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Abstract. The problem of direction-of-arrival (DOA) esti-
mation is important in array signal processing. To estimate
the DOAs of uncorrelated, partly correlated and coherent
signals, a new iterative DOA estimation algorithm, named
AOP-DOA, is proposed by using alternating oblique pro-
jection (AOP). In each iteration, the oblique projection ap-
proach is employed to separate the received signals, then the
DOA of each separated signal is estimated one after another.
After theoretical analysis on the relationship between the
proposed AOP-DOA and the conventional alternating pro-
jection based maximum likelihood estimator (AP-MLE), an
AOP&AP-DOA algorithm, which is a combination of AOP-
DOA and AP-MLE, is developed to reduce the computational
complexity of AOP-DOA. Extensive experiments validate the
effectiveness and complexity of the proposed two algorithms.
Particularly, AOP&AP-DOA keeps the merits of AOP-DOA,
but exhibits superiority over AOP-DOA in terms of compu-
tational complexity when proper adaptive grid refinement
strategy is applied.

Keywords
Oblique projection, direction-of-arrival (DOA) estima-
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1. Introduction
The problem of direction-of-arrival (DOA) estimation

received considerable attention in the fields of radar, com-
munication, sonar, etc. [1], [2]. The maximum likelihood
(ML) [3–5] and subspace-based high resolution algorithms,
including multiple signal classification (MUSIC) [6] and es-
timation of signal parameters via rotational invariance tech-
niques (ESPRIT) [7], have been proved to be effective and
computationally efficient for uncorrelated and partially cor-
related signals. The ML algorithms [3–5] are also capable of
yielding asymptotically optimal solutions for fully correlated
(coherent) signals, but they are computationally intensive
since the multivariate nonlinear optimization procedure is

involved [8]. The subspace-based MUSIC and ESPRIT are
relatively computational simplicity and yield suboptimal so-
lutions, but they are inefficient for coherent signals [9], [10].

To solve the aforementioned problems, several prepro-
cessing algorithms, such as redundancy averaging [11], for-
ward/backward spatial smoothing (FBSS) [12], [13], etc., are
developed to decorrelate signals in the array covariance ma-
trix. However, the algorithm of redundancy averaging leads
to biased DOA estimates [14], and the FBSS algorithm suf-
fers from performance degradation due to the array aperture
loss [15], [16]. On the other hand, iterative algorithms, in-
cluding the alternating projection (AP) technique [17], [18]
and the modified Gauss-Newton technique [19] are investi-
gated to circumvent the multivariate nonlinear optimization
procedure. However, the global convergence ofAP basedML
estimator (AP-MLE) can not be guaranteed, and the Newton-
type algorithms also have to be carefully initialized so that
the global convergence is achieved [20].

Recently, much attention has been drawn to sparse
signal reconstruction (SSR) perspective for DOA estima-
tion [21]. Many SSR algorithms associated with lp-norm-
based (1 ≥ p ≥ 0) convex relaxation [22–25] and sparse
Bayesian learning (SBL) [26], [27] are developed. They are
capable of handling uncorrelated, partially correlated, and
coherent signals, even if in the small sample-size case. Apart
from the ML and SSR algorithms, the RELAX algorithm
in [28] as well as the iterative adaptive approach for ampli-
tude and phase estimation algorithm in [29] also works well
in the same context.

In this paper, an alternating oblique projection (AOP)
algorithm is proposed for DOA estimation. The technique of
oblique projection (OP) [30] has a distinct advantage in terms
of separating signal-of-interest (SOI) in the signal subspace
while zero-forcing structured interferences in the interfer-
ence subspace [31], [32]. In the context of DOA estimation,
the OP technique was utilized to develop a scaled version
of the MUSIC algorithm [33], and was utilized to integrate
a prior known location of several sources into the MUSIC
algorithm and circumvent their influences on the estimation
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of the unknown ones [34]. However, both are not applicable
for coherent signals, since they aim at improving the perfor-
mance of MUSIC for noncoherent signals. In [35–40], for
DOA estimation of mixed coherent and noncoherent signals,
the OP technique was utilized to eliminate the contributions
of noncoherent signals from the data covariance matrix so
that only those of coherent signals remain. Then the DOAs
of coherent signals are estimated by the algorithm of spatial
smoothing, redundancy averaging, etc.. But confined to the
decorrelation algorithms, [35–40] were only researched with
certain regular arrays (e.g., uniform linear array).

The proposed algorithm is named AOP-DOA, and is
able to handle coherent signals. But different to [35–40],
the proposed AOP-DOA has no limitation on antenna array
geometry since the OP technique is differently used. Herein,
AOP-DOAemploysOP technique to alternately separate each
of the received signals from array measurements. By this
means, the received multiple signals are separated into a se-
ries of small signal groups, where each group contains one
signal. Then the DOA of each signal is obtained by per-
forming single target source localization. Based on AOP-
DOA, we also propose an AOP&AP-DOA algorithm, which
is a combination of AOP-DOA and AP-MLE, and reduces
the computational complexity of AOP-DOA.

The main contributions of this paper are presented as
follows.

1) By employing OP technique, a newAOP-DOA algorithm,
which is applicable to arbitrary array geometries, is pro-
posed for DOA estimation.

