a union of 

some independent  Bernoulli RFSs,  i.e.      
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Here, r and p represent the existence probability and spatial 

distribution of single target, respectively. In LMB filter, 
a label    is appended to single-target state x  to 
enable the estimation of a target track. Labeled single-tar-
get state and multi-target state are denoted by x  and X , 
respectively. The recursion of LMB filter is carried out on 
   as follows [9]. 

1) Prediction: Assume that the parameter set of 
posterior  multi-target  density  at  time  1k    is  given  by 
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. The state space and label space 

are represented by 1k  and 1k . The predicted multi-
target LMB RFS parameter set is given as 
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The first term in (2) represents surviving targets and 
the second one denotes birth targets.   is the label space 
of birth targets. The existence probabilities and spatial 
distributions of surviving targets are calculated as 

 
     
, 1+ P P kr r   ,  (3)
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where the survival probability of the track   is represented 
by pS(·,  ), and  ,f x    denotes the single-target Markov 
transition density. The parameter set of birth targets is 
given by birth model [9]. 

2) Update: The label space after prediction includes 
two parts: surviving targets and birth targets, so 

1k     . The predicted LMB parameter set is 

rewritten as a uniform LMB parameter set as following 

      +π ,+ +r p
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 
.  (6) 

The LMB filter is an approximation of the δ-GLMB 
filter, and its measurement update is still carried out in the 
approach of δ-GLMB. To facilitate the δ-GLMB update, 
the predicted LMB RFS is converted into an equivalent  
δ-GLMB form, i.e. 
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        

 

1
1

1
i

i L

r
L r

r
 

 

 


 








,  (8)

 

      ,p x p x    (9)
 

where  x    represents the projection from the labeled 

state space to the label space, and     XX X   .  

Before update, measurement set partitioning is needed 
for extended target tracking, which partitions point meas-
urement set into multiple subsets. A well-known partition-
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ing method is the distance partition. It is carried out based 
on the fundamental insight that measurements from the 
same extended target are spatially close to each other [15]. 
In particle applications, the distance threshold can be set 
based on prior knowledge, and then the most likely ones 
among all of the possible partitions are adopted in meas-
urement update. 

Afterwards, the updated existence probabilities and 
spatial distributions can be computed by: 
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where I
  represents the space of mappings from track 

label to measurement, and  : 0,1, ,I Z    .  1Y X  is 

include indicator function [9]. 

2.3 Interval Analysis 

Measurements with bounded errors can be conven-
iently modeled as interval measurements. To facilitate the 
processing of interval measurements, the tool of interval 
analysis has been developed [12]. A real interval is defined 
as a closed and connected subset, i.e.    ,x x x . The x  

and x  represent respectively the lower bound and upper 
bound. For the case with multi-dimensional states, the 
interval is regarded as a box  x . Box  x  is defined as 

a Cartesian product of multiple intervals, i.e. 

       1 2x dx x x   , where d is the number of 

dimensions. After a nonlinear propagation, the result of the 
propagation may not be a box. To cope with this issue, 
inclusion functions are necessary. Let f be a function from 

n  to m . An interval function  f  from n  to m  is 

said to be an inclusion function for f, if        x xf f , 

 x n   . In the context of tracking, natural inclusion 

function is usually adopted [12], [16]. 

The contraction is another important concept for box-
particle approach, which is used in the calculation of likeli-
hood function as given in Sec. 3.1. A Constraint Satisfac-
tion Problem (CSP) can be denoted by 

     x =0 x xg , .  (12) 

In short, equation (12) means finding the smallest box  x   

to replace original  x under the constraint    x x  . 

The Constraint Propagation (CP) has better suitability in 
comparison with other methods. Thus, the CP method has 
been widely used in many tracking applications [14], [16]. 

3. Box-Particle Implementations 

3.1 Interval Measurement Model and 
Likelihood Function 

For a two-dimensional case, the single-target state can 
be described by interval state vector as 

           x , , ,
T

k k k kx x y y     (13) 

where  kx ,  ky  are the position intervals of the target 

center, and  kx  and  ky  are the corresponding velocity 

intervals. 

For an extended target, some point measurements 
around target center can be obtained after threshold seg-

mentation, i.e.   
1

,
M
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i
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
 . Here, the term M  repre-

sents the number of point measurements originating from 
the extended target, and ix  and iy  are the position coordi-

nates of the i th point measurement. As introduced in 
Sec. 2.1, the M  is subject to Poisson distribution. Obvi-
ously, the precise center of target extent cannot be directly 
obtained. However, the interval at which the target center 

locates is available, i.e.     z z , zx y    . The  zx  and 

z y    are interval measurements of target center in x-direc-

tion and y-direction, respectively. In this work, they are 
computed by 

    z ,x C x xx      ,  (14) 
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where Cx  and Cy  are the estimated position coordinates of 

target center, x  and y  describe the size of interval. They 

are computed by: 
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For convenience, the above processing, from point 
measurement set to one interval measurement, is denoted 
by    z I Z  . 

