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Abstract. This paper presents an efficient approach based
on waveform agile sensing, to enhance the performance of
benchmark target tracking in the presence of strong inter-
ference. The waveform agile sensing library consists of
different waveforms such as linear frequency modulation
(LFM), Gaussian frequency modulation (GFM) and stepped
frequency modulation (SFM) waveforms. Improved perfor-
mance is accomplished through a waveform agile sensing
technique. In this method, the selection of waveform to be
transmitted at each scan is determined, by jointly comput-
ing ambiguity function of waveform and Cramer-Rao Lower
Bound (CRLB) matrix of measurement errors. Electronic
counter measures (ECM) comprises of stand-off jammer
(SOJ) and self-screening jammer (SSJ). Interacting multi-
ple model probability data association filter (IMMPDAF) is
employed for tracking benchmark trajectories. Experimental
results demonstrate that, waveform agile sensing approach
require only 39.98 percent lower mean average power com-
pared to earlier studies. Further, it is observed that the posi-
tion and velocity root mean square error values are decreas-
ing as the number of waveforms are increasing from 5 to 50.

Keywords
Clutter, electronic countermeasures, root mean square
error, target tracking

1. Introduction
The chief objective of target tracking is to increase the

probability of detection (i.e. to detect and track true targets)
and reduce false alarms. The presence of strong interfer-
ence sources (ECM, clutter, false alarm (FA) and multipath)
significantly degrade the performance of radar target track-
ing. SSJ and SOJ are regarded as effective ECM techniques.
In SOJ, the enemy aircrafts are present outside the surveil-
lance region of the radar. It radiates high power jamming
signals into the radar main lobe or side lobe, to misguide the
enemy target, which is entering into the surveillance region.

In SSJ, the jammer itself is present on the enemy target and
sends erroneous signals to the radar. The main objective
of both these ECM techniques is to corrupt radar measure-
ments, and hence deceive the radar to track false targets.
In addition to ECM, clutter and multipath in the environment
collectively increases the complexity of radar to detect and
track the true targets. Therefore, there is a strong need to
adapt radar parameters to get improved observations, which
will increase the performance of tracking in the presence of
strong interference.

Adaptive waveform selection is considered as an impor-
tant electronic counter counter measure (ECCM) for tracking
targets in the presence of ECM [1]. Varying waveforms from
scan to scan can give significant information about true tar-
gets and helps to locate them accurately by improving radar
measurements. The main objective here, is to enhance the
tracking performance by buildingwaveform librarywithmul-
tiple waveforms and select the waveform to be transmitted
based on prediction of next state of the target.

Benchmark problem with six standard target trajecto-
ries has been proposed in [2]. Interacting Multiple Model
(IMM) adaptive estimator was presented as an efficient target
tracking algorithm for maneuvering targets [3]. Significant
further research was conducted on tracking benchmark tra-
jectories in the presence of ECM [4–7]. In all these, SOJ
and range gate pull off (RGPO) were viewed as major ECM
techniques. An important contribution for benchmark target
trajectories has been reported [1], [8] and applied IMMPDAF
as a track filter for all six benchmark trajectories in the pres-
ence of ECM. A number of potential research problems that
have to be carried out in future were recommended in [8].
Significant among them are adaptive waveform selection us-
ing various radar waveforms, tracking closely spaced targets,
considering on-board jammer, including background clutter
and incorporating multipath effects.

Alternatively, interacting multiple model/ multiple hy-
pothesis tracker (IMM/ MHT) solution to the radar bench-
mark problem was proposed in [9], which requires less
radar resources than [8]. But IMM/MHT was computa-
tionally complex when it was applied to practical situations.
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Benchmark problem with IMMPDAF was further extended
by incorporating background clutter with fixed LFM wave-
form [10]. A new set of algorithms for radar management
were introduced in [11], [12], which presented post detec-
tion integration techniques for benchmark problem to jointly
reduce radar energy and to improve accuracy of target mea-
surements in the presence of ECM. In all the above proposed
algorithms, only single LFM waveform was used for bench-
mark tracking.

Waveform agile sensing algorithms were developed to
select a particular waveform from a bank of waveforms,
which aims to maximize the probability of detection and
minimize the mean square error. A novel approach was rec-
ommended using adaptive waveform selection for linear tar-
get tracking using Kalman filter in clutter free environment
and was extended to include clutter [13], [14]. Different
optimization techniques for waveform design were explored
in [15–17]. Improved version of tracking non-linear model
by using dynamic waveform selection was suggested in [18].
Generalized frequency modulated waveforms for non-linear
scenario were presented in [19], [20]. Both these approaches
yielded better results for various scenarios. Adaptive wave-
form selection was recommended for multi static radars using
IMMPDAF model in [21].

This paper presents waveform agile sensing based ap-
proach to track benchmark trajectories in the presence of
strong interference. Current work focuses on improving
tracking performance by constructing a bank of radar wave-
forms (LFM, GFM and SFM) up to 50, including SSJ, SOJ,
false alarm and incorporating multipath effects with back-
ground clutter.

