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Abstract. The target detection performance decreases in 
airborne multiple-input multiple-output (MIMO) radar 
space-time adaptive processing (STAP) when the training 
samples contaminated by interference-targets (outliers) 
signals are used to estimate the covariance matrix. To 
address this problem, a knowledge-aided (KA) generalized 
inner product non-homogeneity detector (GIP NHD) is 
proposed for MIMO-STAP. Firstly, the clutter subspace 
knowledge is constructed by the system parameters of 
MIMO radar STAP. Secondly, the clutter basis vectors are 
utilized to compose the clutter covariance matrix offline. 
Then, the GIP NHD is integrated to realize the effective 
training samples selection, which eliminates the effect of 
the outliers in training samples on target detection. Simu-
lation results demonstrate that in non-homogeneous clutter 
environment, the proposed KA-GIP NHD can eliminate the 
outliers more effectively and improve the target detection 
performance of MIMO radar STAP compared with the 
conventional GIP NHD, which is more valuable for practi-
cal engineering application. 
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1. Introduction 
Multiple-input multiple-output (MIMO) radar has 

been an attractive research field in recent years [1–12]. 
Compared with traditional radar, relevant researches have 
demonstrated that MIMO radars own a lot of potential 
advantages, such as superior angle resolution, increased 
Doppler resolution, better clutter mitigation capability, etc. 
By utilizing airborne MIMO radar for the application of 
ground moving target indication (GMTI) [6–8], the charac-
teristics of both the aperture size and the pulse integration 
interval can be improved to achieve lower minimum de-
tectable velocity (MDV). Therefore, the specialty of 
MIMO radars will lead to better GMTI performance, and 

bring opportunity to the development of space-time adap-
tive processing (STAP) technique [8–12]. 

To realize GMTI in strong clutter environment based 
on STAP technique [13–15], the clutter covariance matrix 
has to be estimated from the training samples set. Besides, 
all the training samples should obey the independent and 
identical distribution (IID), and the required sample num-
ber should be at least as double as the system degrees of 
freedom (DOFs) according to the well-known Reed-
Mallett-Brennan (RMB) rule [16]. In addition, STAP in 
airborne MIMO radar becomes even more challenging in 
complexity and convergence, because of the extra DOFs 
created by the orthogonal waveforms [8–12]. In practice, it 
is difficult to acquire enough IID samples to ensure the 
performance of MIMO radar STAP. Moreover, the training 
samples non-homogeneity will lead to the estimation error 
of the clutter covariance matrix and severely degrade the 
performance of MIMO-STAP [11], [17], [18]. Especially, 
as a classic factor for forming the non-homogeneous clutter 
environment, when there exist interference-targets (outli-
ers) signals in the training samples set, the specific 
phenomenon named target self-nulling will be generated 
[17–22]. 

Non-homogeneity detector (NHD) [18–22] is well-
known for its ability to improve the target detection perfor-
mance of STAP in non-homogeneous environment. The 
generalized inner products (GIP) method [18–22] is a typi-
cal NHD for identifying the outliers with non-homogene-
ity, under the condition on the accurate estimation of the 
clutter covariance matrix. However, strong outliers may 
exist in the training samples set, which will result in severe 
performance degradation of the GIP NHD. Furthermore, if 
there are more than one strong outlier in the training sam-
ples set, the performance of the GIP NHD to determine and 
eliminate the weaker outliers will as well be deteriorated 
significantly [21], [22]. Recently, researchers have pro-
posed the knowledge-aided (KA) STAP methods [22–28] 
to improve the STAP performance and its robustness in the 
practical application. Thus the prior knowledge, such as the 
system parameters, can be taken into consideration in the 
training sample selection, to guarantee that all the chosen 
samples satisfy the IID property. Reference [22] derived 
a robust NHD method to eliminate the outliers from the 



346 T. WANG, Y. ZHAO, J. WANG, KNOWLEDGE-AIDED NON-HOMOGENEITY DETECTOR FOR AIRBORNE MIMO RADAR STAP 

training samples set by utilizing the constructed covariance 
matrix based on the prolate spheroidal wave functions 
(PSWF). The method can be seen as a KA technique, 
which is also applicable to MIMO-STAP case with a slight 
modification. However, the computation and the applica-
tion of PSWF are somewhat complicated, since it involves 
time-band-limited sampling theory and the computation of 
PSWF eigenvector [8], [22]. 

