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Abstract. Differential full diversity spatial modulation
(DFD-SM) is a differential spatial modulation (DSM) scheme
that makes use of a cyclic unitary M-ary phase shift key-
ing (M-PSK) constellation to achieve diversity gains at both
the transmitter and receiver. In this paper, we extend the
power allocation concept of generalized differential modu-
lation (GDM) to DFD-SM to improve its block error rate
(BLER). A novel power allocation scheme is formulated, and
its optimum power allocation is derived. An asymptotic up-
per bound is presented for the new scheme and results are
verified throughMonte Carlo simulations. It can be seen that
for a large enough frame length, the proposed scheme can al-
most achieve coherent performance. We also propose a low
complexity detection scheme for DFD-SM. We evaluate the
computational complexity of the maximum-likelihood (ML)
detector and compare it to that of the proposed algorithm.
It is shown that our scheme is independent of the constella-
tion size. Numerical simulations of the BLER are presented,
and it can be seen that the proposed scheme provides near-
ML performance throughout the entire signal-to-noise ratio
(SNR) range with a complexity reduction of about 55 % and
52 % for one and two receive antennas respectively, in the
high SNR region.

Keywords
Spatial Modulation (SM), differential spatial mod-
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1. Introduction
Spatial Modulation (SM) [1] is an efficient multiple-

input multiple-output (MIMO) system which has a low com-
plexity implementation. Coherent SM generally requires full
knowledge of the channel state information (CSI), which adds
to the complexity of implementing the system at the receiver.
Coherent systems are also susceptible to pilot overhead and
estimation errors [2]. Non-coherent systems do not require

CSI and are thus less complex to be implemented at the re-
ceiver, however they do suffer from an error performance
penalty when compared to coherent systems. As such, to
combat pilot overhead and estimation errors, multiple differ-
entially encoded SM (DSM) systems have been introduced
in [3–6].

Bian et al. in [3] introduced the concept of an NR × 2
DSM system, where NR is the total number of receive an-
tennas, and 2 is the total number of transmit antennas. In
DSM, communication is carried out block-wise. Two an-
tenna matrices are created, which encode the space and time
dimensions of the two M-ary phase shift keying (M-PSK)
symbols to be transmitted in two time slots. At any given
time slot, only one transmit antenna is active. The recursive
formula to differentially encode the transmit symbols is in-
troduced. A maximum-likelihood (ML) detector is derived
which estimates the transmitted symbols without the need for
CSI. The detector searches through a total of 2M2 possible
combinations in order to find the optimum solution.

Bian et al. in [4] further extended the work of [3] to
an NR × NT DSM system, where NT is the total number of
transmit antennas. The design for antenna selection is in-
troduced to accommodate for the increase in the number of
antenna configurations. This increases the system’s spectral
efficiency. The ML detector has to search through a total
of 2log2 bNT!c MNT possible combinations to find the optimal
solution, where b·c denotes the floor function. The system’s
results are compared with that of conventional SM, and it can
be seen that DSM only suffers from a 3 dB penalty [4].

Ishikawa in [5] introduced a unified DSM architecture.
In order to attain a diversity gain, the number of symbols
employed per antenna-index block is a design variable. It
can be seen that based on this design, a flexible rate-diversity
tradeoff is achieved [5].

Zang et al. in [6] proposed an NR × 2 DSM scheme
which uses a cyclic M-PSK constellation to achieve full di-
versity, i.e. transmit and receive diversity. In order to achieve
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Fig. 1. System model of DFD-SM [6].

a transmit diversity gain; the data rate has to be lowered,
which coincides with [5]. The system transmits the same
symbol over the two time slots. The ML detector searches
a total of 2M combinations in order to find the optimal solu-
tion.