The paper is organized as follows. Section 2 presents
problem formulation. Waveform agile sensing for neutral-
izing ECM and clutter is developed in Sec. 3. Section 4
discusses IMMPDAF algorithm. Simulation results and dis-
cussion are included in Sec. 5. Conclusion and future work
has been incorporated in Sec. 6.

2. Problem Formulation
In the proposed waveform agile sensing approach,

a phased array radar (10GHz operating frequency and a rect-
angular arraywith 900 elements)withminimumvariance dis-
tortion less response (MVDR) adaptive beamformer has been
used to obtain the measurements. The transmit waveform is
selected based on CRLB of scan-to-scan measurement er-
rors from a bank of frequency coded radar waveforms (LFM,
GFM and SFM) up to 50. A point target is assumed and
closely spaced targets are ignored. Cell Averaging-Constant
False Alarm Rate (CA-CFAR) adaptive thresholding tech-
nique is employed. Various electronic counter measures are
included such as SOJ and SSJ. In addition, background clut-
ter, multipath effects and false alarms are also incorporated.
IMMPDAF is applied to track all the six benchmark trajec-
tories in this complex scenario. The work flow of entire
simulation process is briefly illustrated in Fig. 1.

Start

Phased array radar 
with  MVDR 

beamforming

Target + 
environment 

(SSJ/SOJ + 
clutter+ 

multipath+ 
false alarms)

Radar echo signal
(Matched filter + 
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converted to Cartesian coordinates

Track filter: IMMPDAF 
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End
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Calculate performance 
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Received echo 
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Transmit 
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Fig. 1. Flowchart of entire simulation process.

2.1 Measurement Model
The measurements received from the radar are in spher-

ical coordinates (range, azimuthal angle and elevation angle).
Phased array radar scans the entire region in both azimuth
and elevation direction simultaneously. The measurements
from spherical coordinates are converted in to Cartesian co-
ordinateswith reference to radar position. Themeasurements
from the radar is given by

Zi = [Zix, Ziy, Ziz] (1)

where Zix, Ziy and Ziz are the positions in x, y & z directions
respectively of ith element of the measurement vector with
respect to origin of the radar. The environment consists com-
bination of clutter, ECM, false alarm and multipath. Hence,
the resultant measurements obtained from the radar is

Z = Ztarget + Zclutter + Zjammer + Zfalse alarm + Zmultipath (2)

where Ztarget, Zclutter, Zjammer, Zfalse alarm, and Zmultipath are
measurements due to target, clutter, jamming, false alarm
and multipath at the radar receiver respectively.

2.2 Jammers
The main task of jammer is to hamper the radar func-

tionality [22]. Jammers send high power radio frequency
signals to fool the radar throughout its operating bandwidth.
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These jammers can be on-board or with an escort to the
enemy target. Generally there are two types of jammers
namely self-screening jammer (SSJ) and stand-off jammer
(SOJ). The noise generated by jammer is measured in terms
of effective radiated power (ERP) and is formulated as

ERP =
GJPJ

LJ
(3)

where GJ is gain in jammer antenna, PJ is jammer trans-
mitted power and LJ is total loss in jammer. The following
subsections describe briefly about SSJ and SOJ.

2.2.1Self-Screening Jammer

Self screening jammers (SSJs) are well known as self-
protection jammers and are positioned on-board the target.
They take advantage in the vicinity of radar surveillance area
and send noise echoes to the radar main beam so as to crack
the lock of radar. Signal to Jamming ratio (S/J) for self
screening jammer case [22] is given as

S
J
=

PtτGσBJ

ERP · 4πR2L
(4)

where Pt is peak transmit power, G is antenna gain, τ is radar
pulse width, σ is radar cross section, BJ is Jammer band-
width, R is range, Br is receiver bandwidth, L is receiver loss
and ERP represents effective radiated power. Generally, it is
considered that jammer power is greater than signal power
transmitted by the radar i.e. S/J < 1. Yet, when the target
approaches radar, at a certain range signal power of radar
will be equal to jamming power and this range is called as
cross-over range. Beyond this cross-over range the jammer
power is ineffective and is given by

(Rco)SSJ =
[

PtGσBJ
4πBrL · ERP

]1/2
. (5)

2.2.2Stand-Off Jammer

Stand off jammers (SOJs) transmits noise signals from
lethal range of the radar so as not to detect the enemy targets
that are entering into the radar surveillance area. Signal to
Jamming ratio for stand-off jammer is given by

S
J
=

PtτG2R2
JσBJ

4π · ERP · R4L
(6)

and cross-over range where jamming power is equal to signal
power is

(Rco)SOJ=


PtG2R2
JσBJGpc

4π · ERP · G′Br L



1/4

(7)

where RJ is range of jammer from the radar and Gpc repre-
sents time bandwidth product. The target has to stay beyond
this (Rco)SOJ range, and try to send spurious signals to the
radar for improper detection of the targets.
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(a) Received signal without multipath.