In this paper, we propose a KA-GIP NHD for air-
borne MIMO radar STAP, which is very simple and robust 
in practice. The clutter subspace knowledge is first calcu-
lated by the MIMO-STAP system parameters, and then the 
clutter basis vectors are utilized to construct the corre-
sponding clutter covariance matrix conveniently. Next, the 
GIP NHD is integrated with KA-clutter covariance matrix 
to obtain the GIP statistics. Therefore, by comparing the 
statistics with the setting threshold, the outliers that con-
taminate the training samples are eliminated. The effective-
ness of the proposed KA-GIP NHD for MIMO-STAP is 
verified by simulation results. 

The remainder of the paper is organized as follows. In 
Sec. 2, we establish the STAP signal model for side-look-
ing airborne MIMO radar. In Sec. 3, a brief review of the 
conventional GIP NHD is given and the effect of outliers 
on the conventional GIP NHD is analyzed to formulate the 
problem. Then in Sec. 4, we present the construction of the 
knowledge-aided clutter subspace of MIMO radar, and 
propose the novel GIP NHD for MIMO-STAP based on 
the KA-clutter subspace. The simulation results are pro-
vided in Sec. 5 to show the performance advantage of the 
KA-GIP NHD for MIMO-STAP over the conventional 
GIP NHD. In the end, Section 6 summarizes the conclusion 
of the paper. 

Notations. The operations ()T, ()H, ()–1,  denote 
the transpose, conjugate transpose, inverse, and Kronecker 
product, respectively. E[] and trace() denote the expecta-
tion and trace of a matrix. IM denotes the M  M identity 
matrix. () stands for the unit impulse function, and a 
stands for the smallest integer larger than a. 

2. MIMO Radar STAP Signal Model 
Figure 1 presents a sidelooking monostatic MIMO 

radar system equipped with collocated transmit and receive 
linear arrays, in which there are M  transmit elements with 
uniform spacing dT and N receive elements with uniform 
spacing dR, and sparse coefficient α = dT/dR, where 
dR = /2 and  is the wavelength. A coherent processing 
interval (CPI) consists of K pulses with a constant radar 
pulse repetition interval (PRI) T. The radar platform travels 
at height H and at velocity V. The cone angle between the 
line-of-sight (LOS) and the velocity vector is , while  
and  are the azimuth angle and the elevation angle, re-
spectively. The number of clutter patches which are uni-
formly  distributed  in a range  cell is  Nc. The whole space- 

Y

X

Z

O

H






V1

1 2
2 


M

N

Rd
Transmit element

Receive element




Td

Range cell of interest

 
Fig. 1. Configuration of airborne MIMO radar. 

time steering vector of MIMO-STAP for a certain clutter 
patch is written as 

 sc, dc, D dc, T sc, R sc,( , ) ( ) ( ) ( )i i i i if f f f f  v a a a .  (1) 

where 
dc, dc,j2π j2π( 1) T

D dc,( ) [1 e e ]i if K f
if a   

sc , sc ,j2π j2π( 1) T[1 e e ] ,i if K f  
sc , sc ,j2π j2π( 1) T

T sc,( ) [1 e e ]i if M f
if  a   and  

sc , sc ,j2π j2π( 1) T
R sc,( ) [1 e e ]i if N f

if a   are steering vec-

tors of temporal Doppler, spatial transmit array, and spatial 
receive array, respectively, dc, 2 cos cos /i if VT     and 

sc, R cos cos /i if d     are the normalized Doppler and 

spatial frequencies of the clutter patch at i , respectively, 

dc, sc, R/ 2 /i if f VT d    and c1,2, ,i N  . 