2) On the basis of AOP-DOA, an AOP&AP-DOA algo-
rithm, which could reduce the computational complexity
of AOP-DOA, is proposed.

3) The proposed two algorithms can work well with uncor-
related and correlated (including coherent) signals.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the system model and introduces the basic
assumptions. The derivation and discussion of AOP-DOA
and AOP&AP-DOA are presented in Sec. 3. In Sec. 4, simu-
lation experiments are presented to evaluate the effectiveness
of proposed algorithms, and performance comparisons be-
tween our algorithms and the existing algorithms are made.
Finally, conclusions are drawn in Sec. 5.

Notations: matrices and vectors are denoted by boldface
uppercase and lowercase letters, respectively. (·)†, (·)H, ‖·‖,
(·)⊥, E{·} and tr{·} denote the Moore-Penrose pseudoinverse,
Hermitian transposition, l2-norm, orthogonal complement,
statistical expectation and trace operator, respectively. (·)−1

and eig (·) stand for the inverse and eigendecomposition of
the bracketedmatrix, respectively. Additionally, ⊕ represents
the direct sum operator, R{·} signifies the range space of the
bracketed quantity, and x̂ refers to the estimate of x.

2. System Model and Assumptions
Consider an antenna array composed of M sensors with

arbitrary array geometry, and assume that K narrowband
far-field source signals impinge on the array from distinct lo-
cations Θ1,Θ2, · · · ,ΘK . Further, the steering vector and the
baseband signal waveform of the kth incident signal are de-
noted as a (Θk ) and sk (t), respectively. k = 1, 2, · · · , K , and
the array output vector at the moment of t can be expressed
as [17], [41]

x (t) =
K∑
k=1

a (Θk )sk (t) + n (t) = A (Θ) s (t) + n (t) (1)

where A (Θ) = [a (Θ1) , a (Θ2) , · · · , a (ΘK )], and s (t) =
[s1 (t) , s2 (t) , · · · , sK (t)]T. n (t) refers to the additive noise,
which is modeled as a zero-mean, temporally and spatially
white complex-valued Gaussian random process. Further,
the covariance matrix of n (t) takes the form σ2 I, where σ2

signifies the noise power, and I denotes the identity matrix.

Using the system model (1), the data covariance matrix
is given by

Rx = E
{
x (t)xH (t)

}
= A (Θ)RsAH (Θ) + σ2 I (2)

where Rs = E
{
s (t)sH (t)

}
denotes the source covariance

matrix. Additionally, the following basic assumptions are
made:

A1) The set of steering vectors {a (Θ1), a (Θ2), · · · , a (ΘK )}
is linearly independent for any set of distinct source
locations Θ1,Θ2, · · · ,ΘK , where K < M .

A2) The narrowband signals s1(t), s2(t), · · · , sK (t) are zero-
mean, and theymay be uncorrelated, partially correlated
or coherent. In addition, the signals are independent of
the noise.

A3) The source number K is known, or it has been estimated
by the existing number detection methods (cf. [41], [42]
and references therein).

The DOA estimation problem addressed in this paper is
to estimate the source locations {Θk }

K
k=1 from multiple snap-

shots {x (tl)}Ll=1, where L denotes the number of snapshots.

3. Alternating Oblique Projection for
DOA Estimation
AOP-DOA is a data-dependent, alternating least squares

(LS) adaptive algorithm based on the relaxed optimization
principle (“one parameter at the time”) in [43], [44]. The
received signals are separated into multiple single signals by
using OP technique, and the DOAs of the separated signals
are estimated separately. To achieve source separation, the
OP matrices in use are closely associated with the source
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locations. Because of this, AOP-DOA is implemented itera-
tively, and its cost function is given by [45]

1
L

L∑
l=1




x (tl) −
K∑
k=1

a (Θk ) sk (tl)





2
. (3)

3.1 Principle of AOP-DOA
Assume that the signal at Θk is to be separated, where

k = 1, 2, · · · , K . Correspondingly, the signal sk (t) is referred
to as the SOI, and the remaining K − 1 received signals at
{Θ1, · · · ,Θk−1,Θk+1, · · · ,ΘK } are relatively referred to as the
“interferences”. Then, (1) can be rewritten as

x (t) = a (Θk ) sk (t) + Bk sBk
(t) + n (t) (4)

where sBk
(t) = [s1 (t) , · · · , sk−1 (t) , sk+1 (t) , · · · , sK (t)]T,

and

Bk = [a (Θ1) , · · · , a (Θk−1) , a (Θk+1) , · · · , a (ΘK )] . (5)

According to the basic assumptions claimed in Sec. 2,
the signal subspace is given by R {A (Θ)} = R {a (Θk )} ⊕
R {Bk }, where R {a (Θk )} and R {Bk } are disjoint. There-
fore, the OP matrix whose range space is R {Bk } and whose
null space contains R {a (Θk )} can be expressed as [32]

EBk,a(Θk ) = Bk

(
P⊥a(Θk )Bk

)†
(6)

where P⊥a(Θk ) = I − a (Θk )a† (Θk ), EBk,a(Θk )a (Θk ) = 0, and
EBk,a(Θk )Bk = Bk . Naturally, the received SOI can be sep-
arated from the array measurements in the following way:

yk (t) =
(
I − EBk,a(Θk)

)
z (t) (7)

where
z (t) = x (t) − n (t) (8)

signifies the array output in noiseless scenario, and yk (t) is
referred to as the “cleaned” observation of the SOI.