56

54

Azimuth angle (Degrees)

52

50

48

46

Received signal with multipath

44

420

0.5

Range gates

1

1.5

2

×104

×10-5

2.5

1

0.5

0

2

1.5

A
m

p
lit

u
d

e 
(V

o
lt

s)

(b) Received signal with multipath.

Fig. 2. Received signal with and without multipath.

2.3 Clutter Model
Let Zk,1, Zk,2 . . . Zk,n be the measurements obtained

from radar for a particular instant of time k. These mea-
surements consists of false alarms with true measurements
of the target due to the presence of clutter. If ρ is considered
as clutter density and Vk as validation gate volume then false
alarms are assumed to be Poisson distributed with mean ρVk .
The observations from radar, which will fall in the validation
region are only considered for tracking. Poisson probability
for attaining n false alarms is

µ(n) =
e−ρVk (ρVk )n

n!
. (8)

It is assumed that clutter is distributed uniformly in vol-
ume Vk .

2.4 Multipath
The echoes from the target return to the receiver other

than direct path is known as multipath. Multipath generates
false targets to appear and misleads the radar receiver. These
multipath creates false targets, which are very difficult to dis-
tinguish from actual targets. Figure 2a depicts a received
signal without multipath and Fig. 2b shows two false targets
are appearing due to multipath. If the echo is reflected from
the rough surface, then error occurs in both azimuth and el-
evation angles due to diffuse scattering. Further, if the echo
is reflected from building or non-flat land then error occurs
significantly in azimuth angle. The major problem in track-
ing targets due to multipath effect is that, the false targets
and actual targets seems to be coherent. The envelop sum of
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signals that are received at the receiver is considered to be
Rayleigh distributed. The signals arriving at the receiver may
have destructive or constructive interference. Let Rn and φn
be electric field and relative phase of N multipath signals.
Then, the total electric field at the receiver is given by

R̃ =
N∑
n=1

Rnejφn . (9)

It is assumed that Rn and φn are independent and
distributed uniformly. The probability density function of
Rayleigh distribution is given by

fR(r) =
r
σ2 e−

r2
2σ2 . (10)

Equation (10) is for slow fading and is valid ∀r ≥ 0.
2.5 Performance Measures

In the target tracking literature, various performance
measures have been proposed [23]. The following perfor-
mance metrics (Tab. 1 in Appendix) are considered for eval-
uating the track performance of benchmark targets in the
presence of ECM, clutter, multipath and false alarms.

3. Neutralizing Techniques for ECM,
Clutter and Multipath Effects
In this section several mechanisms to neutralize ECM,

clutter and multipath effects have been described. Waveform
agile sensing, adaptive beamforming and adaptive threshold-
ing techniques are successfully applied to neutralize these
undesirable effects. The following subsections briefly de-
scribe these methods.

3.1 Waveform Agile Sensing
The main objective of adaptive waveform selection is

to minimize tracking mean square error. Waveform selection
process is based on signal to noise ratio, signal to clutter ratio
and type of tracking algorithm applied. The parameter (Ωj)
of the waveform is selected so as to minimize the tracking
MSE and is given by

J (Ωj ) = EXj,Z j |Z1: j

[
(X j − X̂ j )T (X j − X̂ j )

]
(11)

where E(.) is the expectation operation over predicted and
original state of measurements. X̂ j is the state estimate of
X j for j observations. Equation (11) is regarded as the cost
function and aims to select the waveform parameter which
yields minimum MSE at a particular scan j.

Single dynamic model may not exactly represent the
motion of the target, as targets may maneuver. For this rea-
son three PDAF filters are fused to IMM algorithm. Each
filter is subjected for a particular target motion and will be
running in parallel. The updated state estimate and covari-
ance is the weighted combination of each individual PDAF
state estimate and covariance respectively. The comprehen-
sive derivation of IMM filter is done in [24].

The mean square error of specific track can be reduced
by selecting waveform adaptively and this is accomplished by
reducing trace of the updated error covariance matrix. The
updated error covariance matrix is given by

Pj+1 | j+1(Ωj+1) =Pj+1 | j −
[
1 − β0

j+1

]
Wj+1(Ωj+1)

Sj+1(Ωj+1)WT
j+1(Ωj+1) + P̃j+1(Ωj+1).

(12)

From (12), it is evident that observation error covariance
is a function of waveform parameterΩj+1. Thus, the updated
error covariance is also a function ofΩj+1. Since each PDAF
in IMMPDAF is independently depended on Ωj+1, then the
updated error covariance PIMM

j+1 | j+1 is a function of Ωj+1 .The
waveform library contains multiple waveforms with different
combinations of parameters.

Ωj+1 = min
(
Trace(Pi∗

j+1 | j+1)
)

(13)

where i∗ = arg max
i

µi
j+1 | j+1.

The cost function for selecting waveform is briefly de-
scribed in [13]. This is computed by evaluating the trace
of updated covariance matrix for Kalman filter. The same
procedure was extended to IMM filter in [21], [25] and (13)
is chosen as one of the cost function. The waveform which
gives highest mode probability of ith model of the filter and
minimum covariance value is chosen for next scan. This tech-
nique has been well applied with various waveforms (LFM,
GFM and SFM) to neutralize the undesirable effects.