The space-time clutter-plus-noise data vector from the 
l th range cell is denoted as 

 c

c n

sc, dc, n
1

( ) ( ) ( )

( , ) ( )
N

i i i
i

l l l

f f l


 

 

x x x

v x
  (2) 

where i is the reflect coefficient of the i th clutter patch, 
and xn(l) represents the additive Gaussian white noise. 

The clutter covariance matrix can be expressed as 
[13], [27] 

 
c

2 H
c c, sc, dc, sc, dc,

1

( , ) ( , )
N

i i i i i
i

f f f f


 R v v   (3) 

where 2
c,i  is the variance of the i th clutter patch, which is 

in direct proportion to the radar cross section (RCS) and 

satisfies 2
c, ( )i k iE i k        , c, 1, 2, ,i k N  . 

Assume the noise obeys the Gaussian distribution and 
is white in both the spatial and temporal domains, thus the 
noise covariance matrix can be written as 

 2
n n KMNR I   (4) 
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where 2
n  is the variance of the additive white noise. 

The fully-adaptive weight vector for MIMO radar 
STAP can be calculated by 

 
1

c+n s,0 d,0

H 1
s,0 d,0 c+n s,0 d,0

( , )

( , ) ( , )

f f

f f f f




R v

w
v R v

  (5) 

where Rc+n = Rc + Rn is the clutter-plus-noise covariance 
matrix, and v(fs,0, fd,0) is the space-time steering vector of 
target. 

Usually, Rc+n is unknown a priori in practice, thus it 
should be estimated from the adjacent training sample set 
beside the range cell under test  

 H

1

1ˆ ( ) ( )
L

l

l l
L 

 R x x   (6) 

where x(l) denotes the training sample of the lth range cell. 
Through replacing Rc+n by R̂, (5) can be used to calculate 
the weight vector of the practical MIMO-STAP system. 
However, with the dimension expansion of the MIMO-
STAP system, it is tough to obtain sufficient IID samples 
in practice, since the practical clutter circumstances are 
generally non-homogeneous. In particular cases when there 
exist outliers in the training samples set [11], [17], [18], 
they will lead to the estimation error of the clutter covari-
ance matrix and seriously degrade the performance of 
MIMO radar STAP. To solve the non-homogeneity prob-
lem, NHDs are utilized to remove outliers from the training 
samples set before implementing the STAP algorithms to 
airborne MIMO radar system. 

3. Conventional GIP NHD 
The GIP method [18–22] is a representative criterion 

of NHDs. We assume the original training samples set Ω 
consists of L range cell samples in the adjacent clutter 
region of the range cell under test, i.e., Ω = {x(l), 
l = 1,2,…,L}, then we can define the GIP statistics as 

 
2H 1 1 2

GIP E E( ) ( ) ( )l l l   x R x R x   (7) 

where RE is the test covariance matrix estimated by using 
the original training samples in set Ω . The GIP statistics 
can be explained as the inner product of the whitening 
filter output vector by using 1/2

E
R , and the expectation of 

which can be obtained by 

    1 H
GIP E ( ) ( )E trace E l l D     R x x   (8) 

where D = KMN denotes the DOFs of MIMO-STAP 
system. Therefore it can be found from (8) that when the 
non-homogeneous training sample cannot be effectively 
whitened by the whitening matrix 1

E
R , the GIP statistics in 

(7) will deviate from expectation D. Then the non-homoge-
neous sample can be easily determined by the deviation 

level between the GIP statistics and the expectation D. 
Thus, we can eliminate the non-homogeneous training 
samples when estimating the clutter covariance matrix for 
MIMO radar STAP. 

