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Abstract. It is well known that the equation of motion of 
a system can be set up using the Lagrangian and the dissi-
pation function, which describe the conservative and dissi-
pative parts of the system. However, this procedure, 
consisting in a systematic differentiation of the above state 
functions, cannot be used for circuits containing simulta-
neously conventional nonlinear elements such as the 
resistor, capacitor, and inductor, and their nonlinear 
memory versions – the memristor, memcapacitor, and 
meminductor. The paper provides a general solution to this 
problem and demonstrates it on the example of modeling 
Josephson’s junction. 
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1. Introduction 
The memristor (memory resistor, MR), memcapacitor 

(memory capacitor, MC), and meminductor (memory 
inductor, ML) are memory versions of the resistor, capaci-
tor, and inductor. Their ability to store the information in 
a nonvolatile way and, concurrently, to perform logic oper-
ations predetermine them for revolutionary applications in 
computer engineering. All three memory elements are 
linked to L. Chua: In 1976, he introduced the memristor as 
a hypothetical element into the circuit theory in [1]. In 
2008, he got satisfaction via the invention of a nanodevice 
with the memristive behavior in Hewlett Packard labs [2]. 
The concept of the so-called Chua periodical table was 
published in 1980 [3]. It shows that the classical RCL ele-
ments and also their memory versions are mere special 
cases of the so-called higher-order elements (HOEs). The 
position of each HOE in the table, which resembles the 
Mendeleyev periodical table of chemical elements, corre-
sponds with the unique features of this HOE. Just as all 
complex structures of the physical world are compounded 
from atoms of the elements from Mendeleyev table, 
an arbitrary electrical circuit can be made up exclusively 

from HOEs from Chua’s table. As shown in [4], [5], this 
fact opens the way for a new modeling approach, which 
can be useful in the analysis of complex phenomena in 
biological systems [6] and in the world of nanotechnology 
[7]. However, a general procedure of modeling complex 
mem-systems via the elements from Chua’s table has not 
been hitherto published. The current research focuses more 
likely on the extension of the original definition of the 
memristor in order to describe the complex properties of 
existing memristive devices. One illustrative example is 
represented by the excellent paper [8]. 

A popular conceptual symmetries of the R-L-C-MR 
elements as a small square section of Chua’s table, pub-
lished in [2], is frequently used to explain the memristor as 
the  “fourth  fundamental  electrical  element”. Its extension 

 
Fig. 1. Storeyed structure of a subset of fundamental elements 

[7]. The notation is specified in Sec. 2. 
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for the MC and ML elements, called the storeyed structure 
[7], hereinafter abbreviated to StS, is shown in Fig. 1. 

The StS shows that above the storey of classical  
R-L-C elements there is a storey of their memory versions 
MR-ML-MC. Each of the sextuplet of fundamental ele-
ments in Fig. 1 introduces an unambiguous linkage, the so-
called constitutive relation (CR), between the constitutive 
variables, which are time-domain integrals of the corre-
sponding orders of terminal voltage v and flowing current 
i. The element is regarded as nonlinear if its constitutive 
relation is also nonlinear. 

Procedures of the analysis of circuits containing not 
only the classical R-L-C but also MR-ML-MC elements 
were published in [9], [10]. The papers [11], [12] are de-
voted to the problem of setting up equations of motion for 
such circuits in the form of the Euler-Lagrange equations 
(hereinafter abbreviated to Lagrange equations), with the 
methods of loop currents or nodal analysis being made use 
of. It turns out that the extension of these methods to cir-
cuits with memory elements is not trivial. Troubles may 
appear, for example, if nonlinear elements from both sto-
reys of the StS exist within one loop or between two nodes. 
In such cases, the equation cannot be derived in a classical 
way, i.e. via a systematic differentiation of the state func-
tions. 

