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Abstract. An energy-efficient estimation of an aggregate 
function can significantly optimize a global event detection 
or monitoring in wireless sensor networks. This is probably 
the main reason why an optimization of the complementary 
consensus algorithms is one of the key challenges of the 
lifetime extension of the wireless sensor networks on which 
the attention of many scientists is paid. In this paper, we 
introduce an optimized weight model for the average con-
sensus algorithm. It is called the Biphasically configured 
Metropolis-Hasting weight model and is based on a modi-
fication of the Metropolis-Hasting weight model by re-
phrasing the initial configuration into two parts. The first 
one is the default configuration of the Metropolis-Hasting 
weight model, while, the other one is based on a recalcu-
lation of the weights allocated to the adjacent nodes’ in-
coming values at the cost of decreasing the value of the 
weights of the inner states. The whole initial configuration 
is executed in a fully-distributed manner. In the experi-
mental section, it is proven that our optimized weight 
model significantly optimizes the Metropolis-Hasting 
weight model in several aspects and achieves better results 
compared with other concurrent weight models.  
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consensus algorithm, Metropolis-Hasting weight 
model, wireless sensor networks 

1. Introduction 

1.1 Wireless Sensor Networks 

Wireless sensor networks (WSNs) are systems in-
tended to perform a real-time detection of a stochastic 
event or to monitor physical quantities [1–2]. They are 
formed by battery-constrained nodes deployed in a geo-
graphical area where a phenomenon of interest is observed. 

These nodes are equipped with hardware components such 
as a wireless transceiver, a sensor to sense physical quanti-
ties, a central processor unit, a source of energy etc. [3–4] 
Thus, the nodes are able to obtain necessary information 
about the observed phenomenon, process it, mutually ex-
change data and make a meaningful decision on the exam-
ined physical quantity [4]. Due to their character, the 
WSNs find the application in various areas such as military 
surveillance, a natural disaster detection and its elimina-
tion, habitat monitoring, inventory tracking, an acoustic 
detection, pollution monitoring, medical systems, target 
tracking, a robotic exploration, a health care (especially, 
they find the usage in the scenarios considering monitoring 
elderly patients in a remote area), environment monitoring, 
a micro surgery, agriculture etc. [5–6]. In many applica-
tions, WSNs may be formed by hundreds of nodes poten-
tially situated in inaccessible locations and therefore, 
a battery recharge or replacement may be complicated [7]. 
An exhausted battery results in a node death, which can 
decrease the quality of the final decisions or even prevent 
a whole system from fulfilling its functionality. As the re-
sults, the attention of many scientists has been focused on 
an optimization of the energy consumption aspect in the 
last years [8–11]. It is because an effective optimization 
can significantly increase the network lifetime of a WSN 
application [12]. 

In [13], the authors divide the architectures of 
a global event detection into three categories. The second 
and the third architecture require a complementary consen-
sus algorithm to estimate aggregate functions in order to 
ensure a higher credibility of the measured outputs. These 
architectures do not assume the presence of a fusion center 
in a network. The implementation of this supplementary 
algorithm ensures a higher precision of the final decision 
on the observed phenomenon in many applications [14]. 
A decision made according to data obtained by inde-
pendently-measuring nodes secures a more credible output 
than a decision made in terms of a single measurement and 
minimizes a change of an incorrect classification [14]. The 
importance of the consensus algorithm implementation for 
high-quality monitoring in WSNs is discussed in [15]. 
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1.2 Average Consensus Algorithm 

Due to the character of the WSNs, the modern appli-
cations are often based on the implementation of distrib-
uted mechanisms. The algorithms of distributed computing 
substitute the older frequently-implemented centralized 
manner of the computation [14]. Despite its reliability and 
high precision, the centralized algorithms do not pose the 
optimal solution for the implementation into the systems 
formed by battery-constrained devices. 

One of the most appropriate distributed algorithms for 
WSN applications is average consensus, which is a fully 
distributed iterative algorithm primarily for estimation the 
average from the values of all the nodes present in a net-
work [16]. This algorithm does not require the presence of 
any fusion center. The nodes are able to estimate the aver-
age by a mutual exchange of their inner states with the 
nodes situated in the adjacent area. The average consensus 
algorithm is characterized by a high flexibility because its 
execution is modifiable by the chosen weight model [17]. 
The weight models differ from each other in several as-
pects, for example, we can list the convergence rate of the 
algorithm, the process of the initial configuration, the in-
formation that is necessary for its proper functionality, the 
robustness etc. [17], [18]. In this paper, we focus on the 
Metropolis-Hasting model, which requires only the locally-
available information for the initial configuration and 
therefore, it is one of the most preferred solutions for a real 
implementation into battery-constrained systems [19]. 

As mentioned earlier, the average consensus algo-
rithm is primarily proposed for the estimation of the aver-
age value. However, tiny modifications can ensure that the 
algorithm is able to estimate other aggregate functions. 
One of the other frequently-used applications is the esti-
mation of the network size. The information about the 
number of the nodes in a network is crucial for a proper 
functionality of many distributed systems [20]. In this case, 
the execution of the average consensus algorithm is modi-
fied in such a way that one of the nodes has the initial 
value set to the value equaling 1 (it is called the leader) 
[21]. The other nodes are set to 0. Subsequently, the nodes 
converge to the value equaling the reciprocal of the size of 
a network [21]. However, this modification causes several 
problems. One of the most significant ones is how to ap-
point the most suitable node as the leader. It often requires 
the implementation of other complementary mechanisms to 
determine this, which is not the optimal solution for bat-
tery-constrained devices [21]. As shown later in this paper, 
a bad choice of the leader can significantly decrease the 
convergence rate of the algorithm. Thus, an improvement 
of the leader selection can significantly optimize WSN 
applications by removing the necessity for other comple-
mentary algorithms. 

1.3 Motivation 

All the previously-discussed problems motive us to 
propose an optimization mechanism of the Metropolis-

Hasting weight model that improves the convergence rates, 
the number of the necessary messages and minimize the 
negative effect caused by an inappropriate choice of the 
leader. An optimization of these mentioned aspects can 
significantly accelerate and simplify the computation pro-
cess and therefore optimizes the real-life applications of 
WSNs. 

The choice of this weight model is affected by an ef-
fort to improve a weight model of the average consensus 
algorithm that finds the wide usage thanks to its specific 
character. The Metropolis-Hasting weight model fulfills 
these criteria because it does not require any global infor-
mation about the network for its proper initial configura-
tion and so it works in a fully distributed manner. Thus, it 
is an appropriate solution for an implementation into the 
WSNs. Thus, this was the main reason that motivated us to 
focus our research on this weight model. 

In this paper, we introduce an optimized weight 
model derived from the Metropolis-Hasting weight model 
that improves the discussed aspects of this model. The 
optimized model modifies the weight matrix of the Me-
tropolis-Hasting weight model by an additional step during 
the initial configuration. Thus, the weight matrix is initially 
configured twice. The first configuration is the default one 
defined within the Metropolis-Hasting weight model and 
the other one poses the novelty proposed by us. The other 
phase is based on recalculating the weights allocated to the 
adjacent nodes’ incoming states at cost of decreasing the 
value of the weight of the inner states in a distributed way.  