In order to improve error performance of conventional
differential modulation (CDM) a generalized differential
modulation (GDM) scheme is introduced in [7], [8]. In
GDM, a frame is split up into two parts, namely a refer-
ence part and a normal part. Both the reference and normal
parts convey information. The reference part differentially
encodes the normal part in the current frame and the refer-
ence part in the next frame. The system allocates more power
to the reference part in order to improve the system’s error
performance. It can be seen, that for a large enough frame
length, the error performance of GDM can almost approach
that of coherent detection. The optimal power allocation of
GDM for two-way amplify-and-forward relaying [7] differs
from that of space-time block codes [8], as it depends on the
statistics of the differential modulation scheme. However,
the proposed power allocation scheme in [8] can be applied
to any differential modulation scheme, as it is only dependent
on the structure of the received signal in CDM.

The work of [7], [8] motivates us to extend the power al-
location concept of GDM to differential full diversity spatial
modulation (DFD-SM) to further improve its error perfor-
mance. We also propose a low complexity detection algo-
rithm for DFD-SM, as only the ML detector is discussed in
literature.

The paper is organized as follows: Section 2 is broken
down into 3 subsections. Section 2.1 gives a brief overview
of conventional DFD-SM and introduces its system model.
Section 2.2 introduces the proposed scheme and Sec. 2.3
discusses the power allocation of the proposed system. In
Sec. 3, the optimum power allocation and asymptotic upper
bound on the block error rate (BLER) are derived. Section 4
introduces the low complexity detection scheme for conven-
tional DFD-SM and Sec. 5 explores the complexity analysis
of the proposed detection scheme against the optimal detec-
tor. Section 6 provides the simulation results and discussion
and finally, Section 7 concludes the paper.

Notation used in this paper: Bold upper/lower case let-
ters represent matrices/vectors. (·)T , (·)H , and (·)∗ represent
the transpose, Hermitian and complex conjugate operations
respectively. X (i, j) denotes the element located at the ith row
and j th column of matrix X and Tr(X) denotes the trace oper-
ation, which is the sum of all elements on the main diagonal
of matrix X. <(z) and ∠z denotes the real part and the phase
of the complex number z respectively. arg max returns the
maximum argument passed to it and (·)!! denotes the double
factorial operator. The modulo operation is represented as
mod (x, y) = x − ybx/yc and round(x) rounds x up or down
to the nearest integer.

2. System Model
In this section, the system model of conventional DFD-

SM is first introduced. Based onGDM,we discuss the system
model of the proposed scheme. Finally, we discuss the power
allocation of the proposed DFD-SM system.

2.1 Conventional DFD-SM System
The conventional DFD-SM system is represented in

Fig. 1 [6]. The system consists of two transmit anten-
nas and NR receive antennas. Let H =

[
h1 h2

]
and

N =
[
n1 n2

]
denote the NR × 2 fading channel matrix

and the NR ×2 additive white Gaussian noise (AWGN) chan-
nel matrix, respectively, where hi = [h1,ih2,i . . . hNR,i]T and
ni = [n1,in2,i . . . nNR,i]T , i = 1, 2. The entries of hi and ni

are independent and identically distributed (i.i.d.) complex
Gaussian random variables with zero mean and a variance
of 0.5 and σ2

n
2 per dimension, respectively. The transmitted

symbols are drawn from a unit M-PSK constellation. The
system’s average signal-to-noise ratio (SNR) for conventional
DFD-SM is therefore defined as γ̄ = 1

σ2
n
. In conventional

DFD-SM, communication is carried out block-wise. Two
antenna index matrices are defined according to [6] as

A0 =

[
1 0
0 1

]
,A1 =

[
0 exp (jφ)

exp (jφ) 0

]
(1)

where φ is the rotation angle to be optimized to achieve
transmit diversity. The codebook V = {V0,V1, . . . ,VM−1}
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as seen in Fig. 1, is defined to be the set of M distinct unitary
matrices chosen from a cyclic signal constellation whose l th

element is of the formVl = diag
(
exp

( j2πu1l
M

)
, exp

( j2πu2l
M

))
,

where the parameters of u1 and u2 are optimized to achieve
full transmit diversity [6]. Vl consists of a single information
carrying M-PSK symbol over the two symbol durations. It
can be seen that only a single antenna is activated for each
symbol duration. From the analysis provided in [6], it was
found that φ = π/4, u1 = 1 and u2 = 7 for M = 16, which
will be used in this paper.