The present work deals with the problem given above. 
The procedure is as follows: Section 2 describes relation-
ships between the constitutive relations of the elements and 
their state functions, the latter being the quantities content, 
energy, action, and time-domain integral of action (de-
noted in the paper as the evolution) for the R-L-C-MR-ML-
MC elements. Section 3 summarizes the results from [11] 
that concern the extension of the method of the Lagrange 
equations to circuits compounded exclusively from the 
memelements, and it presents this extension against the 
background of novel knowledge about the duality between 
classical and memory elements [13]. Section 4 illustrates 
problems with setting up the Lagrange equations of a cir-
cuit that contains an arbitrary mix of nonlinear classical 
elements and nonlinear memory elements. It also provides 
a general solution to and a demonstration of a concrete 
application. 

2. Relationship between CR and State 
Function 
Let us denote the HOEs by the nonpositive integer 

indices  and , which are used for their identification in 
Chua’s table. The CR of the (, ) element is an unambig-
uous relation between the quantities v() and i (), where 

  


 dtvdtv   1
,  


 dtidti   1

 (1) 

are the –th- and –th-order time-domain integrals of 
voltage and current. An annotated survey of the quantities 
represented by these integrals is shown in Tab. 1.  

Figure 2 illustrates the connection between the CR of 
the (, ) element and its state functions 

     
 divS ,

,    
,Ŝ i dv 

    . (2) 

When integrating from zero, the state functions corre-
spond to the areas according to Fig. 2, and the following 
equality holds: 

    
, ,

ˆS S v i 
     . (3) 

The pair of state functions in (3) contains one func-
tion and one cofunction. These two complementary entities 
have been used since the nineteenth century [14]. The 
current form was introduced by Cherry [15] for the energy 
and Millar [16] for the content. The content was then ex-
tended to memristive elements [17], [18]. A survey of the 
state functions and cofunctions (the latter designated by 
an asterisk) for the sextuplet of fundamental elements from 
Fig. 1 is given in Tab. 1.  

The state function and cofunction provide additive 
properties, namely the sum of their values for individual 
subsystems forms the resulting value for the complete 
system. The value of the state function associated with the 
state of the system depends exclusively on this state and 
not on the way the system attained the state. 

 
Fig. 2. Geometric meaning of state functions as areas 

belonging to the CR of the element. P denotes the 
current state of the element. 

 

 ( , ) v(), i() S, Ŝ,  

R ( 0, 0) v, i C C* content [W] 

L (–1, 0) , i T* T energy [J] 

C ( 0, –1) v, q V V* energy [J] 

MR (–1, –1) , q A A* action [Js] 

ML (–2, –1) , q X* X evolution [Js2] 

MC (–1, –2) ,  Y Y* evolution [Js2] 

Tab. 1. Constitutive variables and state functions of six 
fundamental elements. The symbols v, i, , and q 
present voltage, current, flux, and charge,  and  are 
time-domain integrals of the flux and charge, T and V 
are the kinetic and potential energy, X and Y are the 
kinetic and the potential evolution, * denotes the 
corresponding cofunction. 
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Energies are well-known state functions. For 
example, the “potential” energy stored in the electrostatic 
field of the nonlinear capacitor with the CR of the type 
v = vC (q) is 

      0 1
0, 1 CV S v di v q dq
    . (4) 

It follows from the integral character of the state 
functions and cofunctions (2) that 

 
 
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


v
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dS
, , 

 
 ,

ˆdS
i

dv
 

  . (5) 

Formulae (5) can be read such that the instantaneous 
values of the constitutive variables are equal to the gradi-
ents of the state functions or cofunctions at the operating 
point. The constitutive relation as a relation v() = v()^(i()) 
or i() = i()^(v()) can be also written in the form 

       
,v m i i  

  ,       
,i n v v  

   (6) 

where 
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are the differential (small-signal) parameters of the element 
representing nonlinearity, and m, = 1/n,. A concrete 
form of these parameters for six fundamental elements is 
shown in Tab. 2. 
 

 ( , ) m, n, 

R ( 0, 0) 
R 

(resistance) 
G 

(conductance) 

L (–1, 0) 
L 

(inductance) 
 

(reluctance) 

C ( 0, –1) 
D 

(elastance) 
C 

(capacitance) 

MR (–1, –1) 
RM 

(memristance) 
GM 

(memductance) 

ML (–2, –1) 
LM 

(meminductance) 
M 

(memreluctance) 

MC (–1, –2) 
DM 

(memelastance) 
CM 

(memcapacitance) 

Tab. 2. A survey of differential parameters of six fundamental 
elements. 