1.4 Paper Organization 

In Sec. 2, we turn our attention to the latest papers 
related to the average consensus optimization. In the next 
section, we provide the mathematical tool used to model 
the average consensus algorithm executed in the WSNs, 
present the main features of this algorithm and adduce 
important theorems defined within the spectral graph the-
ory. We also introduce concurrent weight models which 
the optimized weight model is compared with. In Sec. 4, 
we introduce our optimized weight model, provide mathe-
matical tools to model it and derive the convergence proof. 
In Sec. 5, we examine the optimization of chosen aspects 
ensured by the optimized weight model. We focus on an 
optimization of the average estimation, the network size 
estimation and the range of the convergence rates caused 
by the choice of the leader. We compare this optimization 
in three types of the networks – weakly, averagely and 
strongly connected. All of them consist of ten randomly 
generated networks. In Appendix section, we adduce the 
complete results obtained within our numerical 
experiments.  

2. Related Work 
This section is devoted to an insight into an optimiza-

tion mechanism proposed for the average consensus algo-
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rithm. We introduce the latest papers dealing with optimi-
zation mechanisms. 

In [19], [22–25], the authors’ attention focuses on the 
Metropolis-Hasting weight model (also in various applica-
tions as a complementary mechanism), which our opti-
mized weight model is derived from. It was developed by 
Metropolis, Rosenbluth and Teller in 1953 and generalized 
by Hastings in 1970. It was originally defined within Mar-
kov chain Monte Carlo methods and proposed to simulate 
complex, non-standard multivariate distributions [26]. Its 
modification for the consensus achievement problem finds 
the usage in many applications due to its character. For its 
proper initial configuration, only locally-available infor-
mation is required, i.e. the number of the neighbors of 
a particular node and the number of neighbors of the node 
from its adjacent area. This significantly simplifies the 
initial configuration phase. Thus, this weight model finds 
the usage in many applications. Additionally, it also poses 
a robust solution against a quantization noise [18].  

In [27], an average consensus optimization based on 
the usage of the opportunistic inter-agent communication 
to achieve the consensus is presented. Each node is en-
dowed by a local criterion determining when to broadcast 
the inner state to the nodes situated in the adjacent area. In 
paper [28], a novel consensus protocol is presented that 
achieves the average state consensus for multi-agent sys-
tems in finite time. The protocol contains a linear and 
a non-linear term. The state consensus is achieved by the 
non-linear term, while the performance optimization is 
ensured by the linear term to some degree. The authors of 
paper [29] present an optimization mechanism based on 
a division of the computation process into two phases. The 
first one is the phase of reaching the local consensuses and 
the second one is the phase of reaching the global consen-
sus. Within the first phase, a network is reorganized into 
geographically close areas so-called packs. Here, each 
node converges to the value equaling the average of all the 
nodes present in a pack. Subsequently, each pack appoints 
one of the nodes as the head, which communicates with the 
other heads and converges to the average value. The 
authors of [30] present a novel continuous-time dynamic 
average consensus algorithm for networks with the inter-
action that can be described by weight-balanced directed 
graphs of a strong connectivity. The nodes are able to track 
the average of the dynamic inputs with some non-zero 
steady-error. Its size is controlled by exploiting a design 
parameter. In [31], a distributed algorithm for average 
consensus that solves the discrete-time average consensus 
problem on strongly connected weighted digraphs is pre-
sented. Its principle lays in the computation of the average 
value using the estimation of the left eigenvector associated 
with the zero eigenvalue of the Laplacian matrix. The 
authors of [32] built their optimization mechanism on the 
exploiting of the second-order neighbors. They focus their 
attention on both the continuous-time case, where the 
edges are chosen by solving a convex optimization prob-
lem formed by utilizing the convex relaxation method, and 
the discrete-time case, when the edges are chosen using the 

brute force method. In [33], an optimization mechanism is 
presented that exploits the prediction of the future value of 
the inner states. This technique is based on the estimation 
of the states for the next iterations in terms of the values of 
the inner states from the previous iterations. The authors of 
[34] introduce IACA, which is a two-layer improved con-
sensus algorithm of a multi-agent system. The authors 
propose a new distributed cost optimization method for 
loading shedding of an islanded microgrid considering 
cost. The technique solves distributed cost optimization of 
load shedding by exploiting the synchronization processing 
of IACA in the layer 2. The authors of [35] present 
an optimization mechanism minimizing the negative effects 
caused by a random packet loss. It is based on keeping 
track of the changes in the state variable, which the neigh-
bors influence causes.  

The papers [36–38] focus on the Maximum Degree 
weight model, which is a modification of the Constant 
weight model, and its applications. The Constant weight 
model is characterized by the parameter ε, which affects 
the convergence rate as well as the interval of the conver-
gence. The higher value it takes, the faster the algorithm is. 
However, a too high value can cause the divergence of the 
algorithm. The divergence is a type of a failure when the 
convergence is not reached. Instead of it, the nodes diverge 
to infinite large values [39]. This error poses a serious 
problem that stunts a whole network [39]. The Maximum 
Degree weight model is based on the setting of the param-
eter ε to the value equaled to the reciprocal of the number 
of the neighbors of the best-connected node in a network. 
The initial configuration requires the knowledge about this 
value and therefore, it is necessary to implement a supple-
mentary mechanism to determine it [19]. 

In [18], [40], the Best Constant weight model is dis-
cussed. Its optimized version is based on the utilization of 
the knowledge about the second smallest and the largest 
eigenvalue of the Laplacian matrix [18]. To compose it, it 
is necessary to know the information about the complete 
network topology. Thus, this weight model requires a par-
ticular centralization for its optimization. 

3. Modeling of Average Consensus 
Algorithm in WSNs 
In Sec. 3.1, we introduce the used mathematical 

model of the WSNs executing the average consensus algo-
rithm and the main features of this algorithm. In Sec. 3.2, 
we discuss and mathematically describe the concurrent 
weight models of average consensus with which our opti-
mized weight model is compared.   

3.1 Used Mathematical Model 

In order to model the WSNs, a mathematical tool de-
fined within the spectral graph theory is used [41], [42]. 
A WSN is considered to be an indirect finite graph defined 
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as G = (V,E). The set V is formed by all the vertexes, 
which are representatives of the particular nodes. Each 
node is labeled by the unique identity number vi. We as-
sume that the nodes are labeled with the numbers 1, 2,...,N, 
where N is the size of a network and therefore |V| = N. The 
mutual connectivity between the nodes is indicated by the 
existence of an edge. The set E⊂VxV consists of all the 
edges present in a graph. The edge is labeled as (vi,vj) or eij. 
We assume the range homogeneity of the nodes and there-
fore the following statement holds:  

 EE  jiij ee .  (1) 

There are several tools to describe a network topology 
within the spectral graph theory. One of them is the Lapla-
cian matrix for a description of the mutual connectivity 
among the nodes. It is a square symmetric matrix defined 
for all the indirect graphs as follows [43]:  
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Here, di is the degree of a vertex vi and so, the number 
of the corresponding node’s neighbors. Except for the 
mutual connectivity, the Laplacian matrix provides other 
useful information about the topology. Let us focus on the 
following sentence [44]: 

Lemma 1: Let G = (V, E) be a graph and let 
0 = µ1(L) ≤ µ2(L) ≤ µ3(L) ≤……≤ µN(L) be the ascen-
dingly-ordered eigenvalues of the Laplacian matrix of 
this graph. Then, G is not connected if µ2(L) = 0. 