From the above analysis, we can see that the GIP sta-
tistics rely on the accurate estimation of the test covariance 
matrix RE. However, different from the homogeneous data 
shown in (2), the non-homogeneous training sample can be 
expressed as 

 c n( ) ( ) ( ) ( )l l l l   x x x x   (9) 

where Δx(l) is the additional item introduced by the non-
homogeneous environment. Assume the training samples 
set Ω contains P non-homogeneous training samples, and 
then the covariance matrix estimated by using the training 
samples in Ω  can be written as 
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(10) 

From (10), we can see that the additional term ΔRE= 
H H H

c n c n
1

1
[ ( ) ( ) ( ( ) ( )) ( ) ( )( ( ) ( )) ]

L

l L P

l l l l l l l l
L   

        x x x x x x x x

will be produced if the training sample set Ω  is contami-
nated by the outliers, which has a negative effect on the 
GIP statistics. This will make the conventional GIP NHD 
difficult to distinguish the non-homogeneous training sam-
ple and cause the undetected error. Therefore, the non-
homogeneity of the training samples will also degrade the 
performance of the conventional GIP NHD in identifica-
tion of the outliers in the range cell under test [21], [22]. 

Hence, in order to enhance the robustness of the test 
covariance and eliminate the negative effects of the outliers 
on the conventional GIP NHD, we consider utilizing the 
KA technique in this paper. The MIMO-STAP system 
parameters, such as platform height and velocity, transmit 
array element number and spacing, receive array element 
number and spacing, temporal pulse number and interval, 
etc., are taken into account as priori knowledge to construct 
the clutter covariance matrix offline. Then the clutter co-
variance matrix in the GIP statistics is data-independent 
and only the homogenous clutter information of the range 
cell under test is included. Accordingly, the estimation of 
RE is not a requisite, and the knowledge-aided GIP NHD 
can realize the outliers elimination efficiently.  
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4. Knowledge-Aided GIP NHD for 
MIMO Radar STAP 

4.1 KA Clutter Subspace Construction 

Let C  be clutter subspace of MIMO radar STAP. 
From (3), C  can be spanned by all the space-time vectors 
of the cN  clutter patches in a range cell, that is 

  sc, dc, dc, sc, c( , ) : , 1,2, ,i i i ispan f f f f i N  C v  .  (11) 

The clutter DOFs of MIMO radar, or the rank of the clutter 
covariance matrix Rc, is denoted as [8] 

 C c( ) ( 1) ( 1)r rank N M K      R .  (12) 

Then the space-time vector of the ith clutter patch can be 
expressed as 
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 (13) 

where B is a matrix of dimension KMN  rC, and the ith 
column and pth row element of B is denoted as 

 ,

( 1) ( 1)
1

and ( 1) ( 1)

0 others
i p

i k MN m N n

b p k m n 
    

     



  (14) 

where k = 1, 2,…, K, m = 1, 2,…, M, and n = 1, 2,…, N. 
The matrix B consists of rC row vectors, that is B = 
[b1 b2 … brC

]. From (13), the space-time vector of the ith 
clutter patch can be expressed as the linear combination of 
rC row vectors of B , which means these row vectors can 
span the clutter subspace of MIMO radar, that is, C = 
span{b1 b2 … brC

}. And {bi} is orthogonal to each other, 
i = 1, 2,…, Nc. Therefore {bi} can be seen as the clutter 
basis vectors for MIMO radar. The orthonormal basis vec-
tors {bc,i} for clutter can be derived by the normalizing 
operation on basis vectors {bc,i}. 

It is should be mentioned that, in the case where α and 
 are non-integers because of the parameter preferences in 
reality, the clutter DOFs may not be an integer. Then the 
clutter rank should be set as the smallest integer larger than 
the non-integer, that is rC = N + α(M – 1) +(K – 1). In 

practice, B  can be obtained through offline sampling and 
stored in memory. Thus, the training data is not required 
any more to carry out the clutter subspace estimation. In 
this section, the given clutter subspace is applicable to all 
the range cells and it can be calculated by the known pa-
rameters of transmit array element number M, receive array 
element number N, temporal pulse number K, coefficients 
α and  according to (14).  

