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Abstract. Considering all possible steering directions for 
beam scanning, a digital position shift method (DPSM) is 
presented to minimize the Peak Sidelobe Level (PSL) by 
searching the best position solution for every sensor and 
calculating the pattern with position offset factor. For the 
truly minimum PSL, digital position shift with optimal 
amplitude (DPSOA) is considered simultaneously for beam 
scanning. For searching the best solution to the two 
methods, constrained conditions for position shift range 
and amplitude range are described. The method of feed-
back particle swarm optimization (FPSO) is presented to 
obtain a large searching space and fast convergence in 
local space with refined solution. Numerical examples 
show that the optimized results by DPSM and DPSOA in 
all steering directions can be used in beam scanning for its 
digital realization. When compared with the other tech-
niques published in the literature, especially the steering 
direction close to endfire direction, this method has lower 
PSL when the main beam width is maintained. 
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1. Introduction 
Many methods can be adopted for array pattern syn-

thesis of minimum Peak Sidelobe Level (PSL) [1]–[4]. 
These methods are proposed for nonlinear arrays, alterna-
tively termed as aperiodic arrays, to search a sensors posi-
tion distribution solution and they can use less number of 
sensors to meet similar pattern specifications [5]–[8]. 
Aperiodic arrays with optimally spaced sensors have the 
advantage of achieving higher spatial resolutions or lower 
sidelobe. On the other hand, many techniques proposed in 
the literatures adjust the weight coefficients when deriving 
the solution to beam pattern synthesis [9]–[11]. Phase-only 
control widely used in phased arrays to provide beam scan-
ning are less expensive to produce, and also, are more 

likely to minimize excitation errors and preserve coherence 
[10].  

After considering the above-mentioned aspects, 
a Simulated Annealing (SA)-based method was proposed 
in [15] to design an asymmetric array by optimizing both 
the sensor positions and array complex weight coefficients. 
It does not simultaneously optimize all the parameters, but 
perturbs the weight coefficient and position of each sensor 
in turns. In addition, it searches the sensor positions over 
a grid space. Although the SA based method [15] has high 
performance in array pattern synthesis, it is possible that 
sparse arrays with continuously spaced sensors could have 
a high degree of freedom in lowering the PSL [13].  

Although many studies have been published on aperi-
odic array pattern synthesis, we should notice that the PSL 
sharply decreases with the steering angle scanning from 
normal direction to the edge direction when keeping the 
mainbeam width unchanged [13]. In [13], the authors pro-
posed that when the array steering direction is close to the 
endfire direction of the array, the PSL will be very high, 
because the effective array aperture is very small.  

In more important applications, we want to realize 
beam steering scanning considering all possible angles [12], 
but [13] presented that the PSL of beam scanning is higher 
than that of a specific steering direction for the limit of the 
minimum PSL close to endfire direction. If we can realize 
the properties of aperiodic array using digital methods and 
lower the PSL of endfire direction steering, the perfor-
mance of normal direction will be retained without effect 
of above consider for the independent of every angles. In 
digital realization, we can combine aperiodic distribution 
and weight coefficients for lower PSL with respect to beam 
scanning. 

Further, there are virtual array synthesis methods for 
planar array [14]. These methods are similar in some ways 
to several virtual uniform array factors of linearly weighted 
superposition instead of the actual array factor, and their 
optimized objective function works to minimize the inte-
gral of the squared absolute values between the expected 
and the designed array factors [10], [14]. The optimal pa-
rameter of sensor number may not be one and the weights 
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of designed array is calculated, not the position of every 
element. 

The challenge of determining optimum parameter val-
ues simultaneously stems from the nonlinear and noncon-
vex dependency of the array factor on the weights and the 
sensor positions [16]. The performance of the employed 
optimization scheme is an important factor in the success 
of a pattern synthesis method, in terms of solution quality, 
computational load, and stability. Particle swarm optimiza-
tion (PSO) has received considerable attention because of 
its simplicity of implementation and its capability of escap-
ing from the traps of local optima [17], [18].  

Significant amount of research has been carried out to 
address the main limitation of the PSO, which is its ten-
dency to converge prematurely at the local optima [19]. In 
[18], the authors revealed that one of the aspects of PSO’s 
capability of finding the global optima mainly depends 
upon the capability of exploring the search space. Initial 
higher value of inertia weight applied to the last velocity 
improves exploration of the search space and its lower 
value toward the end of search helps to attain faster con-
vergence [18].  

