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Abstract. In this study a process of acquiring a trend
of significant spectral coefficients of Photonic Doppler Ve-
locimetry (PDV) data is proposed. The novelty of the paper is
the design of a methodology which will allow to find a specific
curve describing data of aluminium metal plate acceleration
by detonation products of brisant high explosive obtained
using PDV in time on the basis of frequency response. The
paper combine short time Fourier Transform (STFT), time-
frequency varying autoregressive process (TFAR) to specify
the description of detonation products from both time and
frequency perspectives. We also investigate the identification
of a curve describing such behavior of frequency response
on time in processed spectrogram.
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1. Introduction
Many engineering applications are focused mostly on

analysing the frequency character of a signal and then its
time perspective. Because the time character of a signal con-
tains a lot of interesting and important information, it is good
to analyse this component especially in connection with the
frequency behaviour of the signal. In such a case, the appro-
priate methodological instrument is the time-frequency (TF)
approach predominating in the last decade in many fields of
science. It is a useful instrument in natural sciences [1–3],
engineering [4], [5], biology, medicine [6], or social and
economic sciences.

The TF representation of a signal can be obtained via
several approaches. The conventional method is the Short
Time Fourier Transformation (STFT) which has found usage
in a wide range of areas in engineering applications. Simi-
larly, a periodogram or its modification such as the multiple
windowmethod using Slepian sequences [7] is also used. We
can also perform an estimation via the Wigner-Ville distribu-
tion [8], the time-frequency varying Autoregressive Process
(TFAR) [9], wavelet analysis (CWT) [10] or alternatively
the Modified empirical mode decomposition method [11].

While the periodogram belongs to the group of classic esti-
mators for stationary signals, multiple windows or STFT can
be a useful instrument for non-stationary signals. Accord-
ing to Xu et al. [7] multiple window TF distribution was
developed to estimate a time-varying spectrum for random
non-stationary signals with low bias and variance. Huang et
al. [12] uses the Fourier transform and its windowed form
andwavelet transform for fringe pattern processing. Adaptive
short time Fourier transform proposed by Zhong and Huang
[13] is also applicable for TF representation of non-stationary
signals. As Jiang and Mahadevan [14] wrote, the advantage
of the wavelet analysis is that it can capture the features of
a non-stationary signal due to the simultaneous TF decom-
position of inputs. The TFAR process is a simplification
of the general Auto Regressive Moving Average (ARMA)
model. Via estimation of coefficients from the autoregres-
sive process (AR) we can estimate spectral representation
on its time-varying form. As Wear et al. [15] wrote, AR
methods performed better at short record lengths than the
traditional discrete Fourier Transform. In case of multicom-
ponent type of signal Orović and Stanković [4] recommend
a class of highly concentrated TF distribution for efficient
estimation of frequency. Multicomponent signals were also
in focus of Choi and Wiliams [17] working with Cohen’s
class of TF distribution. They introduced exponential distri-
bution and its windowed form and examines their properties.
Boashas and Ristic [16] used specific class of polynomial
TF distributions that deals effectively with multicomponent
signals and introduced higher-order spectra.

Among the advantages of Fourier transformation and
its derivatives we can include low computational complex-
ity, a wide range of software and hardware implementations,
and by selecting optimal parameters this method provides
sufficient results. The AR process used for estimating sig-
nal spectrum representation provides fair results especially
in the case of very short signals when STFT tends to fail. For
longer signals it provides good results [9]. In such cases the
variance of insignificant cyclical components which usually
takes the character of noise commonly have lower levels than
in the case of STFT. This advantage can be useful when we
investigate thresholding such as in [18]. The TFAR process
provides a more complex view in comparison with the sim-
ple spectrum estimate in only the frequency domain. It has
time and frequency resolution corresponding to the size of
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the window and the size of the window overlap which must
be selected. In such a way it is similar to the STFT method.
Unfortunately, the disadvantage of this method is its accuracy
which strongly depends on the selection of optimal lag or-
der. Another disadvantage is that there are not many existing
implementations; most of them are only on a software level.
Considering the methods mentioned above and with respect
to the aim of the paper described below we investigated the
time-varying autoregressive process. The main reason is
based on the fact given in Proakis et al. [9] that AR has
good frequency resolution. As shown in Klejmova [19] this
fact was confirmed with preliminary analyses on simulated
as well as real recorded data from metal plate acceleration by
detonation products.