4.2 GIP NHD Based on the KA Clutter 
Subspace of MIMO Radar 

Based on the theory of the KA clutter subspace pre-
sented in the above section, the clutter covariance matrix of 
MIMO radar can be constructed as  

 
C

2 H
KA b, c, c,

1

r

i i i
i




 R b b   (15) 

where 2
b,i  is the covariance corresponding to each bc,i with 

the average value 
c

2 2 2
b, n c C c, C

1

(1,1) / ( ) /
N

i k
k

CNR r r  


    R  

to maintain the same clutter-to-noise ratio (CNR) with the 
clutter covariance matrix Rc in (3) [13], [14], under the 
precondition of the same noise variance 2

n . Consequently, 
we can calculate the proposed KA-GIP statistics by substi-
tuting (15) into (7)  

 H 1
KA KA( ) ( )l l  x R x .  (16) 

It can be observed that the clutter covariance matrix 
in the proposed KA-GIP statistics merely contains the 
homogeneous clutter information in the range cell under 
test. Furthermore, the estimated clutter covariance matrix 
RE will not have any influence on the KA-GIP statistics 
because the KA-clutter covariance matrix RKA has replaced 
RE. So the non-homogeneous training samples can be iden-
tified and eliminated accurately from estimating the clutter 
covariance matrix for MIMO-STAP. Thus, the outliers can 
be eliminated from the training samples set more effec-
tively by the proposed KA-GIP NHD, and the target detec-
tion performance of MIMO-STAP will be improved. 

It is worth noting that these clutter basis vectors can 
be calculated offline by the MIMO-STAP system parame-
ters (M, N, K, α, ) and memorized in storage. Compared 
with the PSWF-based clutter subspace knowledge in [22], 
the construction of the data-independent clutter covariance 
matrix proposed in this paper is more convenient, though 
these two methods can achieve approximately the same 
knowledge-aided effects. Besides, if we constructed the 
covariance matrix directly by (3) [13], [27], although the 
discrete representation can approximate the continuous 
distribution of the real ground clutter, the number and 
angles of the clutter patches are unknown definitely. This 
means that the parameters Nc and i are undetermined, and 
the clutter patches have to be divided and located in the 
modeling process. Then the construction of the clutter 
matrix by the columns of B  has lower computational com- 
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Fig. 2. MIMO-STAP procedure with KA-GIP NHD. 

plexity, rather than by (3). Hence for the practical MIMO-
STAP system, the proposed KA-GIP NHD is very simple 
to be executed.  

The computational complexity of the proposed KA-
GIP NHD is herein analyzed. Firstly, in (15), the construc-
tion of the KA clutter covariance matrix RKA can be real-
ized through rC multiplications of a KMN  1 vector bc,i by 
its conjugate transpose H

c,ib . In this step, the computational 

cost is O(rCK2M2N2). Then, equation (16) involves the 
inversion of matrix RKA, and the computational complexity 
of 1

KA
R  is O(K3M3N3). Last, in (16) showing the GIP 

statistics, the computational burden of xH(l) 1
KA
R x(l) aiming 

at L  samples is O(LK2M2N2+ LKMN). Taking all these 
above factors together, we can come  
to the conclusion that the total computational complexity  
of the proposed KA-GIP NHD procedure is 
O(rCK2M2N2) + O(K3M3N3) + O(LK2M2N2+ LKMN). 

Figure 2 illustrates the corresponding procedure of 
MIMO radar STAP with this newly-developed NHD. It 
also should be indicated that the spatial data of MIMO-
STAP is equivalent to the MN  1 virtual array output after 
matched filtering [8]. The spatial data is corresponding to 
“Virtual Element” in Fig. 2, i.e., the data of virtual array 
elements. Meanwhile, the temporal data of MIMO-STAP 
belongs to each “Pulse” shown in Fig. 2. Afterwards, the 
spatial data and the temporal data in each range cell are 
integrated as a whole when processed via the KA-GIP 
NHD procedure, as we illustrated in the previous principle. 
In the final target detection step of Fig. 2, CFAR refers to 
“constant false alarm rate”. CFAR detection is a common 
adaptive algorithm used in radar systems to detect target 
returns against a background of noise, clutter and interfer-
ence. According to the changing strength level of the noise, 
clutter, and interference, the threshold level can be adjusted 
adaptively to maintain a constant probability of false alarm. 
Thus the target detection can be efficiently realized by 
comparing the MIMO-STAP output with the adaptive 
threshold. And this portion belongs to the next processing 
step after our proposed NHD. 