The measurement likelihood function g (zx) is re-
quired by Bayes-like filters. This is also true for box-parti-
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cle filter. In the context of this paper, the measurement 
likelihood for interval measurement  z  is given as 

            
 

CPh x , z
z x

x
g    (20) 

where the function       CPh x , z  returns a contracted 

version of  x . In this work, the directly measured compo-

nents are contracted based on interval measurements, i.e. 

     zxx x  ,     z yy y     . The unmeasured com-

ponents,  x  and  y , are contracted based on prior 

knowledge.          x = x x y y     where   de-

notes the volume of interval. 

3.2 BP-LMB Filter 

In this subsection, the box-particle implement of 
LMB filter is derived in detail, which is referred to as  
BP-LMB filter in this paper. 

In classical LMB filter, the spatial distribution p(x) is 
approximated using a set of weighted point particles as  
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where    
x

xj  denotes the Dirac delta function concen-

trated at  x j , J  is the number of point particles, and  j  
represents the weight of the jth point particle. 

In box particle approach, box particles are interpreted 
as supports of uniform PDF, then equation (21) is rewritten 
as: 
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where    
x

xjU  
  

 represents the uniform PDF over the box 

 x j 
  . The details about BP-LMB recursion are presented 

as following. 

1) Prediction: Suppose that the posterior multi-target 
density at 1k   is an LMB RFS with parameter set 
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where  
1kJ 
  is the number of box particles of track   at 

time 1k  . 

The predicted LMB density consists of surviving 
extended targets and birth extended targets in (2). In the 

BP-LMB filter, the parameter set of surviving extended 
targets can be calculated by 
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where 
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The survival probability Sp  is assumed to be state 

independent. The output of     xf  is a box containing 

  xf . The parameter set of birth extended targets are 

given by birth model in Sec. 4.1. 

2) Update: After prediction, the uniform multi-target 
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Then, the equivalent δ-GLMB form is obtained by (7 
to 9). Based on distance partition as introduced in Sec. 2.2, 
the point measurement set is divided into disjointed subsets, 
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converted into interval measurements using the method in- 
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The update using the interval measurement set  Zk  

is given by 
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The weights and the spatial distributions are 
calculated by 

       
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I
I I
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 (36) 

where      z xg   is the  interval  measurement  likelihood 

and has been given as (20).   denotes the clutter density, 
and the clutter is modeled as Poisson model [9]. Dp  repre-

sents the detection probability, it is state independent, and 
1D Dq p  . 

3) Resampling: Similar to the traditional point-particle 
approach, the resampling step is necessary for the box-
particle approach to prevent degeneracy of box particles. 
However, instead of replicating box particles with large 
posterior weights, we partition them into multiple sub 
boxes. These sub boxes are equally weighted. Conse-
quently, the ‘resolution’ in the regions of state space can be 
refined, and target state intervals can be contracted. In this 
work, we randomly pick a dimension to be divided for the 
selected box-particle [12]. 

In addition, the pruning, merging and state extraction 
are similar to those in [14]. Pruning of hypothesized tracks 
means that the tracks with existence probabilities below the 
threshold Thdel will be deleted. Two tracks within a dis-
tance threshold Thmer will be merged. A target is declared 
present only if the existence probability is greater than 
threshold ThTar. Finally, the multi-target state can be ex-
tracted by  

       
 

, ,

1

x mid x
J

j j

j




   


     (37) 

where   mid   represents finding the center of the box 

particle  x . 

3.3 BP-MM-LMB Filter 

To better accommodate maneuvering extended targets, 
BP-MM-LMB filter is proposed by integrating the BP-
LMB filter with IMM algorithm. 

To derive the BP-MM-LMB filter,    is intro-
duced  to denote  single  motion model.  The state of single 

extended target is consequently represented by   x , . 

The motion model of the target is usually regarded as 
a Markov chain with transition probability matrix 

 stH h  [17]. For example,  | 1 1st k k k kh p t s      

denotes the probability that a target switches from model s  

to model t , where ,s t  and 
1

1
M

stt
h




 . The term M   

is the number of motion models. 

In essence, the BP-MM-LMB filter consists of a finite 
number of single-model BP-LMB filters corresponding to 
different motion models. In addition to those steps in BP-
LMB filter, mixing step is additionally required [18]. The 
other steps are similar to BP-LMB filter, and the mixing 
step of BP-MM-LMB filter is given as follows. 