3. Setting up Lagrange Equations 
The behavior of a system containing only inductors, 

capacitors, and resistors (i.e. elements from the “ground 
floor” of the StS) is given by the Lagrange equations of 
motion. These equations can be obtained via a systematic 
differentiation of the state function of the circuit, namely 
the Lagrange and the dissipation function. The procedure is 
as follows: The Lagrange function L(·) or the cofunction 
L*(·)  

  VTL  *,qq  ,   TVL  ** ,  , (8) 

is derived from the reactance part of the circuit. The 
charges and fluxes in (8) are associated in the vector varia-
bles. For details about the variables V, V*, T, and T* see 
Tab. 1. The Lagrange function or cofunction (8) has the 
physical measure of energy, i.e. its unit is Joule [J]. The 
function content C(·) or the cofunction cocontent C*(·) (see 
Tab. 1) is determined from the part of the circuit that in-
cludes the dissipative elements. The procedure  

 d L L C

dt

   
      

ext 
v

q q q
, 

 
* * *d L L C

dt

   
      

ext
i

  
, (9) 

generates the vector equations of motion, where vext and iext 
are vectors of the voltage and current excitations. If the 
method of loop currents or nodal analysis is used, then (9) 
are equations of KVL for loops or equations of KCL for 
nodes. The first, second, and third left-side terms of (9) 
represent the sums of voltage or current contributions from 
the inductors, capacitors, and resistors in the loop or in the 
branches leading to the corresponding node. 

The method will be illustrated on the well-known 
Chua circuit in Fig. 3. In the version (a), the circuit is com-
pounded exclusively from the elements from the ground 
floor of the StS, namely from one linear inductor, two 
linear capacitors, one linear resistor, and the so-called 
Chua diode, which is an active nonlinear resistor with the 
constitutive relation [13] 

    CHUA

1 1

2

v v
i i v bv a b

  
    , (10) 

with a and b being properly chosen real numbers.  

The Lagrange cofunction (8) has the form 

  * 2 2 2
1 A 2 B A

1 1 1
,

2 2 2
L C C         , (11) 

where A and B are the time-domain integrals of voltages 
of the nodes A and B against the ground, and  = L–1 is the 

 
Fig. 3. Chua’s circuit with (a) Chua’s diode as a nonlinear 

resistor, (b) Chua’s memristor. 
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inverse inductance. The cocontent of Chua’s diode is the 
integral of the CR (10) with respect to the voltage 
v = d/dt. The procedure (9) leads to the set of equations of 
motion 

    1 A B A CHUA B 0C G i          , 

  2 B B A B 0C G          , (12) 

where G = R–1 is the conductance of the resistor R.  

For circuits compounded only from memristors, mem-
capacitors, and meminductors, i.e. elements occupying the 
first floor of the StS, Jeltsema suggests the following pro-
cedure [11]: The Lagrange function LM(·) or cofunction 
LM

*(·) 

   *
M ,L X Y σ σ ,  * *

M ,L Y X ρ ρ , (13) 

is derived from the reactance part of the circuit. The time-
domain integrals of charges and fluxes in (13) are associ-
ated in the vectors of the circuit variables. For details about 
the variables X, X*, Y, and Y* see Tab. 1. The Lagrange 
function or cofunction (13) has the physical dimension of 
energy multiplied by the square of time, i.e. its unit is [Js2]. 
The function action A(·) or the cofunction A*(·) (see 
Tab. 1) is determined from the part of the circuit that in-
cludes the dissipative elements. The procedure 

 M Md L L A

dt

          
ext σ σ σ

 , 

 
* * *
M Md L L A

dt

   
      

ext 
q

ρ ρ ρ
, (14) 

generates the vector equations of motion, where ext and 
qext are the time-domain integrals of the voltage and current 
excitations vext and iext. Equations (14) represent Kirch-
hoff’s flux law (KFLL) for loops and Kirchhoff’s charge 
law (KCHL) for nodes [13], denoted in [11] as iKVL and 
iKCL. The first, second, and third left-side terms of (14) 
represent the sums of flux or charge contributions from the 
meminductors, memcapacitors, and memresistors in the 
loop or in the branches leading to the corresponding node. 

