
10 V. PRAJZLER, M. NERUDA, P. NEKVINDOVA, P. MIKULIK, PROPERTIES OF MULTIMODE OPTICAL EPOXY POLYMER … 

DOI: 10.13164/re.2017.0010 OPTICAL COMMUNICATIONS 

Properties of Multimode Optical Epoxy Polymer 
Waveguides Deposited on Silicon and TOPAS Substrate 

Vaclav PRAJZLER 1, Milos NERUDA 1, Pavla NEKVINDOVA 2, Petr MIKULIK 3 

1 Dept. of Microelectronics, Faculty of Electrical Engineering, Czech Technical University,  
Technická 2, 166 27 Prague, Czech Republic 

2 Institute of Chemical Technology, Technická 5, 166 27 Prague, Czech Republic 
3 Dept. of Condensed Matter Physics, Masaryk University, Kotlářska 2, 611 37 Brno, Czech Republic 

xprajzlv@feld.cvut.cz 

Submitted May 25, 2016 / Accepted November 11, 2016 

 
Abstract. The paper reports on the fabrication and char-
acterization of multimode polymer optical waveguides. 
Epoxy polymer EpoCore was used as the waveguide core 
material and EpoClad was used as a cladding and cover 
protection layer. The design of the waveguides was 
schemed for geometric dimensions of 50 μm core and for 
850 nm and 1310 nm wavelengths. Proposed shapes of the 
waveguides were fabricated by standard photolithography 
process. Optical losses of the planar waveguides were 
measured by the fibre probe technique at 632.8 nm and 
964 nm. Propagation optical loss measurements for rec-
tangular waveguides were done by using the cut-back 
method and the best samples had optical losses lower than 
0.53 dB/cm at 650 nm, 850 nm and 1310 nm. 
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1. Introduction 
Optical data transmission has become the obvious 

choice for communication over longer distances, but cop-
per based electrical interconnects have dominated short-
range communication links for over decades. The increas-
ing demand in recent years for interconnection bandwidth 
in data centers and supercomputers, in conjunction with the 
inherent disadvantages of copper interconnects when oper-
ating at high data rates (>10 Gb/s), has led to the consider-
ation of the use of optical technologies in very short com-
munication links [1–3]. This new trends force designers to 
use optical interconnections also to bridge short distances 
including optical communications like Short Reach (SR) 
up to 300 m, Extra Short Reach (ESR) up to 5 cm and also 
Ultra Short Reach (USR) or even 1 cm. For such new opti-
cal communications systems, it is highly desirable to de-
velop new technology techniques with new optical materi-

als, which will allow high operating data rates and would 
make fabrication process simple and cheap. 

The key waveguide components for formation of such 
complex on-board optical layouts include multimode ridge 
waveguides. Therefore, many research groups are looking 
for fabrication of suitable elements that would combine 
new materials having comparable properties and the same 
time a possibility to be prepared by easy fabrication pro-
cess in order to make production of those structures possi-
ble in a large scale, low cost and also environmentally 
friendly. 

Multimode polymer waveguides are a particularly 
attractive option for the ESR and USR communications 
because they exhibit favorable optical, mechanical and 
thermal properties allowing their direct integration onto 
low cost printed circuit boards with standard methods of 
conventional electronics manufacturing. Optical intercon-
nects via polymer waveguides have attracted considerable 
attention during the last decade also because they enable 
fabrication of multimode optical waveguide structures on 
printed circuit boards [4–8] and flexible foil substrate using 
low-cost assembly and packaging methods [9], [10].  

This paper presents a new approach to realize multi-
mode polymer ridge waveguides for optical interconnec-
tion applications. In developing the new approach, epoxy 
polymer was selected as a core waveguide material while 
EpoClad polymer material was selected for cladding; both 
supported by Micro resist technology GmbH. These mate-
rials possess excellent properties such as high heat and 
pressure resistance, low optical losses (< 0.49 dB·cm-1 at 
633 nm [11, 12], 0.2 dB·cm-1 at 850 nm, refractive index 
EpoCore 1.58, EpoClad 1.57, λ = 830 nm [13]), easy fabri-
cation process, etc. For the substrate we used silicon and 
flexible TOPAS polymer foil 8007X4. TOPAS is Cyclic 
Olefin Copolymer and it is a glass-clear amorphous poly-
mer with outstanding moisture barrier, chemical resistance, 
high purity and non-reactive surface making it an excellent 
choice for optical interconnections [14].  
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2. Design of Planar and Ridge 
Waveguides 
To design and develop an optical rib waveguide one 

usually needs to start with a slab waveguide. The slab 
waveguide is a planar dielectric thin film (core) with re-
fractive index nf which is sandwiched between a substrate 
and cover (or superstrate, or cladding) with lower refrac-
tive indices ns and nc, respectively (see Fig. 1a). 