Considering all possible steering directions for beam 
scanning, a digital position shift method (DPSM) is pre-
sented to minimize the PSL by searching the best position 
solution for every sensor and calculating the pattern with 
position offset factor. For the truly minimum sidelobe level, 
digital position shift and optimal amplitude (DPSOA) are 
both considered simultaneously for beam scanning. For 
searching the best solution to the above two methods, the 
feedback particle swarm optimization (FPSO) is presented 
for a large initial searching space as well as a fast conver-
gence in local space with refined solution. The optimized 
results by DPSM and DPSOA in all steering directions can 
be used in beam scanning for its digital realization, which 
has lower PSL with maintaining main beam width than the 
other techniques published in the literature, especially the 
steering direction close to endfire direction. 

The remaining part of this paper is organized as fol-
lows. In Sec. 2, the DPSM and DPSOA are presented for 
linear array. The signal forms of DPSM in applications and 
constrained conditions for position shift range are de-
scribed, and FPSO is presented in Sec. 3. Section 4 simu-
lates numerical examples with considering beam scanning 
and describes the comparative performance of the pre-
sented technique. Concluding remarks are given in Sec. 5. 

2. DPSM on Array Pattern Synthesis 
Consider a uniformly planar array of M isotropic 

elements with equal spacing of d as shown in Fig. 1 (solid). 
The position of each element along with x-axis can be 
written as xi. We only consider the array factor, which can 
be expressed as  

1x 2x 1ix  ix 1 1x  1Mx  Mx

1y iy My

1x ix Mx

 
Fig. 1. The virtual array with position shift from actual array. 
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where u = sin(),  (measured from z-axis) is the pitch 
angle of radiation for transmit array and the incidence of 
the plane wave for receive array.  is the wavelength, and 
wi is the weight coefficient of the ith sensor. Because wi is 
complex, it can be expressed as wi = i exp(ji), where 
i  and i are the amplitude and phase of wi respectively.  

We can write the response of the ith actual element as 

    ( ) exp 2 / expi i AiA u j x u    .   (2) 

The ith virtual element yi (hollow) can be obtained 
from xi with position shift xi as shown in Fig. 1. With 
optimized position shift, we can calculate the phase of the 
virtual element by the phase relationship of adjacent 
elements. Specially, the position shifts of virtual elements 
on the edge of the array are constrained to moving inside 
and the phase of the response Vi on the ith virtual can be 
defined as 
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where i = xi/d is the position offset factor determined by 
the distinction between the virtual element and the actual 
element, and its value range will be discussed hereinafter. 
From now on, we consider i  0, and the response of the 
ith virtual element is calculated as 
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If the phase offset of adjacent elements exceeds , the 
issue of angle ambiguity will be considered, and here may 
be grating lobes outside the range of optimization. In this 
paper, the absolute of phase offset must be less than  by 
setting the spacing of d less than /2. The response of 
virtual element can be expressed by the actual element as: 
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Consequently, the virtual array factor with the 
steering angle u  of signal arrival can be expressed as 
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where the phase of wi can be calculated by the steering 
vector with the signal steering angle uS = sin(S) and it can 
be expressed as wi = exp[–j2(i + i)(d/)uS] calculated 
from the new virtual array geometry. 

Without loss of generality, the position shifts and the 
amplitude of wi can be optimized by FPSO in next section. 
Here, the value range of i and i will be constrained and 
optimized synchronously by DPSOA or only the value of 
i by DPSM is adjusted to minimize the sidelobe level.  

For the real implementation of the proposed DPSM 
and DPSOA, the best solution of position shifts and opti-
mum amplitudes can be synthesis by high performance 
computer in advance, and the results can be applied to the 
signal receiver just by exponentiation operation according 
to (5) and (6). 

As we know, the optimal amplitudes can be realized 
in the real part of weighting coefficients. When applying 
the optimal position shifts for array pattern synthesis, the 
radiation pattern of new elements are calculated by expo-
nent arithmetic, which can be realized in digital signal 
processor. With the help of such an optimized process, the 
optimal solution can be realized by digital computation. As 
a result, the high performance is attractive to synthesize an 
array by minimizing PSL considering all possible steering 
directions, respectively, that is, the optimized process has 
no influence on beam scanning and the minimum PSL of 
steering direction close to endfire direction cannot restrict 
other results. 

As the objective of optimization is to minimize the 
sidelobe level of the array pattern by adjusting the parame-
ters of the array, subject to given design specifications and 
constraints, the fitness function can be defined with the 
evaluation of the PSL as 

 V SL
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V

( )
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f u
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f u
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where uSL is the spanned angle within the sidelobe band 
except the range of the mainlobe. The function is then 
evaluated excluding the mainbeam and the PSL is meas-
ured in decibel. In this study, we consider that either the 
position shift only or with the amplitude of wi will be used 
to control the minimizing PSL of the array pattern accord-
ing to the feedback value of (7). 