According to Lemma 1, only the networks with the 
Laplacian matrix whose second smallest eigenvalue is not 
equaled to 0 are connected. In the case when µ2(L) equals 
0, the average consensus algorithm does not estimate the 
average from the values of all the nodes but estimates the 
set of the local averages in each connected subpart of 
a graph. Therefore, we assume only topologies whose 
second smallest eigenvalue of the Laplacian matrix is not 
equaled to 0. The knowledge about the exact value of 
µ2(L) and µN(L) is necessary for the optimized initial con-
figuration of the Best Constant weight model [26]. A con-
figuration of this model with a smaller positive value 
ensures the convergence but the execution of the algorithm 
is slower [18]. 

As mentioned above, the average consensus algorithm 
is an iterative distributed algorithm based on a mutual 
exchange of the current states among the nodes. The algo-
rithm is modeled by the difference equation defined as 
follows [45]:  
 )()1( kk xWx  .  (3) 

Here, W ⊂ L is a weight matrix of the algorithm and 
the time-variant vector x(k) ∈ RN  1 gathers all the inner 
states at kth iteration. We assume that the initial states are 
labeled as k = 1. The elements of W depend on the used 
weight model. This matrix also provides useful information 

about the network topology. The following lemma says 
about the connectivity of the topology [44]: 

Lemma 2: Let G = (V, E) be a graph and let 
1 = λ1(W) ≥ λ2(W) ≥ λ3(W) ≥……≥ λN(W) ≥ –1 be the 
descendingly-ordered eigenvalues of the weight matrix. 
Then, G is not connected if max{λ2 (W),–λN (W)} = 1. 

Within the spectral theory, it is defined that the value 
max{λ2(W), –λN(W)} equals the spectral radius ρ of the 
matrix determined as the difference between the matrix W 
and matrix defined as 1/N·1×1T [46]. Thus, in terms of the 
previous statement, we can write as follows:  

 T
2

1
( ) max{ ( ), ( )}NN

      W 1 1 W W .  (4) 

Let us focus on the features of the weight matrix W. 
According to [47], the weight matrix W is required to hold 
the following conditions:  

 11W  ,  (5) 

 TT 1W1  , (6) 

 T1
( ) 1

N
    W 1 1 .  (7) 

Here, the vector 1 is a column vector whose all ele-
ments are equaled to 1 (its size is implicitly assessable 
from the previous context). Fulfilling the formula (7) en-
sures the convergence of the average consensus algorithm, 
meanwhile, the formulae (5) and (6) imply that the weight 
matrix is doubly stochastic (sometimes, labeled as bi-
stochastic) and determines the convergence point [47]. 
These two formulas also implicate the following statement: 

 TWW  .  (8) 

Within our analysis, we use also another descriptive 
tool defined within the spectral graph theory. It is called 
the adjacency matrix A ∈ {0, 1}N  N and contains the in-
formation about the mutual connectivity between the pairs 
of the nodes. It is a diagonally symmetric matrix of 
a square shape for all the indirect graphs. The direct con-
nection (i.e. the existence of an edge) is indicated by the 
presence of 1 in the corresponding position. Thus, the 
presence of 0 is an indicator that two nodes are not directly 
connected to one another. Mathematically, the adjacency 
matrix is defined as follows [48]:     

 1, if ( , )
[ ]

0, otherwise
i j

ij

v v
A


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

E   (9) 

Another useful tool is the identity matrix I ∈ {0,1}N  N 

defined as (10) [49]. In literature, also the other notation 
I = diag(1,1,….1) can be found.   

 1, if 
[ ]

0, otherwiseij

i j
I


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

  (10) 

Usually, a lower index is allocated to indicate its size 
(the label IN indicates that the underlying matrix has the 
size equaled to the number of the size a network).  
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As mentioned earlier, the average consensus algo-
rithm is an iterative algorithm (regardless of the used 
weight model) executed in such a way that the nodes con-
verge to the value determined as the average calculated 
from all the initial values [50]. Therefore, this behavior can 
be described as follows [45]:  

 
T

1lim ( ) lim (1) (1)k

k k
k
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
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
   

1 1
x W x x .  (11) 

Only the existence of this limit ensures the conver-
gence of the average consensus algorithm. As mentioned, it 
is achieved by using such a weight matrix that holds the 
conditions (5-7) [46].   

As the algorithm convergences to the value in the in-
finite [51], it is necessary to implement a mechanism indi-
cating the consensus. We use the mechanism defined as 
follows:  
  )}(min{)}(max{ kk xx .  (12) 

Here, the parameter δ determines the precision. Its 
higher values ensure a higher precision at the cost of 
a slower convergence rate. In our experiments, we assume 
that its value is equaled to 0.0001.  

3.2 Concurrent Weight Models 

As mentioned, we compare our optimized weight 
model with other three concurrent ones. In order to distin-
guish these models from each other, the weight matrix of 
a particular model has an upper index with the abbreviated 
name of the model. We use the following abbreviations: 

 Metropolis-Hasting weight model – MH 

 Maximum Degree weight model – MD 

 Best Constant weight model – BC 

 Biphasically configured Metropolis-Hasting weight 
model – BMH 

The first examined model is the Metropolis-Hasting 
weight model whose weight matrix is defined as follows 
[19], [22-25]:  
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As mentioned, our contribution optimizes this model. 

The second model is the Maximum Degree weight 
model. It is derived from the Constant weight model in 
such a way that the weighting parameter ε is set to the 
value equaling the reciprocal of the degree of the best-con-
nected node. Therefore, it is defined as follows [36–38]:  
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Within the initial configuration phase, this model re-
quires each node in a network to be aware of the number of 
the neighbors of the best-connected node. In order to get 
this information in a distributed manner, it is necessary to 
implement a complementary algorithm [19]. 

The last examined model is called the Best Constant 
weight model. We assume its optimized variant even 
though it requires the information about the second small-
est and the largest eigenvalue of the Laplacian matrix. It is 
defined as follows [40]:  
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2
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0, otherwise
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4. Biphasically Configured Metropolis-
Hasting Weight Model 
In this section, we introduce our Biphasically config-

ured Metropolis-Hasting weight model. In Sec. 4.1, we 
explain the model mechanics and provide the mathematical 
description. In Sec. 4.2, the convergence conditions are 
presented. 

4.1 Principle of Biphasically Configured 
Metropolis-Hasting Weight Model  

This subsection focuses on an introduction of the 
main features of our optimized weight model. As men-
tioned above, it is called the Biphasically configured Me-
tropolis-Hasting weight model and is derived from (as its 
name implies) the Metropolis-Hasting weight model. As 
already discussed, the Metropolis-Hasting model is appro-
priate for the implementation into real-life applications 
thanks to its simplified demands for the initial configura-
tion. In order to correctly fulfill its functionality, each node 
has to be aware of the number of its neighbors as well as 
the number of the neighbors of the adjacent nodes. Thus, 
only locally available information is necessary for the cor-
rect initial configuration. There are several approaches to 
obtain this information (centralized one, distributed one 
assuming a phase when this information is distributed in 
the adjacent area, a manual configuration etc.). The most 
appropriate solution depends on a particular application. 