Assume that at time 1k   the multi-target posterior 

density is           
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1 1 1 1 1π , x ,
k

k k k k kr p 


    


   
   

 
, and each 

 
1kp 
  is approximated by a set of augmented box particles 
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Then, the mixed LMB parameter set can be expressed by: 
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
.  (39)

 

Since the model transition is only decided by model 
transition probability and is independent of the state 

transition,       1 1x ,k k kp t 
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    can be computed by 
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 (40) 

Therefore,       1 1x ,k k kp  
 
 

    is approximated by 
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It can be found that much more particles are needed 
and the number of particles after mixing for track   is 
increased to  

1kM J
  . Thus, computationally cheaper im-

plementation is important for maneuvering target tracking. 

Subsequently, the prediction and update are carried 
out based on augmented box particles. Note that the aug-
mented single-target state transition density is 

         x , x , x xf h f      . 
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4. Numerical Studies 

4.1 Simulation Setup 

The simulation results are divided into two parts: 
Firstly, multiple linear extended targets are tracked by the 
proposed BP-LMB filter and the traditional point-particle 
LMB filter (PP-LMB filter) [1], [9]. Secondly, the BP-
MM-LMB filter is compared with the single-model BP-
LMB filter (BP-CV-LMB filter) and multi-model PP-LMB 
filter (PP-MM-LMB filter) in the scenario containing 
multiple rapidly maneuvering extended targets. 

Consider a 2D surveillance region in the Cartesian 
coordinates, specified by the lower-left corner (1, 1) and 
upper-right corner (512, 512). Each sequence has 30 
frames and period is T = 1 s. There are three extended 
targets in each sequence, and they are embedded into each 
sequence as Poisson model. The average number of target 
point measurements is 8. The average number of clutter 
measurements is 20 in each frame. In the first experiment, 
three targets all move at a constant velocity (CV) model in 
the surveillance region. However, the targets may move at 
a constant velocity model or a coordinated turn (CT) model 
in the second experiment. 

Similar to classical LMB filter, the birth process is 
modeled as a multi Bernoulli RFS [9], i.e. 

     3

1
π ,B B Br p


  


,   0.06Br  ,      

   
x

x x
B

Bp U  
  

 

  . 

Taking the Target 1 as an example,  1 1   and the initial 

target state vector is 

     1x 385,399 ,[ 15,15],[155,169],[ 15,15]B    .  (42) 

The velocity vector is contracted based on prior 
distribution. In this work, it follows a uniform PDF, i.e. 

     15, 5 5,15x      and      15, 5 5,15y     . 

The state transition functions of CV model and CT 
model are described by (43) and (44) [18]. The turn rate of 
CT model in the second experiment is set to Ω = 0.8 rad. 
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  (44) 

The statistical performance of the algorithm is evalu-
ated using the Optimal Sub-Pattern Assignment (OSPA) 

metric [19], because it jointly captures differences in cardi-
nality and individual elements between two finite sets in 
a mathematically consistent yet intuitively meaningful way. 

Then, for 1 p   , 0c  ,  1, , mX x x   and 

 1, , nY y y  , if m n , 
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1
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p pcm
ic i
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d x y
d X Y

n c n m
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


  
         

 .  (45) 

If m > n,        , ,c c
p pd X Y d Y X . If m = n =0, 

   , 0c
pd X Y  . We use the parameters c = 50 and p = 1 

in this work. Some parameters used in LMB recursion are 
listed in Tab. 1. 
 

Variable Sp  Dp  merTh  delTh  TarTh parTh

Value 0.99 0.98 3 10-10 0.5 5 

Tab. 1. Parameters of LMB recursion. 

4.2 Tracking Multiple Linear Extended 
Targets 

In this experiment, there are three extended targets in 
this scenario, and they all move at a CV model. The typical 
point measurements originating from the Target 1 are given 
in Fig. 1. The true target tracks are shown in Fig. 2. 
Target 1, Target 2 and Target 3 are born at 1 s, 10 s and 
20 s, respectively. 

The tracking results obtained from PP-LMB filter and 
the proposed BP-LMB filter for a single run is also given 
in Fig. 2. It can be seen that two filters can successfully 
track three linear extended targets. To provide a perfor-
mance comparison in sense of statistical evaluation, the 
average cardinality and average OPSA distance over 50 
Monte Carlo runs are shown in Fig. 3 and Fig. 4, respec-
tively. 

150 160 170

380

390

400

(a) Frame1
220 230 240 250

330

340

350

(b) Frame7

380 390 400

230

240

250

(c) Frame20
440 450 460

190

200

210

(d) Frame25  
Fig. 1. The point measurements of Target 1 at different frames 

in the first experiment. 
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Fig. 2. The true tracks and tracking results in the first 

experiment. 
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Fig. 3. Cardinality statistics for PP-LMB and BP-LMB filters 

in the first experiment. 
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Fig. 4. Average OSPA distances for PP-LMB and BP-LMB 

filters in the first experiment. 
 