In the tth block, log2 (M) + 1 information bits are
mapped to (q, l) where q, q ∈ {0, 1}, indicates the selected
antenna activation order matrix Aq and l, l ∈ {0, 1, . . . , M −
1}, indicates the selected unitarymatrixVl [6]. AC2×2 signal
matrix S(t) , which encodes the space and time dimensions,
is defined as [6]

S(t) = A(t)
q V(t)

l
. (2)

The signal matrix is differentially encoded in a C2×2 space-
time matrix X(t) as [6]

X(t) = X(t−1)S(t) . (3)

In the first block, the differentially encoded matrix is set as
X(0) = I2 = V0, where I2 represents the 2×2 identity matrix,
for simplicity.

The received signal in the tth block is given by

Y(t) = H(t)X(t) + N(t) . (4)

Assuming quasi-static fading,H(t) = H(t−1) , theML detector
can be derived as [6]

(q̂, l̂) = arg max
q̂∈{0:1}

l̂∈{0:M−1}

<

[
Tr

((
Y(t)

)H
Y(t−1)Aq̂Vl̂

)]
. (5)

2.2 Proposed DFD-SM System
In this subsection, we extend the power allocation con-

cept of GDM to the conventional DFD-SM system. In [8],
the differential detector is considered to have an estimation-
detection structure. This implies that the previous received
block, Y(t−1) , is used as an estimation to the fading channel
matrix, H(t) , in order to coherently detect the information
conveyed in the current received block, Y(t) [8]. We exploit
this property in our new scheme.

We assume each frame contains (K + 1) blocks.
K blocks, defined as normal blocks, will convey information.
The first block transmitted in a frame, defined as a reference
block, will serve as reference to the next K blocks in the
frame. The normal and reference blocks are transmitted with
unequal power, with more power allocated to the reference
block.

The reference (first) block transmitted in a frame is
given by

Yref = HrefXref + Nref (6)

where Xref = I2 = V0. The entries of Nref are i.i.d. complex
Gaussian random variables with CN (0, σ2

ref ) distribution in
the reference block. Thus, the reference block has an average
SNR of γ̄ref =

1
σ2

ref
. This block provides the channel estima-

tion for the next K blocks in the frame. We further denote
the K received normal blocks as

Y(t)
norm = H(t)

normX(t)
norm + N(t)

norm, 1 ≤ t ≤ K (7)

where X(t)
norm = XrefS(t) . The entries of N(t)

norm are also i.i.d.
complex Gaussian random variables with CN (0, σ2

norm) dis-
tribution in the normal block. Thus, the normal block has an
average SNR of γ̄norm =

1
σ2

norm
.

For quasi-static fading, Href = H(t)
norm, 1 ≤ t ≤ K , we can

re-write the received signal in (7) as
Y(t)

norm = YrefS(t) − NrefS(t) + N(t)
norm. (8)

The ML detector can now be derived similar to [6] as

(q̂, l̂) = arg max
q̂∈{0:1}

l̂∈{0:M−1}

<

[
Tr

((
Y(t)

norm
)H

YrefAq̂Vl̂

)]
. (9)

2.3 Power Allocation
In GDM [7], [8], both schemes allocate a very large

portion of power to the reference blocks in the frame. In
order to ensure an average transmit power, P at the trans-
mitter, the system needs to abide to the following power
constraint [7], [8]

P1 + (L − 1)P2 = LP (10)

where P1 is the power allocated to the reference block, P2 is
the power allocated to the normal block and L is the num-
ber of blocks in a frame. The optimal power allocation for
each scheme is found by formulating a minimization prob-
lem based on (10), as well as the statistics of the modulation
scheme. In [7], the power allocation problem is formulated
into a function of one variable based on the performance
analysis of the system, after which the derivative is taken in
order to find the optimal solution, whereas in [8], the La-
grange multiplier method is used to find the optimum power
allocation. Similar to GDM, we introduce a type of power
allocation to DFD-SM.