Our optimized weight model is based on rephrasing 
the initial configuration process of the Metropolis-Hasting 
weight model into two phases. The first phase is identical 
to the default configuration of the Metropolis-Hasting 
weight model. The other phase consists of a recalculation 
of the weights allocated to the incoming values from the 
adjacent nodes. Within this phase, each node determines 
when to do this recalculation according to its unique iden-
tity. Thus, each node has to be additionally aware of the 
diagonal value of the weight matrix WBMH corresponding 
to all its neighbors – this value is locally available. The 
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recalculation of WBMH has to be executed sequentially, i.e. 
the node with the identity number equaled to 1 initiates the 
whole process, updates the matrix WBMH (the active node 
updates its inner updating rules as well as informs its 
neighbors about new weights) and only then the node 2 can 
start the recalculation. Thus, we assume the variability of 
the weight matrix WBMH(a) during the second phase of the 
configuration process. The parameter a takes the values 
from 1, 2,…,N and labels the active node (i.e. the one that 
is allowed to make the recalculation) as well as the round 
of the recalculation process (we assume that WBMH 
(0) = WMH and each label of the round corresponds to the 
unique number of a node). Thus, we label the node cur-
rently allowed to make the update as va. The length of the 
recalculation process is determined by the size of a net-
work (i.e. the process lasts N rounds).  

Let us define the set Νa gathering all the nodes from 
the adjacent area of va. So, we can write as follows: 

  1][   aiia AvΝ .  (16) 

At the round when a node va is allowed to update 
WBMH, it has to be aware of the current value in the diago-
nal corresponding to it and all its neighbors. These values 
represent the weights of the current inner state. Subse-
quently, va calculates the growth coefficient defined as 
follows:   
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The choice of the minimal value from the weight of 
the inner state of the active node and the sum of weights of 
the inner states of its neighbors ensures that the growth 
coefficient is never greater than 1. Thus, the convergence 
of the weight model regardless of the underlying topology 
(see Sec. 4.2) is guaranteed.  

Subsequently, the node currently making the recalcu-
lation decreases the weight of its inner state to the minimal 
possible value (the ideal scenario is when this weight is 
equaled to 0 after finishing this procedure) and distributes 
this value among the neighbors in terms of the weights of 
the inner states of these nodes. From the central view, this 
procedure is described according to the following rules: 

BMH BMH BMH[ ( )] [ ( 1)] ( ) [ ( 1)]

for .
ia ia a ii

i a

W a W a v W a

v
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 Ν

(18) 

This formula describes an increase of the weights of 
the incoming values of the adjacent nodes. Their values are 
increased with the value equaled to the diagonal value of 
the adjacent nodes (i.e. the weight of their inner states) 
weighted by the growth coefficient. The Metropolis-Hast-
ing weight model assumes a doubly stochastic matrix (i.e. 
an edge eij is allocated only one weight – the incoming 
state of va and vi is weighted with the same value) and 
therefore, it is necessary to preserve this condition: 

BMH BMH BMH[ ( )] [ ( 1)] ( ) [ ( 1)]

for .
ai ai a ii

i a

W a W a v W a

v

    
 Ν

 (19) 

After all the neighbors are allocated a new weight, the 
nodes with an increased weight have to decrease their 
diagonal value by the increase of their incoming value 
weight. Otherwise, the convergence conditions may not be 
preserved. From the central view, it is possible to describe 
the previous procedure using tools defined within the 
spectral graph theory as follows: 

BMH BMH

1,
[ ( )] 1 [ ( )] , for , .

N

ii ij i a aj j i
W a W a v v

 
   Ν  (20) 

After all the nodes execute the recalculation described 
above (this procedure is repeated for all N nodes), the 
weight matrix for Biphasically configured Metropolis-
Hasting weight model is completed and the average con-
sensus algorithm can be executed according to (3).  

4.2 Convergence Proof 

In the following subsection, we provide the sufficient 
conditions for the convergence of average consensus algo-
rithm. The average consensus algorithm whose weights are 
symmetric can be described using a weighted graph [52]. 
The non-zero elements of its adjacency matrix AWG are 
allocated a strictly positive weight [AWG]ij = wij. Subse-
quently, it is possible to derive the weighted Laplacian 
matrix as [52]: 

 WG WG WGdiag{ } L d A .  (21) 

Here, the dWG is a weighted degree vector formed by 
the value of the degrees of the nodes. The weighted degree 
vector is defined as follows [52]:  

 1Ad  WGWG .  (22) 

Firstly, we show that the weights of the Metropolis-
Hasting weight model (13) ensure the convergence of the 
algorithm regardless of the underlying topology. Within 
the spectral graph theory, it is defined [52] that  
W = I – LWG and therefore, W is doubly stochastic with an 
eigenvalue with the magnitude equaled to 1 and associated 
to the eigenvector with the values N–1/2. Furthermore, the 
matrix LWG is semidefinite and fulfills the following 
statement [52]:  

 WG( ) 1 ( ) for k k k   W L .  (23) 

Thus, the convergence condition (7) can be reformu-
lated as follows [52]: 

 2)( WG L ,  

 Multiplicity of the zero eigenvalue of LWG has 
multiplicity one. 

The second statement is satisfied for all the connected 
graphs. It can be confirmed using the quadratic form de-
fined as follows [52]:  

 
2T WG ( )

ij

ij i j
e

w v v


    
E

v L v .  (24) 
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The vector v is an eigenvector associated to the 
weighted Laplacian matrix LWG. As seen, the quadratic 
form is equaled to the zero value if and only if vi = vj. This 
statement is valid for the weights of the positive values.  
This requirement is met by the unique normalized vector 
v = N–1/2. Let us focus on the first constraint. As (21) and 
(22) hold, the eigenvalues λWG satisfy the following condi-
tion according to Gershgorin circle theorem, which is 
defined as follows [53]: 

 WGL ii dd  WGWG  )( .  (25) 

The parameter di
WG is the weighted degree of the node 

i defined as: 

 



N

j
iji wd

1

WG .   (26) 

The value also presents the ith row of the vector di
WG.  

In particular, the following statement is valid [52]:    

 WG WG( ) 2 id  L .  (27) 

Thus, di
WG ≤ 1 is a sufficient condition for the average 

consensus algorithm to convergence for all i [52] (when 
a graph is neither bipartite nor regular). Since it is improba-
ble that the graph describing a WSN is bipartite regular 
[52], we do not deal with these critical graph topologies. 
From (13), it is clear that this condition holds for each 
topology. Thanks to the expression in the numerator in 
(17), our recalculation always ensures di

WG ≤ 1. It secures 
that the sum in both the rows and the columns does not 
change despite the recalculation. This guarantees the con-
vergence conditions for our mechanism.  