The extension (14) of the Lagrange equations by 
Jeltsema is readily comprehensible from the point of view 
of the principle of duality [13]. According to this principle, 
the pairs R-MR, C-MC and L-ML are dual to each other if 
their constitutive variables are coupled by identical consti-
tutive relations. Then the circuit variables  and  of the 
circuit containing only memelements (whose special cases 
are the classical memoryless linear elements) conform to 
the same equations of motion as the variables  and q of 
the circuit in which the memelements were replaced by 
dual nonlinear elements. The formal conformity of the 
equations of motion (9) and (14) is an expression of the 
fact that the dynamics of the circuit with memoryless R, L, 
C elements is identical to the dynamics of its dual circuit 
containing MR, MC, and ML elements.  

The circuits in Figs 3(a) and 3(b) are dual to each 
other if the current and voltage of Chua’s diode are linked 
by the same constitutive relation i = iCHUA(v) as the charge 
and flux of Chua’s memristor q = qCHUA(), i.e. 
iCHUA(·) ≡ qCHUA(·). The linear elements C1, C2, R, and L 
can be regarded as the memelements MC1, MC2, MR, and 
ML with linear constitutive relations. The Lagrange co-
function (13) is a difference between the potential coevo-
lution of the capacitors and the kinetic evolution of the 
(mem)inductor, and it has the form 

  * 2 2 2
M 1 A 2 B A

1 1 1

2 2 2
L C C       ρ ρ . (15) 

A and B are the second-order time-domain integrals of 
voltages of the nodes A and B against the ground. The 
coaction of Chua’s memristor is the integral of the consti-
tutive relation qCHUA(·) with respect to the flux  = d/dt. 
The procedure (14) leads to the set of equations of motion 

    1 A B A CHUA B 0C G q          , 

  2 B B A B 0C G          . (16) 

Equation (16) for  and Equation (12) for  are formally 
identical. This is in conformity with the duality of circuits 
in Figs 3(a) and 3(b). 

4. Problem and Its Solution 
Hitherto published methods of drawing up the La-

grange equations via state functions are applicable only to 
circuits that are exclusively composed of elements of one 
kind: they must belong either to the ground (“classical”) or 
to the first (“memory”) floor of the StS. Drawing-up the 
equations of motion is governed by the well-known meth-
odology (9) for the first case and by the extension by 
Jeltsema (14) for the second case. Linear resistors, capaci-
tors, and inductors can be considered as memelements with 
linear constitutive relations. That is why the linear element 
from an arbitrary floor of the StS can be included in either 
the first or the second group as necessary. 

It follows from the above that the procedure of 
selecting either the method (9) or (14) cannot be used for 
circuits that contain simultaneously nonlinear classical and 
nonlinear memory elements. Nevertheless, the general 
solution is easy, as described below. 

Consider that we know the (co)functions L(·), C(·) 
from (9) and LM(·), A(·) from (14), which describe the parts 
of the circuit containing separately the classical and the 
memory elements. Then the voltage or current contribu-
tions of the classical elements in the loops or nodes can be 
obtained via (9). Subsequently we add the contributions of 
the memelements, which can be derived via differentiating 
the flux or charge contributions according to (14). The 
final set of KVL equations for the loop currents can be 
then written as follows: 
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M Md d L L A

dt dt

              σ σ σ
 

d L L C

dt

          
ext  
v

σ σ σ
. (17) 

The first/second term represents the voltage contributions 
from the memelements/classical elements. The set of KCL 
equations for the nodal voltages is in the form 

* * *
M Md d L L A

dt dt

    
         ρ ρ ρ

 

* * *d L L C

dt

   
       

ext  
i

ρ ρ ρ
. (18) 

The first/second term represents the current contributions 
from the memelements/classical elements.  