3.2 Adaptive Beamforming
The beamforming aims to focus the main beam of radar

in the intended direction and fix a null in the undesired direc-
tion. As the targets in practical scenario will not be stationery
and the signal may arrive in any direction. Hence, conven-
tional beamforming finds little use in these situations. The
array weights needs to adapt continuously with change in en-
vironment and this process is known as adaptive beamform-
ing. In the proposed approach, minimum variance distortion
less response (MVDR) has been used to adapt weights of the
beamformer. MVDR beamformer requires only direction of
arrival (does not require any other information) to determine
the beamformer weight vector

W =
R−1S(θ)

S(θ)H RS(θ)
(14)

where S(θ) is steering vector corresponding to a specific
direction and R is spatial covariance matrix. The key func-
tionality of MVDR beamformer is to minimize the total out-
put noise power by setting the gain as unity in a particular
direction and this is done by adapting the weight vector of
beamformer.

Figure 3a shows the received signal with clutter, mul-
tipath and jamming before adaptive beamforming. It is very
difficult to distinguish the target as it is embedded in clut-
ter, ECM, multipath and false alarms. Figure 3b shows
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(a) Received signal before adaptive beamforming.
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(b) Received signal after adaptive beamforming.

Fig. 3. Received signal before and after adaptive beamforming.

the received signal with adaptive beam forming. It can be
visualized clearly that the noise is suppressed and targets can
be identified along with multipath. MVDR beamformer is
employed to suppress the ECM, clutter and false alarms in
undesired direction.

3.3 Adaptive Thresholding
This subsection briefly describes about adaptive thresh-

olding technique employed as a counter measure to ECM,
clutter and multipath effects. Generally the received radar
echo signal is compared to a fixed threshold value and hence
declared the presence of a target based on, weather the
matched filter output exceeds the threshold or not. In or-
der to apply a fixed threshold in Neyman-Pearson detector,
it seeks complete statistical information of the received echo
signal. But, in practical situations, the statistical information
of the received echo signal (corrupted with ECM, clutter and
multipath effects) changes rapidly due to the change in envi-
ronmental conditions. Therefore, there is a need for adaptive
thresholding which varies according to change in environ-
ment and hence counter these unwanted effects.

The main function of the radar detector is to maximize
the probability of detection and minimize the probability of
false alarms. CA-CFAR is chosen for adaptive threshold-
ing. In CA-CFAR, the cell under detection is known as cell
under test (CUT). The neighboring cells of CUT are used to
estimate the noise power. Some of the neighboring cells (lag-
ging and leading) of CUT are referred as guard cells. These
cells are ignored while estimating noise to avoid signal en-
ergy leakage from the CUT into training cells. The noise is
estimated from the training cells which can be represented as

U1 =
1

N1

N1∑
i=1

xi (15a)

U2 =
1

N2

N2∑
j=1

x j (15b)

where N1 and N2 represents the number of training cells,
xi and x j denote the samples in each training cell respec-
tively. Both U1 and U2 are combined to estimate the total
background noise Pn. The noise estimate is multiplied with
relevant scaling factor α, so as to maintain probability of
false alarm as constant. The detection threshold T is given as

T = αPn. (16)

Threshold (T) is compared with CUT in order to decide
the presence of a target. Figure 4 shows detection of targets
using adaptive thresholding. It clearly depicts that the target
is detected along with multipath and few false alarms. CA-
CFAR is applied to suppress ECM, clutter, false alarms and
multipath effects.

The echo waveform from the target is corrupted by
ECM, clutter, false alarms and multipath effects. Combi-
nation of the above effective techniques such as; Waveform
agile sensing, adaptive beamformer and adaptive threshold-
ing have been successfully applied to minimize the effects of
these interferences.

4. Interacting Multiple Model Proba-
bility Data Association Filter
This section provides the brief outline of the IMM-

PDAF track filter. The integration of interacting multiple
model (IMM) with probability data association (PDA) makes
an effective tracker for tracking maneuvering targets in the
presence of ECM and false alarms [8].

4.1 Probability Data Association Filter (PDAF)
The PDA filter calculates the associated probability for

each measurement based on validating a particular target.
An assumption is made such that m observations are vali-
dated for a particular scan. The equations required to update
state and covariance for PDAF are given below:

Prediction of the state and measurement is given by

x̂ j+1 | j = Fx̂ j | j, (17)
ẑ j+1 | j = H x̂ j+1 | j . (18)

Covariance of the predicted state
Pj+1 | j = FPj | jF ′ +Q. (19)

Covariance with respect to measurement

Sj+1
(
Ωj+1

)
= HPj+1 | jH ′ + Cj+1

(
Ωj+1

)
(20)
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Fig. 4. Illustrating adaptive thresholding mechanism.

where Cj+1 is the observation error covariance matrix corre-
sponding toΩj+1 waveform. The validation region (gate)-the
ellipsoid can be written as