Defining the average transmit power constraint (10) in
terms of the system’s average SNR, γ̄, for our proposed
scheme, we have: γ̄ref + K γ̄norm = (K + 1)γ̄. We propose
a novel re-allocation of power scheme. First, we remove
a fraction of power, denoted as α, from each of the normal
blocks in the frame. This can be represented mathematically,
in terms of the system’s average SNR, as γ̄norm = (1 − α)γ̄.
We then re-allocate this fraction of power from all K normal
blocks to the reference block, i.e. γ̄ref = (1 + Kα)γ̄. It
can be seen that the power allocated to the reference block
is greater than that of the normal blocks, so as to improve
channel estimation and hence reduce errors. The proposed
scheme does not require any information on the statistics of



464 K. DWARIKA, H. XU, POWER ALLOCATION AND LC DETECTOR FOR DFD-SM USING TWO TRANSMIT ANTENNAS

the system and can therefore be applied to any differential
modulation scheme.

3. Optimal Power Allocation and
Asymptotic Error Performance
Analysis
In this section we find the optimal power allocation

for the proposed DFD-SM scheme and then derive an upper
bound on the BLER. Following the normal and reference
SNRs defined in the previous section, making the variance
of noise the subject of the formula, we have

σ2
ref =

1
(1 + Kα)γ̄

and σ2
norm =

1
(1 − α)γ̄

. (11)

If we analyze the received signal in (8), it is obvious
that the signal contains two noise elements comprising of
two different variances. We define the effective noise vari-
ance, which is the coherent equivalent noise variance, as

σ2
eff =

σ2
ref + σ

2
norm

2
. (12)

We can find the optimal α by minimizing the noise vari-
ance, i.e. taking the derivative of (12) with respect to α and
equating it to 0. After some algebraic manipulations, we find
that

αopt =

√
K − 1
√

K + K
(13)

When selecting the value of K , one should be mindful of the
practical implementation of the peak to average power ratio
(PAPR) required [8], as well as the block duration for which
the channel remains constant.

Based on the optimal power allocation, we can derive
the effective SNR and thus further derive the asymptotic
BLER. The effective SNR can be derived following (12) as
γ̄eff =

1
σ2

eff
. This is found to be

γ̄eff =

[
2(1 − α)(1 + Kα)

2 + (K − 1)α

]
γ̄. (14)

By providing one reference block with a high SNR, for the
K normal blocks, the effective SNR per block is increased.

From [6], the asymptotic upper bound on the BLER for
conventional DFD-SM is given by

PBLERconv ≤

(
1

γ̄2NR

)
(4NR − 1)!!

2(4NR)!!


M−1∑
l̂=0

(
2

Λ(u1 + u2, l̂, φ)

)2NR

+

M−1∑
l̂=1

(
2

∆(u1, u2, l̂)

)2NR

(15)

where Λ(u, l, φ) =
���sin

(
πul
M − φ

) ��� and ∆(u1, u2, l) =
���sin

(
πu1l
M

)
sin

(
πu2l
M

) ���. Substituting (14) into (15), the up-

per bound for the proposed power scheme is found to be

PBLERnew ≤
*
,

1
γ̄2NR

eff

+
-

(4NR − 1)!!
2(4NR)!!



M−1∑
l̂=0

(
2

Λ(u1 + u2, l̂, φ)

)2NR

+

M−1∑
l̂=1

(
2

∆(u1, u2, l̂)

)2NR

.