5. Simulations 
The basic MIMO-STAP parameters for the simulation 

are: transmit array element number M = 5, receive array 
element number N = 8, temporal pulse number K = 10, 
radar wavelength  = 0.23 m, transmit array element 
spacing dT = 0.92 m, receive array element spacing 
dR = 0.115 m, α = N,  = 1, pulse repetition interval 

500T  μs, platform velocity 115V  m/s, platform height 
8000H  m, clutter patch number Nc = 180. The CNR is 

40 dB. We assume that the cone angle of each outlier is 90° 
and the normalized Doppler frequency is 0.25, which are 
the same as those of the target. A non-homogeneous clutter 
scenario is presented, and there are totally 500L   range 
cells in the training set. It should be noted that the value of 
L  is less than double of the system DOFs, i.e. 2L MNK . 
This implies that the sample number requirement of RMB 
rule could not be satisfied, and the setting of the training 
sample number in this simulation accords with the real 
non-homogeneous clutter scenario. In this simulation four 
outliers are taken into consideration and Table 1 lists the 
corresponding outlier parameters.  
 

Outlier number Range cell Power relative to noise [dB] 
1 100 20 
2 200 30 
3 300 30 
4 400 20 

Tab. 1. Parameters of outliers. 

Experiment 1. Verification of KA clutter 
subspace basis 

Figure 3 shows the clutter power distribution on each 
KA clutter subspace basis vector of MIMO radar, which 
can be expressed as H

c, c c,i ib R b , i = 1, 2, …, rC. As compar-

ison, Figure 3 illustrates the eigenvalues of Rc. The esti-
mated clutter rank is correctly N + α(M – 1) + (K – 1). 
From Fig. 3 we can see that the proposed KA subspace 
basis vectors possess almost all clutter power, which can be 



350 T. WANG, Y. ZHAO, J. WANG, KNOWLEDGE-AIDED NON-HOMOGENEITY DETECTOR FOR AIRBORNE MIMO RADAR STAP 

utilized to approximate the actual clutter subspace of 
MIMO radar. Compared with the eigenvalue decomposi-
tion (EVD) of the clutter covariance matrix, no samples are 
needed in obtaining the KA clutter subspace basis vectors, 
and these basis vectors can be easily updated with the cor-
responding MIMO radar system parameters.  
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Fig. 3. Clutter power distribution on each KA clutter subspace 
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Fig. 4. PSWF eigenvalue. 
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Fig. 5. Clutter power distribution on each PSWF clutter 

subspace basis. 

The eigenvalues of PSWF and the clutter power dis-
tribution on each PSWF basis vector are shown in Fig. 4 
and Fig. 5, respectively. From the simulation results, it is 
proved that the PSWF-GIP method in [22] can also be 
applied to MIMO radar STAP. However, the EVD compu-
tation for obtaining PSWF eigenvector has to be imple-
mented when using the PSWF-GIP method with the 
computational complexity of O(K3M3N3). Thus, the KA-
GIP NHD proposed in this paper is more convenient for 
application compared with the PSWF-GIP method, 
although the approximate KA consequence can be attained 
by both methods.  