Filter 
Parameter 

PP-LMB BP-LMB 

Surviving  
particle number 

2000 40 

Newborn 
particle number 

1000 1 

Runtime (sec) 786.27 43.03 

Tab. 2. Average runtime and the number of particles for  
PP-LMB and BP-LMB filters in the first experiment. 

For RFS based algorithms, the cardinality means the 
number of estimated targets. The OSPA distance is 
a proper metric, which penalizes both the cardinality error 
and the error in the state space. As shown in Fig. 3, both 
PP-LMB filter and BP-LMB filter can accurately estimate 
cardinality. However, the proposed BP-LMB filter can 
achieve more accurate state estimation. The OSPA peak 
appears at about 10 s, because of birth targets. As shown in 
Tab. 2, 40 box particles are enough for each track in the 
proposed BP-LMB filter. However, PP-LMB filter requires 
2000 point particles. The number of particles needed for 
BP-LMB filter is much smaller than that of PP-LMB filter. 
As a result, the average runtime of BP-LMB filter is much 
less than that of PP-LMB filter. It proves the proposed BP-
LMB filter can remarkably decreases the runtime for multi-
ple linear extended targets. 

4.3 Tracking Multiple Maneuvering 
Extended Targets 

In this experiment, true target tracks are shown in 
Fig. 5. There are two highly maneuvering extended targets 
and one linear extended target in this scenario. For exam-
ple, Target 1 is born at 1 s and dies at 30 s. It firstly moves 
at CV model from 1 s to 9 s, then executes CT model from 
the 10 s to 12 s, and finally moves at CV model from 13 s 
to end. The motions of the targets are summarized in 
Tab. 3. 

Let 1   denote the CV model and 2   denote the 
CT model. The initial motion models are set to CV. The 
model transition matrix is set to 

 
0.85 0.15

0.15 0.85
H

 
  
 

  (46) 

The tracking results obtained from PP-MM-LMB, 
BP-CV-LMB and BP-MM-LMB filters for a single run are 
also shown in Fig. 5. When the motion model switch 
occurs, the single-model filter fails to capture the targets. 
However, the PP-MM-LMB filter and BP-MM-LMB filter 
can well accommodate target maneuver. 

The average cardinality and the average OPSA dis-
tance over 50 Monte Carlo runs are depicted in Fig. 6 and 
7. BP-CV-LMB filter yields large cardinality error at 10 s 
to 20 s and 26 s-30 s due to target maneuver. Furthermore, 
there are high peaks in OSPA metric where the estimated 
cardinality is incorrect. It proves that single-model filter is 
not enough to track rapidly maneuvering extended targets. 
 

Target 
Born 
time 

Die 
time 

CV 
motion 

CT 
motion 

Target 1 1 s 30 s 
1 s-9 s, 

13 s-30 s 
10 s-12 s 

Target 2 10 s 30 s 
1 s-25 s, 
29 s-30 s 

26 s-28 s 

Target 3 20 s 30 s 1 s-30 s  

Tab. 3. The motion of extended targets in the second 
experiment. 
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Fig. 5. The true tracks and tracking results in the second 

experiment. 
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Fig. 6. Cardinality statistics for BP-CV-LMB, PP-MM-LMB 

and BP-MM-LMB filters in the second experiment. 
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Fig. 7. Average OSPA distances for BP-CV-LMB, PP-MM-

LMB and BP-MM-LMB filters in the second 
experiment. 

As indicated by Fig. 7, both PP-MM-LMB filter and 
BP-MM-LMB filter perform comparably well. However, 
much fewer particles are needed by the BP-MM-LMB 
filter. The average runtimes of these three filters are listed 
in Tab. 4.  The average  runtime  of BP-MM-LMB  filter is 
 

Filter
Parameter

PP- 
MM-LMB 

BP- 
CV-LMB 

BP- 
MM-LMB 

Surviving 
particle number 

2000 40 40 

Newborn 
particle umber 

1000 1 1 

Runtime(sec) 909.35 41.18 75.59 

Tab. 4. Average runtime and the number of particles in the 
second experiment. 

75.59 s, and it is about ten times less than that of PP-MM-
LMB filter. It proves that BP-MM-LMB filter is more 
computationally efficient than PP-MM-LMB filter. There-
fore, the proposed approach is more appropriate for real-
time tracking. 

5. Conclusions 
This paper presents a novel approach to track multiple 

extended targets within the box-particle framework. BP-
LMB and BP-MM-LMB filters are proposed to track linear 
extended targets and rapidly maneuvering extended targets, 
respectively. In our approach, the measurements of ex-
tended target are modeled as interval measurements, and 
the point samples are replaced by region samples in LMB 
recursion. Compared with traditional point-particle ap-
proach, the proposed approach needs fewer particles to 
guarantee a similar accuracy. Consequently, multiple ex-
tended targets can be tracked using less runtime, which is 
important for real-time applications. 
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