(16)

4. Low Complexity Detection Scheme
In conventional DFD-SM, the ML detector seen in (5),

searches through a total of 2M possible combinations made
up of all codebook and antenna index elements. The authors
in [6] suggest that the high complexity of the detector in the
proposed scheme is outweighed by the performance gains
of the systems against which it was compared. In DFD-
SM, there exists a symmetric relationship between the two
symbols contained in each codebook entry. We exploit this
relationship and propose a low complexity detection algo-
rithm in this section. In the proposed detection algorithm,
we first estimate the received symbols based on the activated
antennas. We then estimate which elements of codebookV
was received based on the estimated received symbols. Using
these estimates, we reduce the number of elements needed
to be tested by the ML detector, thereby reducing the com-
plexity of the conventional scheme. The proposed detection
scheme comprises of three steps. In the first two steps, we
assume Aq̂ = A0 and Aq̂ = A1 respectively and apply our
algorithm for each case. In the final step, we choose the most
likely solution.

Step 1: Low Complexity Detection for A0.
Consider a symbol in an M-PSK constellation, of the form

s(l) = exp
(

j2πl
M

)
, l = 0, 1, . . . , M − 1. (17)

We will denote the symbols found at element Vl in codebook
V for DFD-SM as

sb0 (l) = exp
(

j2πu1l
M

)
and sp0 (l) = exp

(
j2πu2l

M

)
. (18)

It can be seen that there exists a relationship between the
phase of sb0 and sp0 , i.e. if the phase of sb0 (l) = 2πu1l

M , the
phase of sp0 (l) = 2πu2l

M . This relationship can be seen in
Fig. 2.

Following (2), the signal matrix is

S(t) = A(t)
0 V(t)

l
=

[
sb0 (l) 0

0 sp0 (l)

]
. (19)

After obtaining the received signal in (4), we solve for
the estimation of sb0 (l) and sp0 (l) as

ŝb0 =

NR∑
i=1

Y (t) (i, 1)
(
Y (t−1) (i, 1)

)∗
, (20)
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Fig. 2. Constellations of sb0 and sp0 for u1 = 1, u2 = 7 and M = 16.

Fig. 3. Constellations of sb1 and sp1 for u1 = 1, u2 = 7, φ = π/4 and M = 16.

ŝp0 =

NR∑
i=1

Y (t) (i, 2)
(
Y (t−1) (i, 2)

)∗
. (21)

Let Qb =
∠ŝb0

2π/M and Qp =
∠ŝp0

2π/M [9], we can then proceed to
find their indices using a modified version of [9]

l̂b = mod (round(Qb), M), (22)

l̂p = mod (round(Qp), M). (23)

Substituting (22) and (23) into (17), we can solve for the
transmitted symbols. Note that the solutions to (22) and (23)
are of the form l̂b = mod (u1l ′, M), l̂p = mod (u2l ′′, M),
l̂b , l̂p , l ′, l ′′ ∈ {0, 1, . . . , M−1} and l ′ and l ′′ are the indices of
the codebook. In essence, we are finding the index of code-
book V , using the estimated symbols index. The received
signal is distorted by the effects of fading and AWGN, and
as a result the calculated index may lie in the wrong decision

region. To improve the error performance of our detection
scheme, we utilize a type of nearest neighbor algorithm. As
a result, we add and subtract π/M to both Qb and Qp in-
dependently in order to more accurately determine its index,
i.e.

Q̂b1 = Qb +
π

M
and Q̂b2 = Qb −

π

M
, (24)

Q̂p1 = Qp +
π

M
and Q̂p2 = Qp −

π

M
. (25)

Thereafter we proceed with using (22) and (23) to ob-
tain our estimates. We will denote the two estimates obtained
from Q̂bi as l ′i and from Q̂pi as l ′′i , i = 1, 2, respectively. Note
that the solutions of (22) and (23) using (24) and (25) respec-
tively, are of the form mod (u1l ′i, M) and mod (u2l ′′i , M),
respectively. In order to determine the l ′i and l ′′i solutions,
we make use of look-up tables, which can be constructed
using Fig. 2.
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Now if l ′ = l ′′, it can be observed that the estimates of
(22) and (23) lie in the same set. In this case, {l ′1, l