Based on (4), (7) and the LS criterion in [46], the SOI
can be finally estimated by solving the following minimiza-
tion problem:

min
Θk, {sk (tl ) }Ll=1

1
L

L∑
l=1




yk (tl) − a (Θk ) sk (tl)





2
. (9)

Minimizing (9) with respect to sk (tl), then the optimal
solution to this problem yields

ŝk (tl) = a† (Θk )yk (tl) , l = 1, 2, · · · , L. (10)

Substituting (10) into (9), it follows that the DOA of the
SOI can be estimated by solving the following minimization
problem:

Θ̂k = argmin
Θk

1
L

L∑
l=1




P⊥a(Θk )yk (tl)





2
. (11)

In the above manner, all the K received signals can
be separated one after another, and the DOA estimate of
each separated signal can be achieved separately. Remark
that the OP matrix in (7) is irrelevant to the correlations
among signals, and it is this property that makes the proposed
AOP-DOA being applicable for uncorrelated, partially corre-
lated and coherent signals. But it is noted that the computa-
tion of EBk,a(Θk ) requires knowledge of the source locations,
whereas none of them are considered to be known a prior. To
solve this problem, AOP-DOA is iterative, and it updates Θ̂(i)

k

by using previously estimated values {Θ̂(i)
1 , · · · ,Θ̂(i)

k−1,Θ̂
(i−1)
k

,
Θ̂

(i−1)
k+1 ,· · · ,Θ̂(i−1)

K }, where Θ̂(i)
k

denotes the DOA estimates of
Θk at the ith iteration (similarly hereinafter), i = 1, 2, · · · .

The relative change of the cost function in (3) between
two consecutive iterations determines the convergence of
AOP-DOA. Substituting the iteration results of (10) and (11)
into (3), it follows that (see the Appendix A)

1
(M − K )L

L∑
l=1




x (tl) −
K∑
k=1

a(Θk )sk (tl)





2
−

K
M − K

σ̂2

=
1

M − K
tr
{
P⊥A(Θ)R̂x

}
= σ̂2

(12)
where R̂x =

1
L

∑L
l=1 x (tl)xH (tl) is referred to as the sample

data covariance matrix which signifies a practical estimation
of the data covariance matrix from the samples {x (tl)}Ll=1.
σ̂2 = 1

L

∑L
l=1 ‖n (tl)‖2 denotes an estimation of noise power

from the samples {n (tl)}Ll=1.

Instead of using (3), it is natural to terminate the AOP-
DOA iterations by checking the relative change of

1
M − K

tr
{
P⊥A(Θ)R̂x

}
. (13)

The fundamental objective of the proposed AOP-DOA
is to find the global optimal solution of the nonlinear LS
problem in (3), and it is achieved by separately solving the
optimization problem of a series of separable variable pairs
{Θk, sk (t)}K

k=1

(
see (9)

)
and following the relaxed iterative

approach in [28]
(
the iterative implementation of AOP-DOA

is summarized in Tab. 1, Sec. 3.2
)
. These processes are es-

sentially the same as these of the RELAX estimator in [28],
hence the convergence properties of AOP-DOA and RELAX
are consistent.

The same as RELAX, for the proposed AOP-DOA, the
estimation results of “interferences” are removed from the
array measurements, and the parameters of the SOI are es-
timated based on the cleaned data. The difference of these
two algorithms is that AOP-DOA obtain the “cleaned“ obser-
vation of the SOI from noiseless array output via employing
the OP technique, whereas that of RELAX is obtained by
directly subtracting the “interferences” from the noisy array
measurements. Because of this, the specific implementation
of AOP-DOA is quite distinct from that of RELAX (cf. [28]),
which will be described in the following subsection.
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3.2 Implementation of AOP-DOA
According to Sec. 3.1, at the ith iteration, yk (t) is cal-

culated as follows:
y(i)
k

(t) =
(
I − EB̂(i)

k
,a(Θ̂(i−1)

k
)

)
z (t) (14)

where
B̂(i)
k
=

[
a(Θ̂(i)

1 ), · · · , a(Θ̂(i)
k−1), a(Θ̂(i−1)

k+1 ), · · · , a(Θ̂(i−1)
K )

]
.

(15)

Further, it follows from (8) and (14) that

R̂(i)
yk
=

1
L

L∑
l=1

y(i)
k

(tl)
(
y(i)
k

(tl)
)H

=
(
I − EB̂(i)

k
,a(Θ̂(i−1)

k
)
)
R̂z

(
I − EB̂(i)

k
,a(Θ̂(i−1)

k
)
)H. (16)

where
R̂z =

1
L

L∑
l=1

z (tl) zH (tl) = R̂x − σ̂
2I. (17)

Thus, (11) can be rewritten as
Θ̂

(i)
k
= argmin

Θk

tr
{
P⊥a(Θk )R̂

(i)
yk

}
. (18)

Note that tr
{
P⊥a(Θk )R̂

(i)
yk

}
= tr

{
R̂(i)

yk

}
− tr

{
Pa(Θk )R̂(i)

yk

}
.