The guiding mechanism is provided by total reflec-
tions along the vertical dimension. In the simplest case the 
core is deposited on the same substrate as a cover layer; 
than the slab is called symmetric (ns = nc). The ridge wave-
guides are ones of the most commonly used optical wave-
guides in integrated optics and photonics. They have shape 
of a rectangular as shown in Fig. 1b; in our case we used 
cladding and cover layer made of the same polymer mate-
rials (EpoClad) and therefore it may be called a symmetric 
waveguide. 

Suitability of the polymer EpoCore and EpoClad ma-
terials proposed for the cores and cladding of the planar 
waveguides was checked by Spectrometer Shimadzu (UV-
3600). The measurements showed that the materials were 
transparent within the range from 400 to 1600 nm (see 
Fig. 2) and therefore fulfill the requirements for their suita-
bility stated above. 

 
Fig. 1. Cross-sectional view: a) optical planar waveguide,  

b) ridge waveguide. 

 
Fig. 2. Transmission spectra of EpoClad and EpoCore 

polymers. 

3. Fabrication 
The waveguides were prepared using epoxy negative 

tone photoresists EpoCore (core layer) and EpoClad poly-
mer (cladding and cover layers) supplied by Micro resist 
technology GmbH. The waveguiding layers were deposited 
onto silicon and flexible TOPAS 8007X4 (thickness 0.125 
and 0.3 mm) substrates.  

The optimized fabrication process of the samples is 
illustrated step by step in Fig. 3 a-f and consisted of the 
following steps:  

 Cleaning by plasma etching (Fig. 3a).  

 Deposition of the EpoClad layers by spin coating 
(Fig. 3b) followed by soft bake process done for 
10 minutes on a hot plate at 50°C after which the 
temperature was gradually increased to 90°C (at 
10°C/min). Finally, a UV-curing process was applied 
followed by a bake process. This bake process was 
the same as before the UV curing. 

 Deposition of an EpoCore layer on it by spin coating 
(Fig. 3c) and again, the soft-bake process was applied 
on a hotplate at 50°C for 10 min. Afterwards, the 
temperature was once again gradually increased to 
90°C (at 10°C/min).  

 Photolithography process using PERKIN-ELMER 
300 HT Micralign was performed (Fig. 3d). Then 
again bake process was applied at 50°C for 10 min on 
hotplate. After that the temperature was gradually in-
creased to 90°C (10°C/min) and after cooling down it 
was followed with dipping into mr-Dev 600 devel-
oper (Fig. 3e). The developing process was stopped 
by dipping the samples into isopropanol.  

 Deposition of EpoClad layer as a cover protection 
layer by spin coating (Fig. 3f) was the last step. 

 
Fig. 3. Fabrication process for EpoCore optical planar 

waveguides a) substrate cleaning, b) deposition of 
EpoClad cladding layer, c) deposition of EpoCore 
waveguide layer, d) UV curing process, e) wet etching, 
f) deposition of EpoClad cover layer. 
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4. Measurements and Results 
The thicknesses of the fabricated polymer layers were 

measured by profile-meters Talystep Hommel Tester 1000. 
The experimentally found thickness of the cladding layer 
was around 20 µm and that of the core waveguide layers 
varied from 20 up to 80 μm depending on the rate of spin-
ning of the coater during the deposition. 

Properties of the ridge waveguides were checked 
using optical digital camera ARTCAMI which is equipped 
with optical head ZOOM Optics (Olympus Czech Group 
Ltd.). The camera was controlled by QUICKFOTO soft-
ware. The measurement revealed that the ridge waveguides 
had good optical quality and dimension of the fabricated 
structure corresponded well with the size of the proposed 
waveguides. The images of the ridge waveguides are 
shown in Fig. 4 where Fig. 4a shows top view image and 
Fig. 4b shows the edge view. 

Waveguiding properties of the planar waveguides 
were examined by dark mode spectroscopy using Metricon 
2010 prism-coupler system [15] at five wavelengths 473, 
632.8, 964, 1311 and 1552 nm. Index refraction of the 
planar waveguide can be determined by measuring of the 
critical angle of the incidence at the interface between the 
prism and the material in contact with the coupling prism. 
A typical example of the result in a form of mode spectra is 
given in Fig. 5.  

Critical angles of incidence determine refractive 
indices  of  the  waveguiding  (EpoCore,  nf)  and  cladding 

 
Fig. 4. Images of EpoClad/EpoCore ridge waveguides:  a) top 

view, b) edge view. 

 
Fig. 5. Mode pattern of EpoCore/EpoClad planar waveguides. 

 
Fig. 6. Refractive indices measured by Metricon 2010 prism-

coupler system and compared with datasheet values:  
a) EpoClad, b) EpoCore. 

(EpoClad, ns) layers. For more details of such measurement 
see [11, 16]. 

Refractive indices for the EpoClad cladding and 
EpoCore core waveguides determined for the mode pat-
terns are shown in Fig. 6.  