′
2} ∈ {l

′′
1 , l
′′
2 }

and we only need to test two elements of CodebookV

(0, l̂A0 ) = arg max
q̂∈{0}
l̂∈{l′1,l

′
2 }

<

[
Tr

((
Y(t)

)H
Y(t−1)A0Vl̂

)]
. (26)

However if l ′ , l ′′, we find that the estimates of (22) and
(23) do not lie in the same set. In this case {l ′1, l

′
2} < {l

′′
1 , l
′′
2 }

and we will have to test four elements of CodebookV

(0, l̂A0 ) = arg max
q̂∈{0}

l̂∈{l′1,l
′
2,l
′′
1 ,l
′′
2 }

<

[
Tr

((
Y(t)

)H
Y(t−1)A0Vl̂

)]
.

(27)

We store the maximum argument obtained from (26) or (27)
as d1.

Step 2: Low Complexity Detection for A1.
For Aq̂ = A1, (18) is now modified to include the rotation
angle

sb1 (l) = exp
(

j2πu1l
M

+ jφ
)
and sp1 (l) = exp

(
j2πu2l

M
+ jφ

)
.

(28)

For the case of φ = π/4 and M = 16, we have
sb1 (l) = exp

( j2π (u1l+2)
16

)
and sp1 (l) = exp

( j2π (u2l+2)
16

)
. This

shows that two is just being added to the index of the A0 case,
and is represented in Fig. 3.

Following (2), the signal matrix is

S(t) = A(t)
1 V(t)

l
=

[
0 sp1 (l)

sb1 (l) 0

]
. (29)

Equations (20) and (21) now become

ŝb1 =

NR∑
i=1

Y (t) (i, 1)
(
Y (t−1) (i, 2)

)∗
, (30)

ŝp1 =

NR∑
i=1

Y (t) (i, 2)
(
Y (t−1) (i, 1)

)∗
. (31)

We then carry out all steps performed from (22) to (25), us-
ing look-up tables constructed from Fig. 3. The ML detector
from (26) and (27) now becomes

(1, l̂A1 ) = arg max
q̂∈{1}
l̂∈{l′1,l

′
2 }

<

[
Tr

((
Y(t)

)H
Y(t−1)A1Vl̂

)]
, (32)

(1, l̂A1 ) = arg max
q̂∈{1}

l̂∈{l′1,l
′
2,l
′′
1 ,l
′′
2 }

<

[
Tr

((
Y(t)

)H
Y(t−1)A1Vl̂

)]
,

(33)

respectively. We store themaximum argument obtained from
(32) or (33) as d2.

Step 3: Detection.
Now based on d1 and d2, the greater of the two will provide
us with our transmitted bits.

The proposed low complexity detection scheme is for
conventional DFD-SM [6]. The algorithm can bemodified to
be used with the new power allocation scheme by replacing
Y(t−1) with Yref in the above equations, however for the pur-
poses of this paper, we only analyze it for the conventional
scheme. The algorithm is summarized below

i. Perform A0 detection

a. Solve for ŝb0 and ŝp0 using (20) and (21).
b. Solve for l ′ and l ′′ from (22) and (23).
c. Obtain Q̂bi by using (24), then solve for l ′i using

(22), i = 1, 2.
d. Obtain Q̂pi by using (25), then solve for l ′′i using

(23), i = 1, 2.
e. If l ′ = l ′′, use the ML detector in (26). Else, use

the ML detector in (27).
f. Save the solution of the ML detector as (0, l̂A0 ),

along with its maximum value as d1.

ii. Perform A1 detection

a. Solve for ŝb1 and ŝp1 using (30) and (31).
b. Solve for l ′ and l ′′ from (22) and (23).
c. Obtain Q̂bi by using (24), then solve for l ′i using