Let us analyze the functionality of our optimized 
weight model. The minimal value from two parameters in 
the numerator of (17) is chosen to preserve the 
convergence conditions. The value of [WBMH(a – 1)]aa 
poses the maximal possible value with which va can 
decrease the weight of its inner state and distribute it 
among its adjacent nodes. A decrease with a value greater 
than [WBMH(a – 1)]aa always causes di

WG ≤ 1 not to hold. 
Thus, in such a scenario, the convergence conditions are 
not fulfilled. Regarding all the positive values smaller than 
[WBMH(a – 1)]aa: the convergence conditions are preserved 
but the optimization is less significant. Now, let us focus 
on Σj[W

BMH(a – 1)jj·[A]aj. There can be a scenario when va 

can increase the weights of the incoming values of its 
adjacent nodes with a value that causes some of its 
neighbors to achieve a negative value in the diagonal after 
(20). In this scenario, the growth coefficient χ is greater 
than 1, which results in di

WG > 1. Therefore, parameter 
Σj[W

BMH(a – 1)jj·[A]aj ensures that the growth coefficient 
never exceed the value 1 and so, the convergence 
conditions are always preserved. The procedure in (20) 
must be executed in order to keep the weight matrix W 
doubly-stochastic. This step secures that (5) and (6) always 
hold. 

5. Numerical Experiments and 
Discussion 
In this section, we present the results of the numerical 

experiments executed in Matlab R2015a. All the used 
software was designed by the authors of this paper. In our 
experiments, three sets of networks are assumed with ran-
domly generated topologies. We assume weakly, averagely 
and strongly connected networks. Each set consists of 10 
unique topologies with the size of 200 nodes. Due to the 
limited range of the paper, only one representative of these 
sets is shown in Fig. 1, Fig. 2 and Fig. 3 respectively. The 
networks were generated as follows: each free position 
within the working area of a square shape was allocated the 
probability equaled to the reciprocal of the number of free 
positions. Thus, the choice of the position where a node 
was placed had a uniform distribution. Subsequently, the 
nodes situated in the transmission range of each node were 
labeled as its neighbors (i.e. there is an edge between 
them). In order to ensure a various average connectivity, 
the transmission range was changed.  

 
Fig. 1. Example representative of strongly connected 

topologies  

 

Fig. 2. Example representative of averagely connected 
topologies 
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Fig. 3. Example representative of weakly connected 
topologies. 

In order to evaluate the achieved optimization, we 
compare our mechanism with other discussed weight 
models. We compare it with the Metropolis-Hasting weight 
model, the Maximum-degree weight model, and the Best 
Constant weight model. These models were chosen be-
cause all of them are classified as constant weight models 
[25], frequently-used and discussed in other papers and 
optimize average consensus with a similar principle as our 
mechanism. 

5.1 Estimation of Average Value 

Within the first experiment, we examine the conver-
gence rates and the number of the required messages. In 
this section, we draw our attention to the average estima-
tion, compare our mechanism with the concurrent weight 
models and show the difference in the number of the mes-
sages that are necessary for the average consensus algo-
rithm to achieve the consensus for each model.  

As the initial configuration of our optimized weight 
model depends on the placement of the identity numbers, 
we use randperm, which is a built-in function in Matlab to 
generate a vector with a random position of the numbers. 
Therefore, in order to ensure a higher credibility of our 
conclusions, our mechanism was executed 100 times (each 
execution is characterized by a shuffled set of the identity 
numbers) in each topology. 

In Tab. 1, our optimized weight model is compared 
with three other examined weight models. A positive value 
means an improvement ensured by our mechanism, mean-
while, a negative value indicates that a concurrent model 
achieves a faster convergence rate. We label these scenar-
ios as positive, respectively, negative optimization. In 
Tab. 1, we have shown the average (calculated as the aver-
age value of the optimization of all ten networks within 
one set of the networks), the maximal (the optimization 
achieved in the network where the algorithm is optimized 
most significantly) and the minimal optimization (the op-
timization achieved in the network where the algorithm is 

optimized worse or even negatively) as well as the range of 
the optimization (all are expressed in %). Within this com-
parison, the average calculated from 100 convergence rates 
obtained within these executions is chosen as a representa-
tive of 100 executions of the Biphasically configured 
Metropolis-Hasting weight model. The complete results are 
shown in Appendix A. The column labeled as CR contains 
the convergence rates expressed as the number of the itera-
tions. The column OPT [%] is formed by the relative opti-
mizations [%] of our mechanism compared with the con-
current weight models. 

We can see from the results that our optimized weight 
model achieves a faster average convergence rate com-
pared with all the concurrent models in all the sets of the 
networks. However, the Best Constant weight model 
achieves a faster rate in one of ten strongly connected to-
pologies. The optimization is the most significant com-
pared with the Maximum Degree weight model. Its average 
value ranges from 40.08% to 54.60%. The optimization of 
the Metropolis-Hasting model is from the range 8.19% to 
15.45%. In this case, the most important fact is that our 
optimized weight model achieves a faster convergence rate 
in all the networks. The Best Constant weight model is 
optimized in the range 14.24% to 23.25%. Furthermore, we 
can see that (for all the weight models) the less connected 
the networks are, the higher average optimization our 
mechanism ensures. Let us focus on the range of the opti-
mization (calculated as the difference between the maximal 
and the minimal optimization within one set). We can ob-
serve that this parameter achieves the highest value for the 
Best Constant weight model in all the sets. In Appendix A, 
we have also shown the number of the messages necessary 
for the average consensus algorithm to be completed. Since 
this parameter is closely related to the convergence rate, we 
do not provide a separate analysis. 

Consequently, we analyze the effect of a random 
shuffle of the identity numbers on the convergence rates. 
 

Convergence rate optimization of average estimation [%] in 
Weakly connected networks 

 MD MH BC 
Average 54.60 % 15.45 % 23.25 % 

Maximum 64.60 % 21.28 % 35.95 % 
Minimum 47.38 % 12.65 % 8.77 % 

Range 17.22 % 8.63 % 27.18 % 
Convergence rate optimization of average estimation [%] in 

Averagely connected networks 
 MD MH BC 

Average 46.84 % 11.15 % 15.36 % 
Maximum 60.04 % 15.64 % 36.21 % 
Minimum 39.71 % 7.80 % 1.42 % 

Range 20.33 % 7.84 % 34.79 % 
Convergence rate optimization of average estimation [%] in 

Strongly connected networks 
 MD MH BC 

Average 40.08 % 8.19 % 14.24 % 
Maximum 69.30 % 16.93 % 49.29 % 
Minimum 31.47 % 4.29 % -3.42 % 

Range 37.83 % 12.64 % 52.62 % 

Tab. 1. Comparison of BMH with others – average est. 
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Fig. 4. Percentage range of convergence rates caused by 
shuffle of identity numbers (average est.). 

The position of the identity numbers can affect only our 
optimized weight model – the other ones do not assume 
this value during the configuration process. In Fig. 4, we 
have depicted the range of the convergence rates calculated 
from the convergence rates obtained within 100 reparations 
(we depict the value of the ratio: the range/the average 
convergence rate expressed in % because the convergence 
rates differ from each other in different topologies).  