Hence, the optimal problem of (18) is equivalent to

Θ̂
(i)
k
= argmax

Θk

tr
{
Pa(Θk )R̂(i)

yk

}
= argmax

Θk

aH (Θk )R̂(i)
yk a (Θk )

aH (Θk ) a (Θk )
.

(19)

Using Rayleigh quotient properties in [47], [48], the
solution to this problem yields

R
{
a(Θ̂(i)

k

}
= R

{
u(i)
max,k

}
(20)

where u(i)
max,k refers to the unit eigenvector corresponding to

the maximum eigenvalue of R̂(i)
yk . Therefore,

Θ̂
(i)
k
= argmax

Θk

��aH (Θk ) u(i)
max,k

��2. (21)

Thismaximization problemcan be solvedwithoutmuch com-
putational effort by means of adaptive grid refinement [23]
only around the regions where signals were present in the last
iteration.

Using (16), (21) and referring to the relaxed iterative
method in [28], the implementation procedure of AOP-DOA
is summarized in Tab. 1, where S (0) represents a rough re-
gion of potential source locations (a 1◦ or 2◦ uniform sam-
pling usually suffices [23]), and S (i)

j denotes a refined region
around the previous source location Θ̂(i−1)

j , j = 1, 2, · · · , K .

As given in Tab. 1, the initialization step of AOP-
DOA is implemented with assumption a(Θ̂(−1)

k
) = 0, where

k = 1, 2, · · · , K . At the beginning of each outer loop, Θ̂(0)
k

is determined with (16) and (21) (see lines 5–7). After that,
we sequentially redetermine Θ̂1, Θ̂2, · · · , Θ̂k and iteratively
update these DOA estimates until convergence is achieved
(see lines 8–18). AOP-DOA stops when all of the K outer
loops finished.

Input:
1: measurement data x

(
tl
)
, l = 1, 2, · · · , L

Initialization:
2: a(Θ̂(−1)

1 ) = 0, a(Θ̂(−1)
2 ) = 0, · · · , a(Θ̂(−1)

K
) = 0

Main Loop:
3: for k = 1, 2, · · · , K do
4: i ← 0
5: R̂(0)

yk =
(
I − EB̂(0)

k
,a(Θ̂(−1)

k
)
)
R̂z

(
I − EB̂(0)

k
,a(Θ̂(−1)

k
)
)H

6: u(0)
max,k ← eig

(
R̂(0)
yk

)
7: Θ̂

(0)
k
= argmax
Θk ∈S

(0)

��aH
(
Θk

)
u(0)
max,k

��2

8: repeat
9: i ← i + 1
10: 0← j
11: while j < k do
12: j + 1← j
13: R̂(i)

yj =
(
I − EB̂(i)

j ,a(Θ̂(i−1)
j )

)
R̂z

(
I − EB̂(i)

j ,a(Θ̂(i−1)
j )

)H
14: u(i)

max, j ← eig
(
R̂(i)
yj

)
15: Θ̂

(i)
j
= argmax
Θ j ∈S

(i)
j

��aH
(
Θj

)
u(i)
max, j

��2

16: end while
17: until (convergence)
18: a(Θ̂(0)

1 ) ← a(Θ̂(i)
1 ), · · · , a(Θ̂(0)

j
) ← a(Θ̂(i)

j
)

19: end for
Output:
20: Θ̂1 ← Θ̂

(i)
1 , Θ̂2 ← Θ̂

(i)
2 , · · · , Θ̂K ← Θ̂

(i)
K

Tab. 1. The AOP-DOA algorithm.

3.3 Relationship Between AOP-DOA and
AP-MLE
At the ith iteration, AP-MLE updates the kth DOA es-

timates as follows [17]:

Θ̂
(i)
k, AP-MLE = argmin

Θk

tr
{
P⊥

[B̃(i−1)
k

, a(Θk )]
R̂x

}
= argmin

Θk

tr
{
P⊥

[B̃(i−1)
k

, a(Θk )]
R̂z + σ̂

2P⊥
[B̃(i−1)

k
, a(Θk )]

}
= argmin

Θk

tr
{
P⊥

[B̃(i−1)
k

, a(Θk )]
R̂z + σ̂

2(M − K )
} (22)

where B̃(i)
k
=

[
a(Θ̂(i)

1 ), · · · , a(Θ̂(i)
k−1), a(Θ̂(i)

k+1), · · · , a(Θ̂(i)
K )

]
.

According toAppendixB,Ea(Θk ),Bk
= Pa(Θk )

(
I − EBk,a(Θk )

)
and

P⊥A(Θ) = I − EBk,a(Θk ) − Pa(Θk )
(
I − EBk,a(Θk )

)
= P⊥a(Θk )

(
I − EBk,a(Θk )

)
.

(23)

Therefore, (22) is equivalent to

Θ̂
(i)
k, AP-MLE=argmin

Θk

L∑
l=1




P⊥a(Θk )

(
I − EB̃(i−1)

k
,a(Θk )

)
z (t)




2

L
.