(22), i = 1, 2.
d. Obtain Q̂pi by using (25), then solve for l ′′i using

(23), i = 1, 2.
e. If l ′ = l ′′, use the ML detector in (32). Else, use

the ML detector in (33).
f. Save the solution of the ML detector as (1, l̂A1 ),

along with its maximum value as d2.

iii. If d1 > d2, (q̂, l̂) = (0, l̂A0 ). Else, (q̂, l̂) = (1, l̂A1 )

5. Computational Complexity

In this section, we analyse the computational complex-
ity of the proposed scheme and compare it to the optimal
detection scheme. We use the concept of computational
complexity, as discussed in [10], which is defined as the total
number of real-valued multiplications in a given algorithm.

We first derive the computational complexity of the op-
timal detection scheme found in (5).

i.
(
Y(t)

)H
Y(t−1) is a 2 × 2 matrix and needs to be com-

puted once. It requires 4NR complex multiplications
to be computed, which equates to 16NR real multipli-
cations.

ii. When Aq̂ = A0

• Each trial of A0Vl̂ will require 2 multiplications
of a complex number by a real number which
results in a total of 4 real multiplications.
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iii. When Aq̂ = A1

• Each trial of A1Vl̂ will require 2 multiplications
of a complex number by another complex number
which results in a total of 8 real multiplications.

iv. Computing
(
Y(t)

)H
Y(t−1)Aq̂Vl̂ will require 4 com-

plex multiplications, resulting in 16 real multiplica-
tions.

v. The trace and real operations require no multiplica-
tions.

The computational complexity for A0 is
CML1 = 16NR + (4 + 16)M . The computational complexity
forA1 isCML2 = 16NR+ (8+16)M . Eliminating all common
steps between CML1 and CML2, the total computational com-
plexity of the optimal detector for conventional DFD-SM is
CML = CML1 + CML2 − 16NR = 16NR + 44M .

For the derivation of the proposed detection scheme’s
computational complexity, we consider the steps for A0, un-
less otherwise stated.

i. Computing both ŝb0 and ŝp0 requires a total of 2NR
complex multiplications, translating to 8NR real mul-
tiplications.

ii. The calculation of l ′ and l ′′ requires 6 real multipli-
cations in total. This is broken down into 2 real mul-
tiplications for computing both Qb and Qp , and the
modulo operation for finding both l̂b and l̂p requires
a total of 2 × 2 real multiplications. We treat 2π/M
as a constant. l ′ and l ′′ are found from l̂b and l̂p re-
spectively, using look-up tables and hence require no
multiplications.

iii. The addition and subtraction of π/M (treated as a con-
stant) to Qb and Qp (computed in step ii.) requires no
multiplications. Solving for l ′1, l ′2, l ′′1 and l ′′2 using the
modulo operation requires a total of 4 × 2 real multi-
plications. l ′1, l ′2, l ′′1 and l ′′2 can be obtained by using
look-up tables and hence involve no real multiplica-
tions.

iv. We use the ML detector for the last step with a re-
duced search space. If l ′ = l ′′, we will require
16NR + 2(4+ 16) real multiplications, else we will re-
quire 16NR+4(4+16) real multiplications. ForA1 de-
tection it will be 16NR+2(8+16) and 16NR+4(8+16)
real multiplications respectively.

The computational complexity for A0 is Cproposed1 =
8NR+6+8+16NR+µ(4+16), µ ∈ {2, 4}. The computational
complexity for A1 is Cproposed2 = 8NR +6+8+16NR + µ(8+
16), µ ∈ {2, 4}. Eliminating all the common steps between
the two, the total computational complexity is Cproposed =
Cproposed1+Cproposed2−16NR = 32NR+28+44µ′, µ′ ∈ {6, 8}.
The proposed schemewill always have either 6 or 8 estimates

Detection scheme Real-valued multiplications
ML Detector (5) 16NR + 44M
Proposed Detector 32NR + 28 + 44µ′, µ′ ∈ {6, 8}

Tab. 1. Complexity order for DFD-SM detection schemes.
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Fig. 5. Computational complexity vs. M (NR = 2).

and never 4, as a result µ′ ∈ {6, 8}. We will assume that
µ′ = 6 in the high SNR region, while µ′ = 8 will be in
the low SNR region to aid discussion, although this will not
always hold true. The computational complexity of both
schemes have been summarized in Tab. 1.