It is well known that array optimization should be 
organized along a specific trade-off rule between the PSL 
and the mainlobe width. To simplify this problem, only the 
minimization of the PSL is considered in the optimization. 
The mainlobe width is fixed to be within a given range 
according to the design specifications.  

3. FPSO and Constrained Conditions 

3.1 FPSO 
PSO, also known as swarm intelligence is a robust 

stochastic evolutionary computation technique based on the 
movement of intelligent swarms [20], [21]. What has been 
proposed in [18] is that the main limitation of PSO is its 
tendency to converge prematurely at local optima and in 
[13] the iteration numbers to converge or the number of the 
fitness function evaluations is an investigative topic. 

In this paper, the solution includes position offset 
factors used as the index and the amplitudes constrained to 
get a lower Current Taper Ratio (CRT). Case study reveals 
that choice of mutation probability and mutation step size 
both have a strong influence on convergence behavior of 
the swarm. For more mutation probability, there should be 
large random velocity or large weighting coefficient for 
velocity update before entering the global optimization 
range. To enhance searching the precise solution that 
affects the index of pattern, a small value of velocity and 
weighting coefficient are important for the absolute best 
value. 

The concept of linearly decreasing inertia weight ap-
plied to particle swarm optimization (LPSO) and a method 
of parameter strategy for PSO was proposed using the 
overshoot and the peak time of a transition in [19]. In [22], 
a new adaptive inertia weight adjusting approach is pro-
posed based on Bayesian techniques in PSO, which is used 
to set up a sound tradeoff between the exploration and 
exploitation characteristics. 

For a large initial searching space and fast conver-
gence in local space with refined solution, we propose 
nonlinear inertia weight decided by subtriplicate function 
with feedback taken from the fitness of the best previous 
position. The feedback function with the inertia weight can 
be expressed as  

 max min max min 3
t FB OP2 2

F F
      

         (8) 

where t is limited between max and min, which are the 
initial and final value of the inertia weight and set to 0.9 
and 0.4, respectively. The terms  and  are independent to 
control the slope and location of feedback function. FOP is 
the expected fitness value of optimal solution and FFB is 
the feedback fitness value taken from the best previous 
position found by the particle. 

For different optimization accuracy or kinds of array 
pattern synthesis and different steering angles, we can set  
and  to appropriate values. FOP will be a prior value 
through several experiments. In the next section, we de-
scribe the performance for different optimal conditions 
with these sets of parameters. 
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3.2 Constrained Conditions in Optimized 
Process 

The study that follows has been made on the perfor-
mance of the DPSM under different conditions by FPSO, 
where several boundary conditions for position shift and 
weights are considered. For the signal received from the 
sensors, the useful signal can be received, which often 
involves noise item for most applications [24], [25]. ni can 
be expressed as the spatially and temporally white complex 
Gaussian noise with zero mean and variance n

2 for the ith 
element [24] and the noise signals are all uncorrelated with 
useful signal [25]. For (5), noise can be added to it and it 
can be expressed by one more item as Ni(ni, ni + 1), which is 
the correlation function of ni and ni + 1. Ulteriorly, it can be 
expressed as the index relationship with i, that is, 

1
1 1( , ) i i

i i i i iN n n n n 
   (or 1

1 1( , ) i i
i i i i iN n n n n  

  ). Without 

loss of generality, when i > 0, the noise correlation func-
tion about the ith virtual elements can be expressed as 
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where E{ } and the superscript H denote the expectation 
and complex conjugate transpose, and Rn

i,i is same with 
one noise element of the ensemble correlation matrix in 
[24]. When i > 0 andi +1 < 0, the noise correlation 
function about the two adjacent virtual elements can be 
expressed as 
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In actual application, for keeping the noise correlation 
function of actual array consistent with the noise correla-
tion function of virtual array in (9), we need to hold the 
expectation of the ith virtual element autocorrelation func-
tion unchanged. It can also say that 1

1
i i

i in n 


 or 
1

1
i i
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

 is kept consistent with the weighted propor-

tions of the actual noise item ni, which means that we must 
select the i values according to i < 0.5 or xi < d/2. 
When i > 0 andi +1 < 0, the noise item of the ith and the 
(i+1)th virtual element are expressed by the ith and the 
(i+1)th actual element simultaneously. For keeping the 
cross-correlation feature useful for the two elements and 

the characteristic of 1
1

i i
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1

i i
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in (10), now the constraints of interelement position shift is 
set to (i – i + 1) < 0.5, (xi – xi + 1) < d/2.  