Experiment 2. Effectiveness and robustness of 
outliers detection 

The corresponding calculation results of the conven-
tional GIP statistics and the proposed KA-GIP statistics are 
shown in Fig. 6a) and b), respectively. For each method, 
the average values are obtained through 100 Monte Carlo 
trials. It should be noted that the Monte Carlo simulations, 
as well as other simulation experiments in this paper, are 
performed by MATLAB software on a computer with CPU 
Core i7 2.6 GHz and 8 GB of RAM. Comparing Fig. 6a) to 
Fig. 6b), it can be seen that the noise level in the back-
ground of Fig. 6b) is obviously much lower, and the pro-
posed KA-GIP NHD improves the average statistics sig-
nificantly. The conventional GIP NHD only detects two 
strong outliers, while the KA-GIP NHD has detected all 
the outliers. It indicates that our proposed NHD is much 
more effective for MIMO radar STAP than the conven-
tional one.  

 
(a) 

 
(b) 

Fig. 6. Comparison of GIP statistics in non-homogeneous 
scenario. a) Conventional GIP statistics. b) KA-GIP 
statistics. 

Experiment 3. Clutter suppression and target 
detection performance of MIMO radar STAP 

The STAP performance is measured by improvement 
factor (IF), where IF is defined as the ratio of output sig-
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nal-to-clutter-plus-noise-ratio (SCNR) to the input SCNR. 
Figure 7 shows the IF of the fully-adaptive MIMO-STAP 
after the outliers in the training samples set are eliminated 
by the KA-GIP NHD, compared with that for which the 
conventional GIP NHD is applied to eliminate the outliers. 
It can be seen that another notch emerges in the outlier 
Doppler frequency when using the conventional GIP NHD, 
which is the so-called target self-nulling phenomenon. On 
the contrary, after using the new NHD proposed in this 
paper to eliminate the outliers, the MIMO-STAP perfor-
mance is improved significantly because only IID samples 
are taken into the STAP weight vector calculation and the 
effect of outliers has been totally avoided as well as the 
self-nulling phenomenon. 

Suppose there exist two targets which are located in 
the 130th range cell and the 170th range cell, respectively. 
The signal-to-noise ratio (SNR) of the target in the 130th 
range cell is assumed to be 0 dB while the SNR of the other 
in the 170th range cell is –10 dB. The corresponding 
MIMO-STAP outputs are shown in Fig. 8, after applying 
the conventional GIP and the KA-GIP NHDs to remove the 
outliers, respectively. It can be observed from Fig. 8 that 
by STAP with conventional GIP NHD, the remaining clut-
ter powers in all range cells under test are still too strong, 
and the weaker target  signal in the  170th  range cell cannot 
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Fig. 7. Comparison of improvement factors. 
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Fig. 8. Comparison of MIMO-STAP filtering outputs. 

be detected accurately because of the self-nulling effect. At 
the same time, the peak value of the relatively stronger 
target in the 130th range cell is also not very distinct. On 
the other hand, MIMO-STAP with KA-GIP NHD can 
suppress clutter effectively and detect both targets correctly 
in the 130th and 170th range cells. 

6. Conclusion 
In this paper, we investigate the non-homogeneity de-

tection technique in airborne MIMO radar STAP, and pro-
pose a knowledge-aided GIP NHD for MIMO-STAP. The 
KA-covariance matrix is constructed to replace the esti-
mated covariance matrix, which is only determined by 
system parameters and not affected by the outliers at all. 
Due to this, the outliers can be eliminated more effectively 
by the novel NHD we put forward, and the target detection 
performance of MIMO radar STAP in non-homogeneous 
clutter environments will be improved significantly com-
pared with the conventional GIP NHD. Moreover, the 
proposed KA-GIP NHD is very convenient to be imple-
mented in practical MIMO-STAP system and has great 
value for engineering application. 

The real scenario can be more complicated and severe 
than the case we considered in this paper, such as the very 
rough surface. Under that clutter condition, most regular 
training samples do not obey the property of IID, and it is 
difficult to sufficiently estimate the clutter characteristic. 
Thus, we should deal with the more complicated clutter 
environment in our future research, and promote relative 
practical experiment to test our method. Moreover, how to 
integrate priori knowledge with the real scenario and de-
velop a more effective KA-GIP NHD for MIMO-STAP is 
also a valuable perspective which will be explored in the 
future work. 
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