Figures 4 and 5 show the computational complexity of
the detection schemes as a function of NR and M , respec-
tively. It can be seen from Fig. 4, that our proposed scheme
is highly dependent on NR and the computational complexity
increases as NR increases for a 16-PSK constellation. How-
ever, for a practical number of receive antennas, it can be seen
that the proposed scheme still requires fewer real multiplica-
tions as compared to the ML detector. Since the proposed
algorithm reduces the search space of the optimal detector
to either six or eight estimates, it is recommended that pro-
posed detection scheme be used for constellations of order
M ≥ 16. Figure 5 highlights the fact that the proposed detec-
tion scheme is independent of the constellation’s size M , as



468 K. DWARIKA, H. XU, POWER ALLOCATION AND LC DETECTOR FOR DFD-SM USING TWO TRANSMIT ANTENNAS

the computational complexity of 16,32,64,128-PSK constel-
lations are found for NR = 2. For M = 16 and NR = 1, our
algorithm demonstrates a 55% reduction in computational
complexity in the high SNR region as compared to the op-
timal detector, and a 43% reduction in the low SNR region.
For M = 16 and NR = 2, a 52% reduction is realized in
the high SNR region, and a 40% reduction in the low SNR
region.

6. Simulations
For the simulations, we assumed a quasi-static Rayleigh

fading channel. The simulations were performed for one and
two receive antennas. Firstly we compared the new power
allocation system against conventional DFD-SM in Figures 6
and 7. The upper bound derived in (16), as well as DFD-
SM with coherent transmission/detection are also included
in Figures 6 and 7. We choose a frame length of K = 100
and K = 500 for comparison. The BLER is plotted against
the average SNR γ̄ (in dB) for the proposed scheme. At
a BLER = 10−4, we see that the proposed scheme outper-
forms the conventional scheme by approximately 2 dB and
is shown to be 1 dB behind that of the coherent scheme for
K = 500. The proposed scheme is seen to obtain a gain of
about 0.4 dBwhen the frame length, K , is increased from 100
to 500. Since α is a function of K , it can be seen that as the
frame length increases, the power allocated to the reference
block increases. This provides better channel estimation for
the normal blocks, and thus better error performance. For
a large enough K , the proposed scheme can approach the
performance of coherent transmission/detection. The bound
of (16) is observed to be tight at high SNR.

We next verify that αopt found in (13) allows for optimal
error performance. Using (13), we have αopt = 0.0409 for
K = 500 and αopt = 0.0818 for K = 100. Fig. 8 contains
a plot of PBLERnew (16) as a function of α, at γ̄ = 30 dB for
NR = 1 and γ̄ = 20 dB for NR = 2 respectively. From Fig. 8,
we observe that the BLER is a minimum when α = αopt.
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Finally we compare the performance of our proposed
low complexity (LC) detection scheme for conventional
DFD-SM against the optimal detector found in (5) in Fig. 9.
It is observed that the proposed algorithm provides near-ML
performance throughout the entire SNR range.

7. Conclusion
In this paper we have provided a new power allocation

scheme for DFD-SM, based on GDM. The optimal power
allocation and theoretical upper bound on the BLER were
derived. It was shown that the proposed scheme outperforms
the conventional scheme and closes the gap between conven-
tional differential detection and coherent detection. A low
complexity detection scheme for conventional DFD-SM was
also introduced. The computational complexity of the op-
timal detector and proposed detector were presented, with
the proposed scheme providing approximately a 55 % and
52 % complexity reduction for one and two receive antennas,
respectively. Numerical simulations show that the proposed
scheme provides near-ML performance throughout the entire
SNR range.
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