We can see that the range does not exceed 9 % of the 
average value in any case. This primarily affects the con-
vergence rate in the weakly connected topologies. In the 
averagely and the strongly connected networks, its impact 
is negligible except for one topology of a strong connec-
tivity. 

In the following part, we examine whether this shuffle 
can cause that there is an execution whose convergence 
rate is slower than the convergence rate of one of the con-
current models. Thus, we depict the slowest scenario 
within the Biphasically configured Metropolis-Hasting 
weight model with the fastest concurrent model in order to 
show that a shuffle does not cause a negative optimization 
when the average optimization is positive. The mentioned 
comparison for each set of the networks is depicted in 
Fig. 5 (weakly connected networks), Fig. 6 (averagely 
connected networks) and Fig. 7 (strongly connected net-
works).  

The white column represents the slowest convergence 
rate within the Biphasically configured Metropolis-Hasting 
weight model, while, the black one represents the fastest 
concurrent weight model. 

We can see that a positive optimization is preserved 
in all the cases when a positive average optimization is. 
Thus, a random allocation of the identity numbers has only 
a minimal impact on the convergence rate.  
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Fig. 5. Comparison of slowest scenario of BMH with fastest 

concurrent model – weak connectivity – average est.  

 
Fig. 6. Comparison of slowest scenario of BMH with fastest 

concurrent model – average connectivity – average est. 
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Fig. 7. Comparison of slowest scenario of BMH with fastest 

concurrent model – strong connectivity – average est. 
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5.2 Estimation of the Network Size: 
Convergence Rate Optimization 

The second experiment is focused on the network size 
estimation. We examine the optimization ensured by our 
optimized weight model in the same topologies used in the 
previous experiment. In the first part of this section, an 
examination of the convergence rate optimization achieved 
by our optimized weight model is presented. As discussed 
in Sec. 1, one of the aspects by which the network size 
estimation differs from the average estimation is the ne-
cessity of the choice of the leader. Thus, in order to ensure 
a generality of the simulation results, the average consen-
sus was repeated 200 times (i.e. executions use different 
leaders – 200 times = 200 leaders). Consequently, the con-
vergence rates of the Maximum Degree, the Metropolis-
Hasting and the Best Constant were examined. Within our 
first analysis, we choose the average of these values as 
a representative of the convergence rates. When the Bipha-
sically configured Metropolis-Hasting was examined, the 
experiment was repeated 200 times for each shuffle. There-
fore, within one topology, we made 200·100 = 20 000 
executions. Here, the average was again chosen as a repre-
sentative. In Tab. 2, we have shown the optimization of our 
optimized weight model compared with the concurrent 
ones. In Appendix B, the complete results are depicted. As 
in the previous experiment, also the number of the mes-
sages is depicted in Appendix B. We can see from the 
results that our mechanism again achieves a positive aver-
age optimization in all the cases. However, the Best Con-
stant achieves a faster convergence rate in two strongly 
connected networks. The Maximum Degree (the averages 
are in the range 41.80% – 55.05%) and the Metropolis-
Hasting (within the range 7.87% – 16.62%) are optimized 
similarly as in the previous experiment (in the strongly 
connected networks, the MD achieves a small positive 
deviation) and with the same character compared with the 
average estimation. Like in the first experiment, the Metro- 
polis-Hasting weight model is positively optimized for 
each network. Regarding the Best Constant weight model, 
the optimization is not as significant for the averagely and 
strongly connected networks as in the previous experiment 
(8.19% – 23.50%). The worst average results are obtained 
for the averagely connected networks in contrast to the first 
experiment, where a higher connectivity results in a higher 
optimization. Like in the first experiment, the optimization 
range is the widest for this model.   

In the next part, we examine the impact of a random 
shuffle on the range of the convergence rates like in the 
first experiment. The character of this phenomenon is 
similar to the one from the previous experiment but the 
values for some networks are higher (see Fig. 8). 

Furthermore, in order to show that there is no slower 
rate (when the average positive optimization is achieved) 
than the fastest concurrent model, Fig. 9 (weak connectiv-
ity), Fig. 10 (average connectivity) and Fig. 11 (strong 
connectivity) are shown. 
 

Convergence rate optimization of network size estimation [%] 
in Weakly connected networks 

 MD MH BC 
Average 55.05 16.62 23.50 

Maximum 64.46 20.86 36.47 
Minimum 47.75 13.95 13.94 

Range 16.71 6.91 22.53 
Convergence rate optimization of network size estimation [%] 

in Averagely connected networks 
 MD MH BC 

Average 45.99 10.56 8.19 
Maximum 60.00 13.21 32.14 
Minimum 36.90 8.29 0.78 

Range 23.10 4.92 31.36 
Convergence rate optimization of network size estimation [%] 

in Strongly connected networks 
 MD MH BC 

Average 41.80 7.87 9.23 
Maximum 68.16 15.21 47.41 
Minimum 30.76 5.25 -11.10 

Range 37.40 9.96 58.51 

Tab. 2. Comparison of BMH with others – network size est. 

 
Fig. 8. Percentage range of convergence rates caused by 

shuffle of identity numbers (network size est.). 
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Fig. 9. Comparison of slowest scenario of BMH with fastest 
concurrent model – weak connectivity – size est. 
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Fig. 10. Comparison of slowest scenario of BMH with fastest 
concurrent model – average connectivity – size est. 

 

Fig. 11. Comparison of slowest scenario of BMH with fastest 
concurrent model – strong connectivity – size est. 

5.3 Estimation of the Network Size: 
Impact of the Leader Choice 

In the last experiment, it is examined how the choice 
of the leader affects the convergence rates of the algorithm. 
We choose the range of the obtained convergence rates as 
a quality indicator of this aspect. The ideal scenario would 
be the range equaled to 0. However, this state is unreacha-
ble for complicated structures and therefore, we compare 
the value of the range of our optimized weight model with 
the concurrent weight models. Its smaller value means that 
the choice of the leader has a smaller impact on the con-
vergence rate – which is the desired outcome. The experi-
ment is again executed on our optimized weight model, the 
Maximum Degree weight model, the Metropolis-Hasting 
weight model, and the Best Constant weight model. 

In Tab. 3 and Appendix C, we show the optimization 
of our mechanism for all the topologies. We can see that 
our optimized weight model achieves a positive optimiza-
tion for all 30 networks. 

 

Convergence rate optimization of network size estimation [%] 
in Weakly connected networks 

 MD MH BC 
Average 53.08 % 15.41 % 52.02 % 

Maximum 65.26 % 28.55 % 63.80 % 
Minimum 38.19 % 4.84 % 37.66 % 

Range 27.07 % 23.71 % 26.14 % 
Convergence rate optimization of network size estimation [%] 

in Averagely connected networks 
 MD MH BC 

Average 45.61 % 8.51 % 46.80 % 
Maximum 68.08 % 16.28 % 66.57 % 
Minimum 25.21 % 4.00 % 15.87 % 

Range 42.87 % 12.28 % 50.70 % 
Convergence rate optimization of network size estimation [%] 

in Strongly connected networks 
 MD MH BC 

Average 52.55 % 11.92 % 51.36 % 
Maximum 83.19 % 30.79 % 66.74 % 
Minimum 22.72 % 1.64 % 19.47 % 

Range 60.47 % 29.15 % 47.27 % 

Tab. 3. Comparison of BMH with others – choice of the leader. 
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Fig. 12. Biphasically configured Metropolis-Hasting weight 

model – range of convergence rates. 
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Fig. 13. Metropolis-Hasting weight model – range of conver-

gence rates. 
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Fig. 14. Maximum Degree weight model – range of conver-

gence rates. 