In the context of the stated goal arose the task how to
describe the curve shape of the frequency response of ex-
plosive material in time. This problem is usually solved
using time series modelling mostly done in the time domain.
This is widely used in econometrics or social science, but in
engineeringwe can also find its usage. Conventional time do-
main approaches are regression analyses with deterministic,
stochastic or combination trends. The widely used approach
in engineering is regression analyses with a linear or polyno-
mial model. Li et al. [20] use a linear model in modelling
the electrical conductivity of soil in three dimensions. Fre-
dette et al. [21] uses a cubic polynomial regression model
for fitting measured pressure dependent volumes of pump-
ing chambers on a production bushing. Harding et al. [22]
uses a generalized additive model in an analysis of long-term
trends in climate effects research. Focusing on stochastic
modelling, Beveridge-Nelson decomposition provide a defi-
nition of the permanent component is often calculated using
an ARMA model. Such a model is designed to capture the
auto-covariance structure of the first difference of an input
series [23]. This method assumes that the permanent compo-
nent following a random walk and the transitory component
is stationarywith an unconditional mean of zero. We can also
apply simplification of ARMA in the form of an AR process
of higher lag order. As a consequence, resultant estimate
is shorter of number of observations given by the lag with
respect to the input time series. In some application areas,
filtering techniques operating in the frequency domain are
used but the result is usually displayed in time domain. We
can use high pass or band pass filters [24]. An alternative ap-
proach is non-parametric kernel estimation [25] which does
not assume knowledge of the data distribution.

In our study we use recorded data of aluminum metal
plate acceleration by the detonation products of a brisant high
explosive. The data was obtained using a Photonic Doppler
Velocimetry (PDV) [26–28]. Therefore, the data for trend
modelling are spectral coefficients which represents material
properties at a very rapid load. On the basis of preliminary
analysis it seems to be inappropriate to use of deterministic
models, because they are not so flexible to capture rapid load.
Especially the description of data trends in edge areas can be
corrupted by such inflexibility. In the case of a stochastic

model, especially in the case of an AR model, the quality
depends on lag order causing a loss of data. Because the
data character is fitted better with a higher lag order (random
walk is insufficient), data loss in the edge area is not wel-
comed. Applying filtering methods is possible, but we also
have here a limitation in the form of parameter selection or
pre-filtering data, data loss or less ability to capture a trend in
edge boundaries. Such limitations and assumptions can bring
forth inaccurate estimations. Therefore, we decided to focus
on non-parametric kernel estimation which is quite flexible
and does not assume knowledge of distribution. Note, that
identifying such curves, i.e. a spectrogram coefficient trend,
allows the determination ofmaterial properties at a very rapid
load.

1.1 Paper Contribution and Organization
The aim of our paper is to design a methodological ap-

proach leading to the best possible identification of expected
spectral peaks and their consequent description. The de-
signed approach will then be applied on a data set obtained
from real experiments. Therefore, the paper’s aim is focused
on: i) identification and ii) specification of vectors containing
spectral peaks and their position in TF response of explosive
materials. An additional aim is focused on iii) the description
of the curve describing such frequency response of explosive
materials on explosion in time represented by this vector of
peaks.

The novelty presented in the paper is the design of a
methodology which will allow to find a specific vector of
spectral peaks describing the reaction of an explosive mate-
rial in time on the basis of frequency response. In the case
of an explosion, there is an expected behaviour of the used
materials. This expectation can be described by a curve with
a specific shape that allows us to determine material proper-
ties under difficult experimental conditions (very rapid load,
degraded surfaces, ejecta, etc) [29].

The paper is organized as follows: after the introduc-
tion, in the section Methodology, we introduce the back-
ground ofmethods for time-frequency analysis. In the section
Data Acquisition we describe explosive experiments and real
data. In the section Application we present and summarize
achieved results. The paper ends with Conclusion.