(24)

Recall from (16) and (18) that, at the ith iteration, AOP-
DOA updates the kth DOA estimate as follows:
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Input:
1: {Θ̂k }

K
k=1: DOA estimates obtained from AOP-DOA

Initialization:
2: Θ̂(0)

1 ← Θ̂1, Θ̂
(0)
2 ← Θ̂2, · · · , Θ̂

(0)
K ← Θ̂K

Main Loop:
3: i ← 0
4: repeat
5: i ← i + 1
6: for k = 1, 2, · · · , K do
7: Θ̂

(i)
k
= argmin
Θk ∈S

(i)
k

tr
{
P⊥

[B̃(i−1)
k

, a(Θk )]
R̂x

}
8: end for
9: until (convergence)

Output:
10: Θ̂1 = Θ̂

(i)
1 , Θ̂2 = Θ̂

(i)
2 , · · · , Θ̂K = Θ̂

(i)
K

Tab. 2. The AOP&AP-DOA algorithm.

Θ̂
(i)
k, AOP-DOA = argmin

Θk

tr
{
P⊥a(Θk )R̂

(i)
yk

}
= argmin

Θk

1
L

L∑
l=1




P⊥a(Θk )

(
I − EB̂(i)

k
,a(Θ̂(i−1)

k
)

)
z (t)




2
.

(25)

Evidently, both AOP-DOA and AP-MLE solve one-
dimensional optimal problems. Comparing (24) with (25), it
is found that AOP-DOA utilizes previously estimated value
Θ̂

(i−1)
k

to estimate Θ̂(i)
k
, whereas AP-MLE does not.

The results of AOP-DOA can be used to provide a good
initial estimate for the main loop of AP-MLE. This method is
referred to as AOP&AP-DOA and is summarized in Tab. 2.
Instead of adopting a universally fine grid search, the source
locations can be accurately estimated via AP-MLE by means
of a fine search only around the estimated values of AOP-
DOA. By this means, AOP-DOA provides relatively coarse
DOA estimates in the first stage (e.g., in the adaptive gird
refinement strategy, the lower limit of fine gird spacing
(LLFGS) may be set to 0.1◦, 0.25◦, etc.), and, in the sec-
ond stage, AP-MLE provides fine DOA estimates (e.g., the
LLFGS can be set to 0.01◦).

3.4 Computational Complexity
The computational complexity of proposed AOP-DOA

is briefly analyzed as follows, where a flop is defined as
a complex floating-pint multiplication or addition operation.

The computation of matrix R̂z takes about O(LM2+
M3) flops, where the noise power estimate σ̂2 is obtained
by averaging the M − K smallest eigenvalues of covariance
matrix R̂x [6]. The calculation of the OPmatrix EB̂(i)

k
,a(Θ̂(i−1)

k
)

(or EB̂(i)
j ,a(Θ̂(i−1)

j )) requires roughly O((K − 1)M2) flops, and

that of thematrix R̂(i)
yk (or R̂(i)

yj ) requires roughlyO(M3) flops.
The eigendecomposition of R̂(i)

yk (or R̂(i)
yj ) requires approxi-

mately O(M3) flops. Suppose that S (0) and S (i)
j consist of

N0 and Ni potential source locations, respectively. Then the
number of flops roughly required to solve the maximization
problem in line 7, Tab. 1 and line 15, Tab. 1 is O(M N0) and
O(M Ni), respectively. In addition, the computation of the
cost function in (13) requires roughly O(M3) flops.

Therefore, the computational complexity of AOP-DOA
is roughly O(LM2+M3 + K (2M3 + (K − 1)M2 + M N0) +∑K

k=1
∑nk

i=1((2M3 + (K − 1)M2 + M Ni)k + M3)) in total,
where nk denotes the iteration number included in the kth
outer loop. In particular, the total computational complexity
is approximatelyO(LM2+K (M3+M N0)+

∑K
k=1

∑nk
i=1(M3+

M Ni)k) flops, when N0 � M > K , which occurs often in
practical applications.

The proposed AOP&AP-DOA can be viewed as a com-
bination of AOP-DOA andAP-MLE. Thus the computational
complexity of AOP&AP-DOA consists of two parts, where
the part of AP-MLE additionally takes aboutO(M3K Ñi nAP )
flops. nAP denotes the iteration number, and it is supposed
that S (i)

k
(line 7, Tab. 2) consists of Ñi potential source loca-

tions.

The computational complexities of AOP-DOA and
AOP&AP-DOA are summarized in Tab. 3. Remark that the
major computational complexity is proportional to

∑nk
i=1 Ni

and N0, when M , K and L are fixed. Therefore, the em-
ployed adaptive grid refinement strategy not only determines
the computational accuracy, but also influences the compu-
tational cost. Compared with AOP-DOA, in Sec. 4, we show
that AOP&AP-DOA could have a lower computational load
when proper adaptive grid refinement strategy is applied.

Algorithm Complexity

AOP-DOA
O

(
LM2 + K (M3 + M N0)

)
+O

( ∑K
k=1

∑nk
i=1(M3 + M Ni )k

)
AOP&AP-DOA

O
(
M3K Ñi nAP + LM2 + K (M3 + M N0)

)
+O

( ∑K
k=1

∑nk
i=1(M3 + M Ni )k

)
Tab. 3. Computational complexity of the proposed algorithms.