For the amplitude of weights constrains, we use the 
same setting 0  i  2 in [13]. The CRT is the ratio 
between the maximum and minimum amplitudes of weight 
coefficients. The CRT is related to the effects of possible 
unforeseen occurrences regarding the sensors with the 
largest weights [23]. Therefore, the value of CRT in 
designing the pattern is a basis to judge the optimized 
performance. 

4. Numerical Examples and Results 
Analysis 
To illustrate the effectiveness of the proposed method, 

we compare the performance of DPSM and DPSOA with 
that of improved genetic algorithm (IGA) [13] in beam 
scanning. For the optimization of linear array, we search 
the best position shift and optimized amplitude for setting 
 = 0 and S =0, 15, 30, 45, 60 to synthesize the pattern 
according to (6). The fitness value of the initial iteration 
and final iteration has an expectant convergence by FPSO. 

In the following examples, the number of linear array 
elements is M = 10, which is placed on x-axis with inter-
sensor spacing of /2. In the FPSO, the initial population is 
formed by position offset factor of zero and amplitude of 
one. The population size is set to 50, and the maximum 
number of allowable iteration is 100. 

4.1 Case I: Linear Array with Position Shifts 
and Uniform Weights 

In this case, only position shift for every element is 
considered to optimize the pattern. Figure 2 shows the 
beam pattern in different steering directions, which is the 
best-case of 10 trials and its PSL values are –20.40, –18.08, 
–16.41, –14.85, and –14.46 dB given in Tab. 1. Specially, 
it can be seen from Tab. 1 that the average-case lowest PSL 
for the DPSM is more 1 dB lower than that of IGA in case 
II [13] with the main beams confined to be within 
0    2/M. For the IGA in different optimum conditions 
and different number array elements, the number of fitness 
function evaluations is invariably higher than 6,704, but for 
DPSM, it is 5000 in every case. 

In [13], considering all possible directions, the mini-
mizing PSL is 11.72 dB because the minimum PSL achiev-
able when steering direction close to endfire direction is 
around –12 dB. For DPSM and DPSOA, there are no com-
pulsory contacts in each steering direction because of digi-
tal realization instead of fixed geometry. We can also use 
the optimal results in Tab. 1 for beam scanning without 
special limit. 

 
Fig. 2. Resultant beam patterns designed (M = 10) with 5 steer-

ing directions by DPSM whose PSL is listed in Tab. 1. 
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Fig. 3. The mean convergence of fitness values with iteration 

(averaged over 10 trials) for five steering directions by 
DPSM. 

 
Fig. 4. Resultant lowest PSLs obtained by DPSM in 10 runs. 

 
Fig. 5. Best-case sensor position offset factors for five 

steering directions by DPSM. 

In DPSM, the parameters in FPSO are selected as 
 = 1,  = 1.5 for S = 0°,  = 1.25,  = 0.55 for S = 15°, 
 = 1.5,  = 0.32 for S = 30°,  = 2,  = 0.15 for S = 45° 
and S = 60°. In different steering directions, FOP is set to 
the value of best-case PSL. Figure 3 shows the mean 
convergence of fitness values with iteration, which has de- 
 

Steering 
Direction

Worst-case PSL 
(dB) 

Best-case PSL 
(dB) 

Average-case 
PSL (dB) 

Method IGA DPSM IGA DPSM IGA DPSM 
0o –18.17 –19.77 –18.81 –20.40 –18.43 –20.23 
15o –15.92 –17.87 –16.54 –18.08 –16.24 –17.97 
30o –14.47 –16.18 –15.06 –16.41 –14.88 –16.27 
45o –12,97 –14.34 –13.64 –14.85 –13.27 –14.44 
60o –12.96 –14.24 –12.96 –14.46 –12.96 –14.36 

Tab. 1. The optimal results for different steering directions 
through asymmetrical aperture and uniform weights of 
10 elements, comparing optimized performance 
between IGA [13] and DPSM using FPSO. 

clined rapidly in the initial iteration and has converged 
rapidly with a refined solution. The terms  and  are inde-
pendent to control the slope and location of t. In the five 
experiments, the value of  is decreasing with increasing of 
PSL, so an accurate solution can be got in the endfire di-
rection. According to the difference of initial PSL and 
lowest PSL, we set appropriate value of  to ensure the 
convergence of FPSO in different directions. 