2. Methodology
According to the description of the paper’s aim, we sug-

gest the following approach. Firstly, we identify a rough re-
gion via STFT where a representation of explosion response
is found. Secondly, we are focused on specifying the curve
describing such a frequency response in the preselected re-
gion. Consequently, we suggest using AR for modelling the
TF representation because this method is suitable when the
frequency resolution is considered. As a supplement, we also
use the wavelet transform because the advantage of wavelets
is better time resolution. After that, we compare results from
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the TFAR approach and wavelet approach to specify starting
point of the curve describing reaction of material on explo-
sion. To support the decision and selection of the best TF
point representing the curve we use test of significance of TF
transform on preselected curve points. As the last step, we
describe a trend in time of the obtained points (describing
frequency response of explosive material) via kernel estima-
tion.

2.1 Fourier Transform (FT)
One of the most common methods used for spectrum

estimation is the Fourier transform (FT) and its modifica-
tions. If an input signal s(n) is a discrete time series, then
the Discrete Fourier transform (DFT) is used. A slight mod-
ification of this method is called Short Time Fourier Trans-
form (STFT). Then the Fourier transform is calculated using
a sliding observation window. The individual spectrum es-
timations are then sorted in time and can be plotted in a 2D
graph. It can be defined as [9]

S( f ,m) =
N−1∑
n=0

s(n)w(n − m)e−j2π f n (1)

where w(n − m) is the window function.

2.2 Autoregressive (AR) Process
Another approach in comparison with the methods

mentioned above is the time-frequency varying AR process
(TFAR). Comparing with non-parametric FT, TFAR uses
parametric approach and creates a model generating an in-
put signal [9]. The analyzed signal s(n) is then regarded as
the output of a linear filter influenced by white noise w with
variance σ2

w . The autoregressive process can be described
by the AR(p) model given by the equation

s(n) = c +
p∑
i=1

aisn−i + wn (2)

where ai, i = 1, . . . p are the parameters of the autoregressive
model of the order p, c is a constant and wn is white noise.
The output spectrum can be described as [9]

S( f ) = ���H
(
ej2π f T

) ���
2
σ2
w (3)

where H
(
ej2π f T

)
is a linear time variant filter. Thus the

spectrum estimation, when we use the AR(p) process, is
done according to formula [9]

Ŝ( f ) =
σ̂2
w

���1 +
∑p

i=1 âie−j2π f i ���
2 (4)

where âi are estimates of the AR(p) parameters, p is the lag
order. Several methods for estimating AR(p) model param-
eters can be used. The most common are the Burg method,
Yule-Walker method, unconstrained least-squares method or
sequential estimation methods. For the AR process, appro-
priate selection of lag order p is an important aspect. Se-
lecting a low level order leads to excessive smoothing of the

spectrum. Furthermore, if the level of p is selected too high,
a non-significant spectral coefficient can arise as a high peak.
For optimal selection, several criteria can be used [9].

2.3 Nadaraya-Watson (NW) Kernel Estimator
As written in Introduction, several approaches for trend

modelling can be used. With respect to our application and
data character we selected non-parametric kernel approach
which is quite flexible and does not assume knowledge of the
data distribution. Thus the dependency of value Y on value
x can be described by the following regression function

Yi = m(xi) + ε i, i = 1, . . . , N (5)

where m is an unknown function, xi ∈ [0, 1] is the design
point, Yi is an observation, E(ε i) = 0, D(ε i) = σ2 > 0, i =
1, . . . , N hold [30]. In our case Y represents the frequency
value of the significant spectral coefficient obtained from
a spectrogram and x is transformed equidistantly in [0; 1]
corresponding to time values in Y .

In our study we are going to investigate the Nadaraya-
Watson (NW) estimator [25], [30]. Let us assume that∑N

i=1 Kh (xi − x) , 0. Thus

m̂(x, h) =
∑N

i=1 Kh (xi − x)Yi∑N
i=1 Kh (xi − x)

. (6)

If
∑N

i=1 Kh (xi − x) = 0, then we can define m̂(x, h) = 0.
An optimum bandwidth h estimation can be done via the
cross-validation method [25], [31], [32].