Vj+1 =
{

z :
[
z − ẑ j+1 | j

]T
Sj+1

(
Ωj+1

)−1 [
z − ẑ j+1 | j

]
≤ γ

}
(21)

where γ is the gate threshold determined by the chosen gate
probability PG. Innovation corresponding to the i-th vali-
dated measurement

vij+1 = zij+1 − ẑ j+1 | j i = 1, . . . ,m j+1. (22)

Volume of the validation region is given as

Vj+1
(
Ωj+1

)
= cnz

���γSj+1
(
Ωj+1

) ���
1/2

(23)

where cnz represents unit hypersphere volume with dimen-
sion nz (i.e. [c1, c2, c3] = [2, π, 4π/3]). Probability of the
i-th validated measurement is

βij+1(Ωj+1) =



ei (Ω j+1)

b+
∑m( j+1)

l=1 el (Ω j+1)
, i = 1, . . . ,m( j + 1),

b

b+
∑m( j+1)

l=1 el (Ω j+1)
, i = 0,

(24)

β0 (k + 1) is association probability which represents that
none of the measurement is correct

ei (Ωj+1) 4= e−
1
2 v

i
j+1

T
S j+1 (Ω j+1)−1vi

j+1, (25)

b 4=
(

2π
γ

) nz
2

m( j + 1)c−1
nz

1 − PDPG

PD
. (26)

State update

x̂ j+1 | j+1(Ωj+1) = x̂ j+1 | j +Wj+1(Ωj+1)vj+1(Ωj+1) (27)

where Wj+1(Ωj+1) is filter gain and vj+1(Ωj+1) is known as
combined innovation which is calculated as

vj+1
4
=

m( j+1)∑
i=1

βij+1v
i
j+1, (28a)

Wj+1(Ωj+1) 4= Pj+1 | jH ′Sj+1(Ωj+1). (28b)

Covariance associated to update state is given as

Pj+1 | j+1(Ωj+1) =Pj+1 | j −
[
1 − β0

j+1

]
Wj+1(Ωj+1)

Sj+1(Ωj+1)WT
j+1(Ωj+1) + P̃j+1(Ωj+1),

(29a)

P̃j+1(Ωj+1) 4=


m( j+1)∑
i=1

βij+1(Ωj+1)vij+1v
i
j+1

T
− vj+1v

T
j+1


×WT

k+1(Ωj+1).
(29b)

Equations (27) and (29) represent the final update equation
of state and covariance of PDAF respectively.

4.2 Interacting Multiple Model Estimator
(IMM)
This subsection presents an outline of IMM method.

Single targets can effectively be tracked by probability data
association filter (PDAF) following a linear trajectory. But
in practical scenarios, the targets may have higher accelera-
tion turns, yielding abrupt maneuvers. Thus, there is a need
to apply IMM technique, where PDAF filters are function-
ing in parallel and each PDAF filter having corresponding
system matrix. The updated state estimate and covariance
is the weighted sum of individual PDAF filters. Compre-
hensive explanation and derivation on IMM is given in [24].
In IMM, the state estimate is calculated by using different
filters that run in parallel with the weighted combination of
previous updated state estimates or with initial condition.
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Updated state estimate x̂l
j/j
, updated error covariance

P̂l
j/j

and model probability value µl
j/j

of individual filter in-
formation is present for updating next iteration j + 1 with
observation value z j+1. A concise derivation of IMM algo-
rithm is given below:

• Computing mixed input to tracking filter

Predicted model probability is calculated by

µrj+1 | j =

n∑
l=1

plr µlj | j (30)

where the model probability conditioned on j is
µl |r
j | j
= (1/µrj+1 | j )plr µlj | j . (31)

The mixed state estimate and covariance which is given as
input to the PDAF filter is calculated by

x̂0r
j | j =

n∑
l

µl |r
j | j

x̂lj | j, (32a)

P0r
j | j =

n∑
l=1

µl |r
j | j
{Pl

j | j + [x̂lj | j − x̂0r
j | j][x̂lj | j − x̂0r

j | j]
T }. (32b)

• Updating mixed state estimate and covariance

The state estimate and covariance of each r th filter is up-
dated from the input (32a) and (32b) to obtain updated state
estimate (x̂r

j+1 | j+1) and covariance (P̂
r
j+1 | j+1).

• Calculating model likelihood function

Λ
m
j+1 =

1√���2πSr
j+1

���
e−

1
2 [z̃ j+1]T

[
Sr
j+1

]−1[z̃ j+1]. (33)

• Updating model probability of each filter

µrj+1 | j+1 =
1
b
µrj+1 | jΛ

r
j+1 (34)

where b is normalization factor

b =
r∑
l=1

µlj+1 | jΛ
l
j+1. (35)

• Combining state estimate

x̂IMM
j+1 | j+1 =

n∑
r=1

µrj+1 | j+1 x̂rj+1 | j+1, (36a)

PIMM
j+1 | j+1 =

n∑
r=1

µrj+1 | j+1

× {Pr
j+1 | j+1 +

[
x̂rj+1 | j+1 − x̂IMM

j+1 | j+1

]

[
x̂rj+1 | j+1 − x̂IMM

j+1 | j+1

]T
}.