4. Simulation Results
Extensive experiments are presented to evaluate the

effectiveness of proposed AOP-DOA and AOP&AP-DOA.
The stochastic Cramér-Rao bound (CRB) [3] and the ex-
isting high resolution DOA estimation algorithms, includ-
ing AP-MLE [17], RELAX [28], MUSIC [6], l1-SVD [23]
and perturbed SBL (PSBL) [27] are utilized for performance
comparison.

The root mean square error (RMSE) of DOA estimates
is defined as

RMSE =

√√√
1

K Mc

Mc∑
m=1

K∑
k=1

(
Θ̂m,k − Θk

)2
(26)
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where Mc is the number of trials, Θ̂m,k denotes the estimate
of the kth DOA Θk in the mth trial. All the simulations
are carried out on a uniform linear array with M = 6 sen-
sors and half-wavelength sensor spacing. Unless otherwise
stated, each of the simulations is evaluated by Mc = 200
independent trials, and L = 100 snapshots are employed.

The initialization condition for PSBL is set in the same
way as [27]. l1-SVD is considered with SeDuMi pack-
ages [49], and the regularization parameter is set to 0.625.
For l1-SVD, RELAX, AOP-DOA and AOP&AP-DOA, the
adaptive grid refinement strategy [23] is employed, where
the spacing of the initial coarse grid is 2◦ and the LLFGS
is set to 0.01◦, unless otherwise stated. For MUSIC and
AP-MLE, we use 0.01◦ uniform sampling of the spatial loca-
tion of the sources. All the simulations are performed using
MATLAB 2013b running on a computer with a 2.3GHz Intel
Quad-Core processor and 12GB RAM, under Windows 8.1.
The computational complexity of an algorithm is evaluated
in terms of the average CPU processing time [27].

4.1 Discussion: Complexity and Accuracy

In Sec. 3.4, the complexities of the proposed algorithms
are analyzed, and it is shown that, when the number of snap-
shots L, array size M and source number K are fixed, the
computational complexity is jointly proportional to the iter-
ation number and the grid size which is considered in the
adaptive grid refinement strategy.

This subsection intends to evaluate the complexities of
proposed AOP-DOA and AOP&AP-DOA by employing dif-
ferent adaptive grid refinement strategies. Two equal-power
uncorrelated signals impinging from [−5.12◦, 5.37◦] are con-
sidered in this experiment, and the RMSE is utilized to eval-
uate the precision of DOA estimates. Both the CPU time
and the average number of iterations are analyzed at each
evaluated signal-to-noise ratio (SNR). In each simulation,
the number of iterations of AOP&AP-DOA is the sum of
the iteration numbers that required in the two stages DOA
estimation.

Firstly, the proposed AOP-DOA is investigated. Three
different LLFGS are considered, and the SNR is varied from
−15 dB to 25 dB. Fig. 1 shows the statistical results. It is
seen that AOP-DOA exhibits a satisfying performance when
different LLFGS is used. Moreover, AOP-DOA can coin-
cide well with the CRB at a moderate to high SNR when
proper adaptive grid refinement strategy is employed. But
we also should note that a fine grid search requires a heavy
computational cost.

In the next, the proposed AOP&AP-DOA is evaluated.
Since the DOA estimation of AOP&AP-DOA consists of two
stages, we consider different LLFGS in the first stage. But the
LLFGS in the second stage is fixed at 0.01◦. Other settings
remain the same as previous experiment. Figure 2 shows
the statistical results of AOP&AP-DOA, and it is indicated

that AOP&AP-DOA is able to coincide well with the CRB at
a moderate to high SNR. But AOP&AP-DOA consumes dif-
ferent time, when different adaptive grid refinement strategies
are applied. The running time is proportional to the LLFGS
in the first stage. With proper adaptive grid refinement strat-
egy, the convergence speed of AOP&AP-DOA is fast. In
the following simulations, the LLFGS in the first stage of
AOP&AP-DOA is fixed at 0.1◦ and that in the second stage
is fixed at 0.01◦.

Besides, when comparing Fig. 1 with Fig. 2, it can
be seen that AOP-DOA may show a competitive estimation
precision with a high SNR, but AOP&AP-DOA can own
a lower running time. In particular, a fine grid search leads
to a large number of iterations. But for a fixed grid search
approach, with the increase of SNR, the numbers of itera-
tions of AOP-DOA and AOP&AP-DOA are stable or approx-
imately stable, especially when the incident signals dominate
the background noise. The same is true for the running time
under different SNR.
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Fig. 1. RMSE and CPU time comparison of the proposed
AOP-DOA for two uncorrelated sources impinging from
[−5.12◦, 5.37◦] when three different LLFGS are consid-
ered. The SNR ranges from −15 dB to 25 dB.
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Fig. 2. RMSE and CPU time comparison of the proposed AOP&AP-DOA for two uncorrelated sources impinging from [−5.12◦, 5.37◦] when the
LLFGS in the first stage ranges from 0.025◦ to 0.1◦. The LLFGS in the second stage is fixed at 0.01◦, and the SNR ranges from −15 dB
to 25 dB.