For quality evaluation of the estimated trend we can use
the mean square error (MSE) or coefficient of determination
(R2) calculated using theoretical and estimated spectrum rep-
resentation for each process. This can be done according to
the formula [9]

MSE =
1
N

N∑
i=1

(
Yi − Ŷi

)2
, R2 = 1 −

∑N
i=1

(
Yi − Ŷi

)2

∑N
i=1

(
Yi − Ȳi

)2 (7)

where Yi is the value of the theoretical spectral coefficient,Ȳi
is its mean and Ŷi is its estimate counterpart. In the case of
the kernel estimate Ŷi = m̂(x, h). The lower the MSE is, the
more accurate the estimation is. The closer R2 is to one, the
more accurate the estimation is.

3. Data Acquisition
For applying the selected methods of TF analysis, we

used recorded data of aluminium metal plate acceleration
by detonation products of brisant high explosive. The data
was obtained using Photonic Doppler Velocimetry (PDV)
[26], [27]. The PDV setup used is shown in Fig. 1a. A fiber
laser with wavelength λ0 of 1550 nm was used to feed a 3-
port circulator. Light from the circulator travels towards the
probe (collimator or bare fiber end) where it partially exits
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(a) General setup. (b) Test setup.

Fig. 1. PDV schematic [26].

Fig. 2. Time representation of signal A (top) and B (bottom).

and partially reflects back. Light that exits the probe reflects
back from the surface of a measured object and reenters the
probe. If the object is inmotion, the frequency of the reflected
light is changed by the Doppler shift fd. This frequency is
then combinedwith the non-Doppler-shifted frequency of the
laser source f0. The resulting signal with frequency fb equal
to the Doppler-shift is captured by the detector and visualized
by the oscilloscope. For a more detailed description of PDV,
see [28], [29].

In the case of our measurement no amplifier was used
between the detector and the oscilloscope. A detailed
schematic of the measured object can be seen in Fig. 1b [26].
To recalculate the Doppler-shift to the velocity of the mov-
ing target v the following formula can be used v = fbλ0/2,
where λ0 is the wavelength of the non-Doppler-shifted light
(the laser wavelength), fb is the Doppler-shift and v is the
resulting velocity.

Two different signals (A and B; Fig. 2) obtained using
PDV were selected. Both with a sampling rate of 25Gs/s
and length of 20 µs giving us 500k samples. The maximum
available frequency that our data contained was limited by
the bandwidth of the used oscilloscope which was approxi-
mately 4GHz. The red arrow in Fig. 2 denotes the time when
the Al flyer plate accelerated by the detonation destroyed the
PDV fiber probe (level of signal rapidly falls). After this mo-
ment the optic fiber is compromised and the measured signal
contains unusable noise.

4. Application
To make the process of describing the trend of signif-

icant spectral coefficients more manageable we divided the
algorithm into several steps. After data acquisition the pro-
cedure was done according to the following steps:

1. Selection of region of interest using STFT.
2. Application of STFT, TFAR and supplementary CWT.
3. Combination of AR and STFT results.
4. Kernel estimate of trend of significant spectral peaks.

4.1 Results: Step 1
The first step was to select a part of the signal containing

the required information. The range of the considered signal
was defined as follows. The beginning of this time range was
taken as the start of the shock wave in the Al plate. The end
was defined by the destruction of the optic fiber (rapid fall
of the signal). The exact time of destruction is easily visible
even in simple time representation. Unfortunately, the exact
location of the start of the shock wave is difficult to precisely
identify based only on time representation. However, we can
perform a preliminary TF analysis of the signal. Therefore,
based on this TF analysis we can select an appropriate sample
range. For this purpose the STFT method is sufficient (low
computational requirements, easy implementation).

The preliminary STFT analysis results can be seen in
Fig. 3 where the area of interest is highlighted by a circle.
Based on the detailed analysis, we selected, for signal A,
samples within a range of 5.00 to 6.80 µs which corresponds
to 45k samples, and for signal B a range of 5.00 to 6.88 µs
which corresponds to 47k samples. To have access to the low
frequency slope we avoided any filtering of data.

Fig. 3. Preliminary spectral estimation of signal A (top) and B
(bottom).
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(a) Spectrogram of signal A using STFT. (b) Spectrogram of signal B using STFT.

(c) Spectrogram of signal A using AR. (d) Spectrogram of signal B using AR.