(36b)

Equations (36a) and (36b) represent the final update
equations for state and covariance of IMM estimator. At any
instant of time, any one of the state dynamic model in the
parallel filters will be equal to the target trajectory and it gets
automatically switched to it by evaluating model probabil-
ity.

5. Simulation Results
This section deals with the simulation results and dis-

cussion. The following subsections describe six benchmark
trajectories used in simulations and experimental results.

5.1 Benchmark Trajectories
Six benchmark trajectories from [8] have been used for

testing waveform agile sensing in combined jamming (SOJ
and SSJ), clutter and multipath scenario by applying IMM-
PDAF. Each trajectory turn rates, trajectory simulated time,
constant velocity and target type is explained below:

5.1.1Benchmark Trajectory-1
Initially the target is at position [75, 30, 1.26] km from

radar and finally it reaches [73.54, 4.7, 1.26] km with 2g and
3g turns. The trajectory is simulated for 165 s. The constant
speed limit is maintained at 290m/s. The trajectory shows
large aircraft.

5.1.2Benchmark Trajectory-2
Benchmark trajectory-2 is taken as second target tra-

jectory for comparison of tracking performance with adap-
tive waveform selection. Initially the target is at a posi-
tion [47,−45, 4.57] km from the radar and finally reaches to
[34,−36.54, 3.760] km with 2.5g and 4g turns. Trajectory
is simulated for 150 s. The trajectory shows small maneu-
verable commercial jet. The true and estimated trajectory of
benchmark-2 is shown in Fig. 5.

5.1.3Benchmark Trajectory-3
The target makes 4g acceleration turns with 45◦ and 90◦

at first 30 s and 60 s respectively. The maximum and min-
imum speed it travels is 457m/s and 274m/s respectively.
The trajectory shows medium bomber. The simulation time
of the trajectory is 145 s.

5.1.4Benchmark Trajectory-4
Target makes turn 45◦ with 4g and 6g acceleration with

a minimum speed of 251m/s. The simulation time of tra-
jectory is 184 s with maneuvering density of 9.92 %. The
trajectory shows medium bomber. The true and estimated
trajectory of benchmark-4 is shown in Fig. 6.

5.1.5Benchmark Trajectory-5
The target takes complex manuvers with 5g, 6g and

7g acceleration turns. The trajectory shows fighter aircraft.
The simulation time of trajectory is 182 s with maneuvering
density of 17.5 %.

5.1.6Benchmark Trajectory-6
The target makes two 6g and two 7g turns andmaintains

a constant speed of 426m/s. The trajectory shows fighter
aircraft. The simulation time of trajectory is 188 s with ma-
neuvering density of 18 %. The trajectory shows medium
bomber.
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5.2 Simulation Results and Discussion
Results for the above six benchmark trajectories with

complex scenarios have been tabulated in Tab. 2 and Tab. 3.
Table 2 shows results in the presence of SOJ, clutter, multi-
path and FA are compared with earlier research study [10],
which ignoredmultipath effects. On the other hand, results in
the presence of SSJ, clutter, multipath and FA are tabulated in
Tab. 3. Jammer on board the target (SSJ) have not been con-
sidered by any other earlier studies conducted, therefore these
values have not been compared with any other results.

The tabulated results in Tab. 2 demonstrate that average
power in current research study is significantly reduced for
all benchmark trajectories except for benchmark-4. The sim-
ulation results reveals that proposed waveform agile sensing
technique requires only 39.98% lower mean average power
compared to past studies [10]. Besides that, the cost function
C1, which is associated with radar energy is significantly low-
ered in the current method. However, the cost function C2,
which is associated with radar time is little higher. The track
loss performance is zero for benchmark-1, 2 trajectories and
is 1.6 %, 0.8 % , 1.1 % and 1.94 % for benchmark-3, 4, 5 and
6 trajectories respectively. From Tab. 2, it is also observed
that position and velocity root mean square errors are higher.
This clearly indicates that the multipath effect increased the
measurement error along with the background clutter.

Furthermore, as the number of waveforms are increased
from 5 to 50, both position RMSE and velocity RMSE values
are decreasing (same is illustrated in Figures 7 to 8) [26]. It
can also be observed that position RMSE with 50 waveforms
in the current study is less than previous work for benchmark-
1 and for other benchmark trajectories its mean difference is
52.124m for 50 waveforms. From Tab. 2, velocity RMSE in
current study is higher than previous work with mean differ-
ence of 40.56m/s. The earlier studies [10] ignored multipath
in the environment. In the current research study multipath
is incorporated in addition to the clutter and jamming, thus
presenting a strong interference in the environment. Hence,
the performance of velocity RMSE is slightly degraded when
compared to previous studies.