4.2 RMSE and CPU Time Comparisons
This subsection presents detailed performance analy-

ses to illustrate the superiority of the proposed AOP-DOA
and AOP&AP-DOA in cases of uncorrelated and corre-
lated(including coherent) signals. For each algorithm, the
computational complexity and the estimation accuracy are
employed for performance comparison, and they are evalu-
ated by the running time and the RMSE, respectively.

Figure 3 depicts the estimation accuracy of the DOA
estimates and the time usage of each comparing algorithm
when two uncorrelated signals are considered. We assume
the signals impinge on the array from [−5.12◦, 5.37◦], and
they have equal SNR ranging from −15 dB to 20 dB. The
results of Fig. 3(a) show that the proposed AOP-DOA and
AOP&AP-DOA, as well as RELAX and AP-MLE, exhibit a
satisfying estimation precision, whereas PSBL and l1-SVD
not coincide well with the CRB. It is of interest to note that
MUSIC also shows a high precision when the SNR is high
enough, but it fails to hold a superresolution at a lower SNR.
Fig. 3(b) indicates that AP-MLE consumes the maximum
running time, while the proposed AOP-DOA and AOP&AP-
DOA algorithms take the relatively lower one. This is be-
cause the conventional AP-MLE always adopts a universally
fine grid search, whereas our algorithms utilize fine grid
search only around the regions where signals are present.
Besides, the computational load of RELAX and the pro-
posed AOP-DOA is approximately at the same level, and is
higher than that of the proposedAOP&AP-DOA.The running
time of PSBL fluctuates remarkably when the SNR changes,
but that of the other algorithms are not. To illustrate this
further, Fig. 3(c) presents the iteration numbers of PSBL,
RELAX and the proposed AOP-DOA and AOP&AP-DOA
algorithms at each SNR. It is seen that the number of iter-
ations of AOP&AP-DOA is the smallest, while the number
of iterations of RELAX and AOP-DOA are approximately

the same though the latter is slightly smaller. Particularly,
the iteration number of PSBL decreases fast when the SNR
increases, and that’s the reason the CPU time of PSBL fluctu-
ates (the complexity per iteration of PSBL is identical [27]).
These phenomena are common in the following simulations,
hence the curve of the number of iterations is omitted, and
the similar phenomena are not explained repeatedly.

Figure 4 considers two uncorrelated signals with dif-
ferent angular separations. We assume Θ1 = 5.37◦ and
Θ2 = 5.37◦ − ∆, where ∆ denotes the source separation
and it ranges from 2◦ to 24◦. The SNR is fixed at 10 dB.
It is seen that the proposed AOP-DOA and AOP&AP-DOA
have a distinct advantage against spatially adjacent signals,
and both are high resolution algorithms. Compared with AP-
MLE, the proposed algorithms exhibit the similar estimation
precision but consume much less running time. Compared
with PSBL and RELAX, the proposed algorithms exhibit
a lower RMSE when the angular separation is small, and
the time usage of the proposed algorithms decreases rapidly
when the angular separation largely increases. A large an-
gular separation may lead to a faster convergence speed of
an iterative algorithm, but it is not the main factor that deter-
mines the computational complexity of MUSIC and l1-SVD
(cf. [6], [45], [23]). The CPU time of MUSIC and l1-SVD
has tiny changes for different angular separations. Hence, as
the angular separation becomes largely, the time usage of the
proposed AOP-DOA could be lower than that of the MUSIC
and l1-SVD.

Both Fig. 5 and Fig. 7 consider the case of correlated
signals. We assume two signals impinge on the array from
directions [−15.12◦, 5.37◦]. In Fig. 5, the correlation coeffi-
cient of the signals is set to 0.5, and we vary the SNR from
−15 dB to 20 dB. In Fig. 7, the SNR is fixed at 15 dB, but we
vary the correlation coefficient of the signals from 0 to 1.
The simulation results illustrated in Fig. 5 and Fig. 7
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Fig. 3. RMSE and CPU time comparison for two uncorrelated
sources impinging from [−5.12◦, 5.37◦].

show that the proposed AOP-DOA and AOP&AP-DOA can
achieve satisfactory accuracies when the signals are partially
or fully correlated. The DOA estimation performance of
each algorithm deteriorates along with the increased corre-
lation coefficient, and the MUSIC fails when the signals
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Fig. 4. RMSE and CPU time comparison for two uncorrelated
sources impinging from [5.37◦, 5.37◦ − ∆], where the
angular separation ∆ ranges from 2◦ to 24◦ and the SNR
is fixed at 10 dB.

are coherent. But the proposed AOP-DOA and AOP&AP-
DOA, as well as AP-MLE and RELAX, are able to coincide
well with the CRB, and they could have a smaller RMSE than
PSBL and l1-SVD. In addition, the proposed two algorithms
have a much lower computational cost when compared with
AP-MLE, even if the sources are correlated. The increased
correlation coefficient of signals makes AP-MLE, RELAX,
AOP-DOA and AOP&AP-DOA need more iterations (run-
ning time) to achieve convergence, whereas the complexities
of MUSIC, l1-SVD and PSBL are insensitive to the varia-
tions of the correlation property. Hence the MUSIC, l1-SVD
and PSBL show a stable running time, and this causes their
CPU time curves to have intersections.