Figure 4 shows resultant lowest PSL in each individ-
ual run when the DPSM is employed in the synthesis of 
five steering directions. Simulation runs also show that the 
worst-case and average lowest PSL for the IGA are poorer 
than those from DPSM, repetitively. The variance of those 
trials can be seen from Fig. 4, and the values have been 
calculated which are listed in Tab. 1. For the comparing 
between IGA and DPSM, ten simulation runs can be 
enough, even though more runs mean more accurate result. 
Figure 5 shows best-case sensor position offset factors for 
five steering directions by DPSM. 

4.2 Case II: Linear Array with Position Shifts 
and Optimum Amplitudes 

In this case, the position shift and amplitude are deter-
mined simultaneously using FPSO, and the fitness function 
evaluations is 5,000 yet. The resultant beam pattern can be 
obtained with lower PSL in every steering direction, as 
shown in Fig. 6. The DPSOA is able to achieve the PSL 
about 0.3 dB lower than that of the 17-elements aperiodic 

 
Fig. 6. Resultant beam patterns designed (M = 10) with 5 steer-

ing directions by DPSOA whose PSL is listed in Tab. 2. 
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Fig. 7. The mean convergence of fitness value with iteration 

(averaged over 10 trials) for five steering directions by 
DPSOA. 

 
Fig. 8. Resultant lowest PSLs obtained by DPSOA in 10 runs. 

 
Fig. 9. Best-case sensor position offset factors and optimal 

amplitudes for five steering directions by DPSOA. 

array with asymmetrical aperture and optimum real weights 
[13] and about 2.2 dB lower than that of DPSM in the 
steering direction of 0°. The best-case lower PSL of  
–19.72 dB is more than 5 dB lower than that of DPSM in 
the steering direction of 60°. Considering all possible steer- 

 

Steering 
Direction

Worst-case 
PSL (dB) 

Best-case 
PSL (dB) 

Average-case 
PSL (dB) 

CRT of 
Weights(dB)

0o –22.09 –22.62 –22.38 3.67 
15o –20.13 –20.66 –20.34 3.26 
30o –19.32 –19.99 –19.65 2.64 
45o –19.30 –19.74 –19.48 3.58 
60o –19.13 –19.72 –19.47 3.16 

Tab. 2. The optimal results and CRT values for different 
steering directions through DPSOM of 10 elements 

ing directions, DPSOA can achieve a lower PSL of about  
–19 dB, which can be used for beam scanning with a high 
performance. 

For DPSOA, a larger solution space should be consid-
ered by FPSO. The convergence of FPSO is more chal-
lenging, and the lower PSL can be obtained at the same 
time. For the higher difference of initial PSL and lowest 
PSL, the parameters in FPSO are selected as  = 1,  = 1.5 
for different steering angles in DPSOA. In Fig. 7, the con-
vergence of fitness value is also consistent with the design 
of (8). Figure 8 shows resultant lowest PSL in each indi-
vidual run when the DPSOA is employed in the synthesis 
of five steering directions. Simulation runs also show that 
FPSO can ensure the convergence even though the com-
plex solution space. The variance of those trials can be 
seen from Fig. 8, and the values have been calculated 
which are listed in Tab. 2. 

The design in this case has a CRT of amplitudes 
lower than 3.67 dB in all steering directions listed in 
Tab. 2. Figure 9 shows best-case sensor position offset 
factors and optimal amplitudes for five steering directions 
by DPSOA. 

5. Conclusion 
The objective of the proposed DPSM and DPSOA 

methods is to minimize the PSL and to maintain a desired 
beam pattern, even as a high performance in beam scan-
ning is achieved through digital realization. Numerical 
examples show that the DPSM and DPSOA are able to 
achieve lower PSL with maintaining main beam width. 
Using FPSO, mean convergence of fitness values with 
iteration declined rapidly in the initial iteration and con-
verged rapidly with a refined solution and only 5,000 fit-
ness function evaluations are required for the kinds of 
array synthesis. What is more, the optimized results in all 
steering directions can be used in beam scanning for its 
digital realization, which has lower PSL than the IGA [13], 
especially the steering direction close to endfire direction. 
In addition, the DPSM and DPSOA can be used for linear 
array and separable planar array with small computation. 

It is not possible to predict the accuracy of the synthe-
sis result, and for the randomness of every optimized pro-
cedure, the results cannot exactly be the same. There will 
be many exciting potential applications of DPSM and 
DPSOA by properly selecting the optimal algorithm for 
other geometry arrays such as aperiodic array or conformal 
array. 
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