Let us apply the procedure (18) to the circuit in 
Fig. 4, consisting of all six nonlinear elements from the StS 
in Fig. 1. According to (8), the Lagrange cofunction L*(·) 
of the memoryless part of the circuit is 

      *
C L

0 0

,L q v dv i d
 

     
 

  . (19) 

The cocontent of the nonlinear resistor is given by the 
formula 

    *
R

0

C i v dv


  


 . (20) 

The functions with the indices L, C, and R in (19) and (20) 
are the constitutive relations of the respective elements. 
The Lagrange cofunction (13) LM

*(·) of the memory part of 
the circuit is in the form 

      *
M MC ML

0 0

,L q dq q d
 

      


 . (21) 

The functions with the indices MC and ML are the consti-
tutive relations of the memcapacitor and meminductor. The 
memristive coaction is  

    
1

*
MR

0

A q d


   


 . (22) 

 
Fig. 4. Parallel C-MC-R-MR-L-ML circuit. 

The function with the suffix MR is the constitutive relation 
of the memristor. 

Applying the procedure (18) to the functions (19)–
(22) yields the KCL equations of the circuit 

   M MC G         

   2M
M

dC

d
   


       


 

     L R 0C i i           , (23) 

where C(·) is a voltage-dependent capacity, and iL(·) and 
iR(·) are generally nonlinear constitutive relations of the 
inductor and resistor. 

The model of Josephson’s junction is shown in Fig. 5 
[13]. The C and R elements are linear, and the nonlinear 
constitutive relations of the inductor and memristor are as 
follows: 

    L 0 sini I k  ,    MR 0 0sinq G k  , (24) 

where I0, k, G0, and k0 are constants. 

Since the circuit in Fig. 5 contains no memcapacitor 
and no meminductor, the Lagrange cofunction LM

*(·) 
according to (13) does not exist. The equation of motion 
(18) can be simplified to the form 

 
* * * *

ext

d A L L C
i

dt ρ ρ ρ ρ

    
           

, (25) 

where 

       0
0

0* cos1 k
k

G
A  ,   2* 1

2

1  
R

C  , 

       k
k

I
CL cos1

2

1
, 02*   (26) 

are state functions as integrals of the constitutive relations 
(24) and linear constitutive relations of the resistor R and 
capacitor C. The procedure (25) leads to the equation of 
motion, which can, with respect to the equality  = d/dt, 
be written as 

 
Fig. 5. Model of Josephson’s junction as a parallel connection 

of linear capacitor, linear resistor, nonlinear inductor, 
and memristor. 

L MR

 

C R 

iext 
MLMC MR C R L 

 
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   0 0 0 0 ext

1
cos sinC G k k I k i

R
         
  . (27) 

Note that this is in agreement with the results published in 
[13]. 

5. Conclusions 
The well-known classical form of the Lagrange equa-

tion (9), which starts from the knowledge of the state func-
tions of reactive elements and the content of dissipative 
elements, cannot be applied to circuits containing 
memristors (MR), memcapacitors (MC), and meminductors 
(ML). This paper provides a generalization in the form of 
the procedure (17) or (18), which facilitates setting up the 
KVL- or KCL-type Lagrange equations of a circuit 
containing an arbitrary combination of classical R-L-C 
elements and their memory versions MR-ML-MC. The 
equations can be set up based on the knowledge of the 
constitutive relations of the individual elements and the 
information about their interconnection. 

It follows from the analysis of the procedures (9) and 
(14) that, if the circuit contains only elements from one 
floor of the storeyed structure in Fig. 1, the method of the 
loop or node analysis can lead to a set of nonlinear differ-
ential equations of order not higher than 2. If the elements 
belong to both floors, the order of the resulting equation 
cannot be higher than 3. 

The method deals with the way of drawing up the 
Lagrange equations of the circuit based on the knowledge 
of the potential functions of the circuit elements. It does 
not address the question of whether the variational princi-
ple, which was originally associated with the idea of the 
Lagrangian of the system, is or is not fulfilled.  
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