Fig. 4. Spectral estimation of both signals (x−axis: time, z−axis: spectral values, y−axis: velocity: was calculated from frequency using
v = f λ0/2, where λ0 is the the laser wavelength).

4.2 Results: Step 2

In the second step we repeatedly applied STFT on the
preselected range described above. Establishment of param-
eters was motivated by the intention of keeping a balance
between time and frequency resolution. Therefore, we used
a window length of 1024 samples with an overlap of 900
samples. Due to wide overlap, the Hann filtering window
was used to suppress the influence of earlier signal samples.
Results are presented in Fig. 4a, b.

In the next step we obtained TF representation using
the AR process. Its application was also done on the pre-
selected range described above. Motivation for parameter
selection was the same as for STFT, therefore, we chose

a window length of 1024 samples with an overlap of 900
samples and the Hann filtering window. Considering the
sample size of the signal and the size of the window we
chose the Yule-Walker method [33], [34] for AR coefficients
estimation which is more suitable for long signals. Selection
of lag order was done separately for each window (i.e. 1024
samples). To determine optimal lag order we used the Akaike
information criterion [19] providing good results in the case
of a similar signal. Results are presented in Fig. 4c, d.

As we can see in Fig. 4b,d the results show a rising
edge. Based on the knowledge from energetic material re-
search, this rising edge represents the initial moment of det-
onation. However, under some circumstances, it might not
be captured. To support its existence we also provided CWT

(a) Combined spectrogram of signal A. (b) Combined spectrogram of signal B.

Fig. 5. Combination of STFT and AR (x−axis: time, z−axis: spectral values, y−axis: velocity: was calculated from frequency using v = f λ0/2,
where λ0 is the the laser wavelength).
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(a) Sig. A: AR estimate p = 6.
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(b) Sig. A: Polynomial estimate q = 8.
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(c) Sig. A: NW estimate.
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(d) Sig. B: AR estimate p = 3.
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(e) Sig. B: Polynomial estimate q = 11.
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(f) Sig. B: NW estimate.

Fig. 6. Modelling of the curve fit (signal A: a-c; signal B: d-f). Note: the velocity was calculated from frequency using v = f λ0/2, where λ0 is
the the laser wavelength.

Model Parameters MSE R2

Signal A
Polynomial q = 8 5.35 0.87
AR(p) p = 6 2.75 0.93
NW ν = 0, k = 2, µ = 2, h = 0.02 1.87 0.95

Signal B
Polynomial q = 11 11.58 0.86
AR(p) p = 3 2.27 0.94
NW ν = 0, k = 2, µ = 2, h=0.02 5.84 0.93

Tab. 1. Evaluation of the model fit via MSE and R2.

for signal B which confirmed the rising edge. Therefore, in
such a case it is not edge effect of the estimation.

4.3 Results: Step 3
To obtain the best possible TF representation we com-

bined results from the STFT and TFAR approach. We con-
sidered two approaches, multiplication and correlation [9] of
amplitude part of TF transform for each signal to noise sup-
pression. In the case of signal A (Fig. 5a) lower signal noise
to ratio (SNR) was achieved using correlation while for the
signal B (Fig. 5b) by simplemultiplication. Because themain
focus was on the amplitude part of the spectra we multiplied
only the amplitude part of STFT with TFAR. Doing this we
managed to smooth the scatter of background noise. Both
methods (STFT with TFAR) used the same window length
and the same overlap meaning that the time and frequency
resolution of both methods were compatible.

In step 3 we used the signal gained in step 2. We firstly
designed thresholding according to the significant values of
the spectrogram. The threshold value was established as fol-
lows: with respect to the frequency value we took the high-
est spectrogram value ±∆ to specify close surrounding area.
According to empirical results we established ±∆ = 7.5 %.

Using this thresholding we specified a mask which contained
the region of our interest (region of required signal). Af-
ter applying the mask on the signal from the previous step
we were able to mark the position of spectral peak belong-
ing to the area defined by the mask. By implementing this
step we gained a vector of peak positions suitable for kernel
analysis.