The performance evaluation of IMMPDAF in the pres-
ence of SSJ, clutter, multipath and false alarm is tabulated in
Tab. 3. It indicates the position and velocity RMSE values
are decreasing as the number of waveforms increased for all
benchmark trajectories. The average power for benchmark
-1, 2 and 6 are lower than benchmark-3, 4 and 5 trajectories.
Track loss for benchmark 1, 2 and 5 is zero, whereas average
track loss for benchmark 3, 4 and 6 is 1.86 % . TheC1 andC2
cost functions are lower for benchmark 1, 2 and 6 compared
to benchmark 3, 4 and 5 trajectories.

Plots are obtained by varying the number of waveforms
in adaptive waveform selection with respect to position and
velocity RMSE values for SOJ and SSJ scenarios. From
Fig. 7 to 8, it is evident that the position and velocity RMSE
of SSJ is significantly higher than SOJ for all benchmark tra-
jectories. Further, as the number of waveforms in waveform

library is increasing from 5 to 50, the position and velocity
RMSE values are decreasing.

Performance of position RMSE with number of wave-
forms considered for SOJ and SSJ cases are shown in Fig. 9
and 10 respectively. Optimal number of waveforms for both
the cases are iluustrated with a dotted line as shown in Fig-
ures 9 and 10. In case of SOJ, the optimal RMSEobserved for
benchmark 1, 2, 4, 5 and 6 is at 20 waveforms. The optimal
number of waveforms to be considered is 10 for benchmark-3
in case of SOJ scenario. On the other hand, in case of SSJ, the
optimal number of waveforms is widely varied for benchmark
trajectories. For benchmark trajectory 2,5 and 6 the optimal
number of waveforms to be considered is 10 in case of SSJ.
Where as for benchmark trajectory 1 and 4 the optimality is
achieved at 20 waveforms. For benchmark trajectory-3, the
optimality is attained for 40 waveforms. Therefore, on an av-
erage the optimal performance is achieved at 20 waveforms
for all such benchmarks in both the cases.

In this research work, closely spaced targets have not
been considered and assumed only point targets. Besides,
only frequency coded waveforms are used for waveform ag-
ile sensing. Further, ECM techniques such as; range gate
pull off (RGPO) and velocity gate pull off (VGPO) are not
examined. Future work can be carried out with these problem
formulations.

The achieved results exhibits enhanced performance us-
ingwaveform agile sensing approach in the presence of ECM,
clutter, false alarm, andmultipath effects. Hence, thismethod
may be applied to track highlymanuvering targets in the pres-
ence of strong interference.

6. Conclusion
Improved performance for tracking benchmark has been

demonstrated using waveform agile sensing technique in the
presence of strong interference. A number of frequency
coded waveforms (LFM, SFM and GFM) up to 50 have been
stacked in the waveform bank to enhance the track perfor-
mance. IMMPDAF is applied to track benchmark with ECM
(SOJ/SSJ), clutter and multipath effects. The simulation re-
sults show that proposed waveform agile sensing method
requires only 39.98% lower mean average power compared
to previous studies [10]. It is also evident that, as the number
of waveforms are increasing from 5 to 50, both position and
velocity RMSE values are decreasing. Furthermore, position
and velocity RMSE values are higher for SSJ than SOJ. This
work can be further extended to incorporate phase coded
waveforms to track benchmark. To conclude, potential re-
search problems to be carried in future enlisted by Blair [8],
have been addressed here and achieved significant results.
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Appendix:

Sl.No Performance
metrics Description Reference

1
Root Mean
Square Error
(RMSE)

It measures the difference between actual value and
estimated value.

RMSE =

√√√
1
K

k∑
i=1

(xi − x̂i )2 (A.37)

where xi=Actual value; x̂i=Predicted value; K=No
of observations.

[23]

2 Track Loss

The track is declared to be lost if the error in the
estimated value of the target is greater than 1.5 range
gates in range. It measures the percentage of tracks

that are lost during simulation.

[8], [23]

3 Cost functions
(C1 &C2)

C1: It corresponds to period of operation when radar
energy is critical.

C1 = Ēave + 103T̄ave (A.38)
C2: It corresponds to period of operation when radar

time is critical.

C2 = Ēave + 105T̄ave (A.39)
Where, Ēave= Average energy per second; T̄ave =

Average radar time per second.

[8]

4 Average Power

Rate of energy flow averaged over one full period.

Pavg =
Pulse Width (τ)

PRT (T )
· Peak Power (A.40)

[8], [27]

Tab. 1. Performance measures.



RADIOENGINEERING, VOL. 26, NO. 1, APRIL 2017 239

SlNo Track Length Max. Acc. Man. Density Number of Ave.Power Pos.RMSE Vel.RMSE Cost Cost Track loss
(s)

(
m/s2

)
(%) Waveforms (W) (m) (m/s) C1 C2 (%)

Benchmark Trajectory -1
1

165 29.4 24.24

5 3.14

7.281

184.26

1151

97.64

50.271

3.61

7.631

50.15

41.651

0

01
2 10 2.85 121.12 90.58 3.31 48.53 0
3 20 2.60 100.17 85.15 3.04 47.31 0
4 40 2.55 98.62 84.31 2.78 46.89 0
5 50 2.52 97.31 84.31 2.78 46.83 0