 
Fig. 15. Best Constant weight model – range of convergence 

rates. 

In Fig. 12 (Biphasically configured Metropolis-Hast-
ing weight model), Fig. 13 (Metropolis-Hasting weight 
model), Fig. 14 (Maximum Degree weight model) and 
Fig. 15 (Best Constant weight model), we have shown the 
results of one of the examined topologies in order to illus-
trate this problem. We have depicted the convergence rates 
for each node and highlighted the range calculated as the 
difference between the slowest and the fastest convergence 
rate. We can see from the figures that our optimized weight 
model achieves the smallest range and therefore, it is the 
best also in this aspect for the examined topology. Re-
garding the results from 30 networks, the best optimization 
is achieved in the weakly connected networks, meanwhile, 
the worst one is observed in the network of the average 
connectivity regardless of the examined model. The Maxi-
mum Degree weight model is optimized in the range 
(45.61% – 53.08%), the Metropolis-Hasting weight model 
in the range (8.51% – 15.41%), and the Best Constant 
weight model in (46.80% – 52.02%). Thus, as seen from 
the results of all the executed experiments, the best optimi-
zation within all three optimized aspects is achieved for the 
optimization of the impact of the choice of the leader. 

6. Conclusion 
In this paper, we present an optimized version of the 

Metropolis-Hasting weight model called the Biphasically 
configured Metropolis-Hasting weight model. We exam-
ined the achieved optimization compared with other con-
stant concurrent weight models (Maximum degree weight 
model, Metropolis-Hasting weight model, Best Constant 
weight model). In our analysis, we focused on the estima-
tion of the average value, the estimation of the network 
size and the impact of the choice of the leader. The im-
provement ensured by our optimized weight model was 
demonstrated in randomly generated networks with a weak, 
an average, and a strong connectivity. According to the 
depicted results, the optimization achieved by our opti-
mized weight model poses a significant improvement of 
the computation process of the average consensus 
algorithm. 
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Appendix A 
The convergence rates of the average estimation 

  Maximum Degree Metropolis-Hasting Best Constant BMH  
  CR OPT [%] CR / OPT [%] CR / OPT [%] CR 

 Network #1 6928 53.18 3713 12.65 4366 25.71 3243.47 
 Network #2 4259 54.20 2288 14.75 2431 19.76 1950.56 
 Network #3 5128 55.98 2591 12.88 2775 18.66 2257.28 
 Network #4 9554 55.98 4975 15.47 6268 32.91 4205.35 

Weakly connected 
Network #5 7011 53.39 3798 13.95 4502 27.41 3268.15 
Network #6 6172 47.38 3794 14.40 3560 8.77 3247.65 

 Network #7 13059 60.23 6597 21.28 7854 33.88 5193.18 
 Network #8 2881 49.93 1701 15.20 1643 12.20 1442.52 
 Network #9 6837 64.60 3011 19.61 3779 35.95 2420.40 
 Network #10 3335 51.09 1903 14.29 1970 17.20 1631.07 
 Network #1 1064 42.29 680 9.70 706 13.03 614.02 
 Network #2 1370 45.11 845 11.01 842 10.69 751.97 
 Network #3 1226 47.64 700 8.29 869 26.13 641.95 
 Network #4 2085 52.94 1097 10.56 1114 11.92 981.20 

Averagely connected 
Network #5 1181 44.02 727 9.06 675 2.05 661.14 
Network #6 2864 60.04 1315 12.98 1794 36.21 1144.37 

 Network #7 1309 46.37 824 14.80 808 13.11 702.06 
 Network #8 1568 50.02 929 15.64 1014 22.71 783.75 
 Network #9 951 39.71 649 11.66 685 16.30 573.35 
 Network #10 979 40.29 634 7.80 593 1.42 584.55 
 Network #1 520 35.56 380 11.82 629 46.72 335.10 
 Network #2 1870 69.30 691 16.93 1130 49.20 574.01 
 Network #3 412 31.47 297 4.9400 293 3.64 282.33 
 Network #4 610 46.06 355 7.3100 389 15.41 329.05 

Strongly connected 
Network #5 497 33.20 352 5.6800 336 1.19 332.00 
Network #6 622 34.82 435 6.8000 448 9.51 405.40 

 Network #7 492 35.41 332 4.2900 351 9.47 317.77 
 Network #8 620 42.09 394 8.8800 413 13.07 359,03 
 Network #9 502 32.84 363 7.1200 326 -3.42 337.15 
 Network #10 607 40.03 396 8.0800 392 7.15 363.99 

 

The number of the messages necessary for the average estimation 
  Maximum Degree Metropolis-Hasting Best Constant BMH 
  MN MN  MN  MN 

 Network #1 1378473 738688 868635 645251.53 
 Network #2 847342 455113 483570 387962.44 
 Network #3 1020273 515410 552026 448999.72 
 Network #4 1901047 989826 1247133 836665.65 

Weakly connected 
Network #5 1378473 738688 868635 644988.85 
Network #6 1228029 754807 708241 646083.35 

 Network #7 2598542 1312604 1562747 1033243.82 
 Network #8 573120 338300 326758 286862.48 
 Network #9 1360364 598990 751822 481460.60 
 Network #10 663466 378498 391831 324383.93 
 Network #1 211537 135121 140295 121990.98 
 Network #2 272431 167956 167359 149443.03 
 Network #3 243775 139101 172732 127549.05 
 Network #4 414716 218104 221487 195059.80 

Averagely connected 
Network #5 234820 144474 134126 131367.86 
Network #6 569737 261486 356807 227530.63 

 Network #7 260292 163777 160593 139510.94 
 Network #8 311833 184672 201587 155767.25 
 Network #9 189050 128952 136116 113897.65 
 Network #10 194622 125967 117808 116126.45 
 Network #1 103480 75620 125171 66485.90 
 Network #2 372130 137509 224870 114028.99 
 Network #3 81988 59103 58307 55984.67 
 Network #4 121390 70645 77411 65281.95 

Strongly connected 
Network #5 98903 70048 66864 65869.00 
Network #6 123778 86565 89152 80475.60 

 Network #7 97908 66068 69849 63037.23 
 Network #8 123380 78406 82187 71247.97 
 Network #9 99898 72237 64874 66893.85 
 Network #10 120793 78804 78008 72235.01 
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Appendix B 
The convergence rates of the network size estimation 

  Maximum Degree Metropolis-Hasting Best Constant BMH 
  CR OPT [%] CR OPT [%] CR OPT [%] CR 

 Network #1 2930.50 56.19 1553.11 17.35 1733.61 25.95 1283.72 
 Network #2 1733.00 54.28 928.87 14.70 955.4 17.08 792.30 
 Network #3 2399.74 56.36 1250.58 16.26 1334.13 21.50 1047.27 
 Network #4 3435.97 56.15 1775.21 15.13 2159.40 30.23 1506.69 