4.4 Results: Step 4
The last step was focused on kernel estimation of the

trend of significant spectra peaks. Identification of such trend
allows better determination of materials properties at very
rapid load than simple maxims connection. We firstly cre-
ated vectors containing the position of detected peaks (step
3). The length of vectors was approximately 200 points.
For both signals we used the NW estimator for a kernel of
the order ν = 0; k = 2, smoothness µ = 2 and bandwidth
h = 0.02 [30], [31]. The value of bandwidth was optimized
via the generalized cross-validation method [35]. The NW
estimator was selected for providing good results in case of
PDV signal, for the details of kernel estimator application
see [25].

In both signals, Fig. 6c and f, we can identify the same
shape of the curve. Comparing them, we can see a rising edge
of the curve at the start of signal B (Fig. 6f). This shape of
curve path corresponds with expectations of material behav-
ior during explosion. It is missing in signal A and is probably
caused and influenced by the explosive event. Therefore, the
start of signal A was identified after this part. In both signal
cases we can identify a three-level decrease with osculation
followed by its increase. The general tendency has a similar
parabolic shape in both signals.
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A detailed analysis of Fig. 6c and f reveals the follow-
ing facts. Signal A (Fig. 6c): the graphical representation
reveals a short time decrease followed by a short time in-
crease and stagnation of the signal at a higher level. The
second and third part copies this tendency, but both parts are
moved to the lower level having a stair shape. The last part
takes a parabolic shape with the second half of the signals.
In the case of signal B (Fig. 6f) we can identify three similar
parts of decrease. In comparison with signal A, the first part
is rather stagnation with a very slow decrease followed by
a sharper decline divided by structural breaks. Generally, the
dynamics of the curve is smaller. The final part of the curve
for signal B, taking a parabolic shape, is similar to the curve
for signal A (Fig. 6c).

4.5 Comparison of Curve Shape Modelling
For modelling the trend, we used vectors containing po-

sition of detected peaks for both signals described above. To
support decision beneficial to kernel estimate we investigated
two parametric and one non-parametric model. Namely the
deterministic polynomial model (Fig. 6b,e), stochastic AR
model (Fig. 6a,d) and non-parametric NW kernel estimate
(Fig. 6c,f). In Tab. 1 you can see the evaluation of model fit
via MSE and R2 with optimized parameters.

The comparison of estimated curve shapes (Fig. 6) and
measured quality values (Tab. 1) reveal, that for signal A the
best approach is the NW estimate while for signal B it seems
to be the AR process. However, AR appears problematic
when focusing on capturing the rising edge because in such
a case it was not captured. This is caused by a loss of data
in the initial part of the signal - area of omission depends
on lag order of the AR process corresponding to the signal
character. Another problemwith AR is in the case of missing
points (non equidistant) approximation the resultant curve
looks under-smoothed. Making the sentence nonsense (miss-
ing points as adjective - describing the noun approximation.
If I understand correctly, perhaps: Another problem with
AR is in the case of missing points (non equidistant); the
approximation of the resultant curve looks under-smoothed.
We investigated lag order p = 1 − 20; optimal orders were
selected using information criterion (Tab. 1). For this reason,
we prefer the NW estimate (Fig. 6c and f) as the best even
when it has a little bit worse measured quality values for
signal B, because the rising edge was clearly captured. The
worst curve fit estimation was achieved via the polynomial
model (Fig. 6b and e). We investigated order q = 2 − 30.
As the results show, in such an approach, the estimated fit
is over-smoothed. Also, its ability to describe a rising edge
is worse compared to the NW estimate. The acquired mea-
surements were the worst among all. To sum up, the kernel
estimate provides the best curve shape estimate for such data.

5. Conclusion
The aim of the presented paper was to design a method-

ological approach leading to the best possible expected curve

identification of significant spectral coefficients for time-
frequency representation of Photonic Doppler Velocimetry.
We proposed the following steps of approach. Firstly, we
recommended FFT to preselect an area of interest. Con-
sequently, we estimated TF representation via FFT and the
time-varying AR process. By multiplication or correlation
of both transformations we acquired better frequency resolu-
tion. Additionally, to support the results, we proposed apply-
ing CWT. Then, after thresholding, we established a mask
to obtain significant spectral coefficients of processed time-
frequency representation of the detonation product. Finally,
we recommended identifying the curve describing the behav-
ior of frequency response in the processed spectrogram by
using a non-parametric kernel estimator.
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