Benchmark Trajectory -2
6

150 39.2 34.66

5 3.09

6.161

259.48

100.31

105.36

52.81

3.56

6.511

50.52

40.841

0

01
7 10 3.42 226.29 104.51 3.91 52.03 0
8 20 2.96 212.60 94.24 3.43 49.77 0
9 40 2.88 209.31 95.28 3.37 48.64 0
10 50 2.79 206.42 89.65 3.31 48.59 0

Benchmark Trajectory -3
11

145 39.2 20.83

5 7.34

10.361

235.37

148.71

130.26

79.151

7.93

10.711

66.13

45.181

2

01
12 10 7.16 191.24 134.79 7.82 66.02 1.5
13 20 7.03 187.41 129.32 7.78 65.67 1.5
14 40 6.93 178.63 128.47 7.32 65.21 1.5
15 50 6.72 177.38 127.91 7.01 65.07 1.5

Benchmark Trajectory -4
16

184 58.8 9.92

5 7.29

3.071

157.62

45.811

66.31

36.551

7.89

3.421

65.72

37.371

0.8

01
17 10 7.19 132.73 64.28 7.75 65.61 0
18 20 7.13 103.28 61.49 7.71 65.47 0
19 40 7.10 99.86 59.32 7.68 65.39 0
20 50 7.06 99.27 58.14 7.63 65.30 0

Benchmark Trajectory -5
21

182 68.6 17.5

5 7.41

15.911

237.38

171.51

107.61

74.491

7.92

16.271

66.01

51.941

1.8

01
22 10 7.30 236.49 105.74 7.84 65.92 1.3
23 20 7.26 210.71 112.31 7.79 65.49 0.8
24 40 7.19 206.46 108.72 7.74 65.37 0.8
25 50 7.12 202.13 106.97 7.68 65.22 0.8

Benchmark Trajectory -6
26

188 68.6 18

5 4.47

7.621

201.28

114.81

126.37

72.441

4.78

7.991

57

44.481

2.3

11
27 10 4.36 193.79 124.81 4.63 56.24 2.1
28 20 4.29 160.64 122.29 4.57 56.08 2.1
29 40 4.16 158.31 120.76 4.46 55.91 1.6
30 50 4.01 156.52 118.62 4.39 55.71 1.6

1-Authors [10] ignored multipath effects.

Tab. 2. Comparison results for Benchmark Targets in the presence of SOJ+ Clutter + multipath + FA.

SlNo Track Length Max. Acc. Man. Density Number of Ave.Power Pos.RMSE Vel.RMSE Cost Cost Track loss
(s)

(
m/s2

)
(%) Waveforms (W) (m) (m/s) C1 C2 (%)

Benchmark Trajectory -1
1

165 29.4 24.24

5 3.03 185 98.47 3.49 49.47 0
2 10 2.71 139.66 88.21 3.16 47.65 0
3 20 2.63 123.28 83.94 3.08 47.45 0
4 40 2.58 117.62 82.61 2.93 46.28 0
5 50 2.51 116.31 79.42 2.82 46.21 0

Benchmark Trajectory -2
6

150 39.2 34.66

5 3.13 257.74 105.98 3.61 50.62 0
7 10 3.06 249.07 106.53 3.53 50.28 0
8 20 3 246.85 103.35 3.47 49.98 0
9 40 2.98 242.61 102.15 3.36 47.32 0
10 50 2.73 239.37 101.61 3.32 45.23 0

Benchmark Trajectory -3
11

145 39.2 20.83

5 7.43 229.67 147.94 8.76 68.01 2.6
12 10 7.39 225.36 144.45 8.41 67.82 2.4
13 20 7.35 216.13 138.27 8.32 67.39 2.0
14 40 7.16 199.62 132.69 7.83 66.97 1.7
15 50 7.12 198.79 130.71 7.78 66.83 1.7

Benchmark Trajectory -4
16

184 58.8 9.92

5 7.32 144.38 69.86 7.92 65.87 1.2
17 10 7.28 138.92 69.37 7.86 65.70 0
18 20 7.21 129.76 68.81 7.74 65.59 0
19 40 7.07 120.89 67.43 7.43 65.06 0
20 50 7.04 118.67 66.94 7.39 64.93 0

Benchmark Trajectory -5
21

182 68.6 17.5

5 7.32 226.17 128.39 7.91 66.03 0
22 10 7.26 215.48 125.73 7.88 65.95 0
23 20 7.19 213.62 124.54 7.76 65.82 0
24 40 7.09 209.36 123.89 7.69 65.62 0
25 50 7.03 208.97 123.28 7.42 65.54

Benchmark Trajectory -6
26

188 68.6 18

5 4.79 178.19 142.69 5.06 55.86 3.1
27 10 4.63 173.50 140.72 5.01 55.29 2.2
28 20 4.54 170.42 132.26 4.82 55.07 2.2
29 40 4.46 169.38 131.63 4.78 54.91 2.2
30 50 4.32 168.74 130.91 4.71 54.86 2.2

Tab. 3. Comparison results for Benchmark Targets in the presence of FA + SSJ+ Clutter + Multipath.