Weakly connected 
Network #5 3104.41 56.44 1605.87 15.79 1812.49 25.39 1352.31 
Network #6 2278.28  47.75 1402.14 15.10 1383.30 13.94 1190.48 

 Network #7 4828.82 58.99 2502.52 20.86 3117.06 36.47 1980.42 
 Network #8 1206.68 49.27 740.11 17.29 726.44 15.73 612.15 
 Network #9 2788.35 64.46 1234.56 19.74 1516.88 34.67 990.91 
 Network #10 1498.38 50.58 860.51 13.95 861.25 14.03 740.43 
 Network #1 486.48 43.85 304.95 10.43 290.33 5.92 273.14 
 Network #2 563.86 44.62 350.46 10.90 314.70 0.78 312.26 
 Network #3 591.57 47.23 342.56 8.87 321.78 2.98 312.18 
 Network #4 815.70 51.73 439.52 10.41 475.28 17.15 393.76 

Averagely connected 
Network #5 481.54 45.82 288.13 9.44 273.42 4.57 260.92 
Network #6 1151.97 60.00 530.98 13.21 679.12 32.14 460.84 

 Network #7 562.69 42.26 365.90  11.20 341.12 4.75 324.91 
 Network #8 682.59 45.68 426.31 13.03 413.60 10.36 370.76 
 Network #9 444.69 36.90 311.02 9.78 286.20 1.96 280.60 
 Network #10 421.22 41.85 267.08 8.29 248.19 1.31 244.94 
 Network #1 339.23 53.51 175.28 10.02 231.73 31.94 157.72 
 Network #2 643.01 68.16 241.43 15.21 389.26 47.41 204.72 
 Network #3 208.51 36.87 138.93 5.25 136.07 3.26 131.64 
 Network #4 295.72 44.93 175.35 7.13 159.99 -1.78 162.84 

Strongly connected 
Network #5 240.14 32.02 172.34 5.27 167.13 2.32 163.25 
Network #6 284.81 39.61 183.94 6.49 174.17 1.25 172.00 

 Network #7 248.03 34.88 173.06  6.67 182.39 11.44 161.52 
 Network #8 279.66 40.23 182.12 8.21 177.24 5.69 167.16 
 Network #9 251.15 30.76 187.15 7.09 156.52  -11.1 173.89 
 Network #10 268.61 36.99 182.65 7.34 172.51 1.90 169.24 

 

The number of the messages necessary for the network size estimation 
  Maximum Degree Metropolis-Hasting Best Constant BMH 
  MN MN  MN  MN 

 Network #1 583169.50 309068.89 344988.39 255460.28 
 Network #2 344872.97 184845.13 190140.52 157667.70 
 Network #3 477548.26 248865.42 265491.87 208406.73 
 Network #4 683758.03 353266.79 429720.60 299831.31 

Weakly connected 
Network #5 617777.59 319568.13 360685.51 269109.69 
Network #6 453377.72 279025.86 275276.70 236905.52 

 Network #7 960935.18 498001.48 620294.94 394103.58 
 Network #8 240129.32 147281.89 144561.56 121817.85 
 Network #9 554881.65 245677.44 301859.12 197191.09 
 Network #10 298177.62 171241.49 171388.75 147345.57 
 Network #1 96809.52 60685.05 57775.67 54354.86 
 Network #2 112208.14 69741.54 62625.30 62139.74 
 Network #3 117722.43 68169.44 64034.22 62123.82 
 Network #4 162324.30 87464.48 94580.72 78358.24 

Averagely connected 
Network #5 95826.46 57337.87 54410.58 51923.08 
Network #6 229242.03 105665,02 135144.88 91707.16 

 Network #7 111975.31 72814.10 67882.88 64657.09 
 Network #8 135835.41 84835.69 82306.40 73781.24 
 Network #9 88493.31 61892.98 56953.80 55839.40 
 Network #10 83822.78 53148.92 49389.81 48743.06 
 Network #1 67506.77 34880.72 46114.27 31386.28 
 Network #2 127958.99 48044.57 77462.74 40739.28 
 Network #3 41493.49 27647.07 27077.93 26196.36 
 Network #4 58848.28 34894.65 31838.01 32405.16 

Strongly connected 
Network #5 47787.86 34295.66 33258.87 32486.75 
Network #6 56677.19 36604.06 34659.83 34228.00 

 Network #7 49357.97 34438.94 36295.61 32142.48 
 Network #8 55652.34 36241.88 35270.76 33264.84 
 Network #9 49978.85 37242.85 31147.48 34604.11 
 Network #10 53453.39 36347.35 34329.49 33678.76 
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Appendix C 
The range of the convergence rates caused by the change of the leader 

  Maximum Degree Metropolis-Hasting Best Constant BMH 
  CR OPT [%] CR OPT [%] CR OPT [%] CR 

 Network #1 2700 50.77 1574 15.54 2518 47.21 1329.34 
 Network #2 1441 54.44 767 14.40 1343 51.11 656.53 
 Network #3 1560 60.75 714 14.24 1638 62.62 612.36 
 Network #4 3637 58.69 1822 17.54 3255 53.84 1502.48 

Weakly connected 
Network #5 2814 49.48 1612 11.81 2625 45.84 1421.58 
Network #6 1949 40.85 1267 9.01 1874 38.48 1152.87 

 Network #7 4996 65.26 2429 28.55 4795 63.80 1735.61 
 Network #8 512 49.63 271 4.84 630 59.07 257.88 
 Network #9 2158 62.78 1028 21.86 2036 60.55 803.26 
 Network #10 937 38.19 692 16.31 929 37.66 579.16 
 Network #1 345 43.09 205 4.22 267 26.46 196.34 
 Network #2 261 34.31 181 5.28 348 50.74 171.44 
 Network #3 335 48.96 185 7.58 386 55.70 170.98 
 Network #4 522 56.52 253 10.28 486 53.29 226.99 

Averagely connected 
Network #5 379 57.87 176 9.28 273 41.51 159.67 
Network #6 863 68.08 329 16.28 824 66.57 275.44 

 Network #7 248 50.77 138 11.54 259 52.86 122.08 
 Network #8 239 25.21 199 10.17 444 59.74 178.76 
 Network #9 207 31.83 147 4.00 258 45.30 141.12 
 Network #10 289 39.45 187 6.42 208 15.87 175.00 
 Network #1 560 83.19  136 30.79 283 66.74 94.13 
 Network #2 834 74.68  293 27.93 615 65.67 211.16 
 Network #3 119 52.16  60 5.12 92 38.12 56.93 
 Network #4 141 51.09  75 8.05 158 56.35 68.96 

Strongly connected 
Network #5 863 68.08  329 16.28 824 66.57 275.44  
Network #6 245 49.68  130 5.17 199 38.05 123.28 

 Network #7 196 41.24  126 8.60 143 19.47 115.16 
 Network #8 130 47.85  78 13.09 168 59.65 67.79 
 Network #9 111 22.72  88 2.52 144 40.43 85.78 
 Network #10 92 34.78  61 1.64 160 62.50 60.00 

 

 

 