In Fig. 6, measured refractive indices are compared to 
the data sheet [13] values for EpoClad and EpoCore epoxy 
polymer and it was found that value of refractive index for 
EpoClad were very similar to the tabular values. The val-
ues for the EpoCore were only marginally lower than those 
of the declared ones, in contrast with the measured refrac-
tive index values of EpoClad, that were found lower than 
tabular values. The reason for that was probably lower 
temperature of the final hardening of our samples, which 
was used to prevent deterioration of flexibility of our Epo-
Clad foils. 

Optical losses of our planar waveguides were meas-
ured by fiber probe technique. The principle of the meas-
urement involves measurement of transmitted and scatter-
ing light intensity as a function of propagation distance 
along the waveguide [12, 17]. The light is coupled into the 
planar waveguides through optical coupling prism and the 
outgoing scattered light intensity was detected by optical 
fiber connected to Si detector. 

The results of optical loss measurements of the 
EpoCore planar waveguides are demonstrated in Fig. 7.  
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Fig. 7. Optical losses of the EpoCore/EpoClad planar waveguides on: a) Si substrate (632.8 nm), b) TOPAS substrate (632.8 nm),  c) TOPAS 
substrate (964 nm). 

Figure 7a shows the results for EpoCore waveguides de-
posited on silicon substrate and Figures 7b and c give the 
results for the waveguides deposited on TOPAS substrate. 
Figures 7a and b demonstrate the measured values for the 
wavelength 632.8 nm while Figure 7c shows it for the 
wavelength 964 nm. Our optical planar waveguides had 
optical losses lower than 0.3 dB·cm-1 with the best sample 
having optical losses as low as 0.27 dB·cm-1 at 632.8 nm 
and 0.07 dB·cm-1 at 964 nm. 

Optical loss measurements for ridge waveguides were 
done using the cut-back method. The principle of the 
method is shown in Fig. 8a while Figure 8b shows a photo 
of the experimental set-up of the measurement. Optical 
losses were calculated using equation (1) [18]: 
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The measurements were done at: 650 nm (laser 
Safibra OFLS-5-FP-650), 850 nm (laser Safibra  
OFLS-6- LD-850) and 1310 nm (laser Safibra OFLS-6CH, 
SLED-1310). The output lights were measured by optical 
powermeter Thorlabs PM200 with Si detector S151C 
(measurements for wavelength 650 and 850 nm) and 
InGaAs detector S155C (measurements for wavelength 
1310 nm). The accuracy of the measurement set-up is 
estimated to be ±5 %. 
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Fig. 8. Principle for insertion optical loss measurement:  

a) schematic view of the setup, b) image of the setup. 

The measurement started with determination of the 
optical power (P1) emitted from the source and passing 
through the whole length l1 of the ridge waveguide and 
proceeding through to the detector via output fiber wave-
guides. P2 is the output optical power obtained after 
breaking the waveguide, where l2 is the length of the bro-
ken part of the optical waveguide. 

Detailed image of the ridge waveguide transmitting 
optical light 650 nm for optical loss measurements using 
the cut-back method is shown in Fig. 9. 

Our fabricated optical channel waveguides had inser-
tion optical losses lower than 0.60 dB·cm-1. The average 
value of the insertion optical losses were 0.36 dB·cm-1 at 
650 nm, 0.32 dB·cm-1 at 850 nm and 0.53 dB·cm-1 at 
1310 nm. The best sample had optical losses 0.27 dB·cm-1 
at 650 nm, 0.16 dB cm-1 at 850 nm and 0.30 dB·cm-1 at 
1310 nm. 

 
Fig. 9. Detailed image of the ridge waveguide transmitting 

optical light 650 nm for optical loss measurements 
using the cut-back method. 

5. Conclusion 
We report about properties of EpoClad/EpoCore 

polymer ridge waveguides fabricated on silicon and 
TOPAS 8007X4 substrate. Ridge waveguides were 
deposited by using spin coating and photolithography 
process. 

Optical waveguiding properties of our planar wave-
guides samples were characterized by Metricon 2010 
prism-coupler system for five wavelengths (473, 633, 964, 
1311 and 1552 nm) and optical losses were measured by 
collecting the scattered light using fiber scanning along the 
waveguide read by the Si photodetector at 632.8 and 
964 nm. The samples had optical losses less than 
0.5 dB·cm-1 and the best sample has optical losses around 
0.27 dB·cm-1 at 632.8 nm and 0.07 dB·cm-1 at 964 nm. 
Insertion losses of the ridge waveguides were measured by 
cut-back method and the samples had optical losses lower 
than 0.6 dB·cm-1. The best samples have optical losses 
0.27 dB·cm-1 at 650 nm, 0.16 dB·cm-1 at 850 nm and 
0.30 dB·cm-1 at 1310 nm. 
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