Figure 6 considers the DOA estimation for a mixture of
uncorrelated and coherent signals. The incident signals are
a group of two coherent signals from [−15.12◦, 5.37◦] and
an uncorrelated signal from 42.95◦. The SNR ranges from
−5 dB to 20 dB. The simulation results depicted in Fig. 6
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Fig. 5. RMSE and CPU time comparison for two partially cor-
related sources impinging from [−15.12◦, 5.37◦], where
the correlation coefficient of the signals is set to 0.5.
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Fig. 6. RMSE and CPU time comparison for a mixture of un-
correlated and coherent signals, where a group of two
coherent signals from [−15.12◦, 5.37◦] and an uncorre-
lated signal from 42.95◦.
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Fig. 7. RMSE and CPU time comparison for two sources impinging from [−15.12◦, 5.37◦], where the SNR is fixed at 15 dB, but the sources’
correlation coefficient varies.
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show that the proposed AOP-DOA and AOP&AP-DOA al-
gorithms, as well as the RELAX and AP-MLE, exhibit a sat-
isfying estimation performance when uncorrelated and fully
correlated signals coexist (remark that the MUSIC algorithm
fails in this case, thus it is omitted here). On the whole,
when compared with PSBL, the proposed algorithms have
a better estimation performance and a more stable compu-
tational load under different SNR. Compared with l1-SVD,
the proposed algorithms can have a more superior estimation
performance, although their computational loads are slightly
higher in this scenario. In addition, as we have already veri-
fied in the previous simulations, the proposed AOP-DOA and
AOP&AP-DOA have a much lower computational load when
compared with AP-MLE.

4.3 Probability of Success Comparison
This subsection intends to evaluate the success proba-

bilities of the proposed AOP-DOA and AOP&AP-DOA al-
gorithms. The DOA estimation of K signals is considered
successful if and only if |Θ̂1 −Θ1 |, |Θ̂2 −Θ2 |, · · · , |Θ̂K −ΘK |

are less than a user-selected parameter ε , which is set to be 1◦
in the following simulations.

Figure 8 considers two uncorrelated signals with differ-
ent angular separations. The signals impinge on the array
from Θ1 = 5.37◦ and Θ2 = 5.37◦ − ∆, and the source sepa-
ration ∆ ranges from 2◦ to 20◦. In addition, the SNR is fixed
at 10 dB.

Figure 9 considers three signals, where we assume
a group of two correlated signals with correlation coeffi-
cient r impinge on the array from [−15.12◦, 5.37◦] while an
uncorrelated signal impinges on the array from 42.95◦. The
correlation coefficient r is set to 0.9 and 1 in Fig. 9(a) and
Fig. 9(b), respectively. Other settings remain the same as the
last experiment considered in Sec. 4.2.

Both Fig. 8 and Fig. 9 show that the proposed AOP-
DOA andAOP&AP-DOA algorithms have a relatively higher
success probability when compared with l1-SVD, PSBL and
MUSIC. In addition, the success probability of the proposed
AOP&AP-DOA is able to coincide well with that of the AP-
MLE, and is not lower than that of the RELAX. Remark that
when signals are coherent, i.e., r = 1, the RMSE of l1-SVD
is relatively higher than the threshold ε (cf. Fig. 6(a)). So the
success probability of l1-SVD is low. Meanwhile, the MU-
SIC is inefficient for identifying DOAs of coherent signals,
hence it fails.

Figure 10 tests the proposed AOP-DOA and AOP&AP-
DOA algorithms by using a uniform circular array (UCA),
wherewe consider azimuth-onlyDOAestimation and assume
a group of two coherent signals impinging from [−15.12◦,
5.37◦] and an uncorrelated signal impinging from 42.95◦.
The SNR ranges form −15 dB to 20 dB. M = 15 and the
UCA is considered with two different radii. It can be seen
that the proposed two algorithms are applicable to UCA,
and this is because they have no limitation on antenna array
geometry.
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Fig. 8. Probability of success comparison for two uncorrelated
signals impinging from [5.37◦, 5.37◦ − ∆], where ∆
ranges from 2◦ to 20◦ and the SNR is fixed at 10 dB.
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Fig. 9. Probability of success comparison for a mixture of un-
correlated and correlated signals, where a group of two
correlated signals with correlation coefficient r imping-
ing from [−15.12◦, 5.37◦] and an uncorrelated signal im-
pinging from 42.95◦.
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Fig. 10. Probability of success comparison of the proposedAOP-
DOA and AOP&AP-DOA for a mixture of uncorrelated
and coherent signals by using a UCA, where R and λ
denote array radius and wavelength, respectively.

5. Conclusion
In this paper, a new iterative AOP-DOA algorithm is

proposed for the DOA estimation of uncorrelated and cor-
related signals. To reduce the computational complexity of
AOP-DOA, an algorithm named AOP&AP-DOA, which is
a combination of AOP-DOA and AP-MLE, is also proposed.

Both AOP-DOA and AOP&AP-DOA are able to esti-
mate DOAs of uncorrelated, partially correlated and coherent
signals. The simulation results indicate that they exhibit ex-
cellent performance in terms of accuracy, success probabil-
ity and complexity, when compared with MUSIC, l1-SVD,
PSBL, RELAX and AP-MLE. Firstly, for coherent signals,
AOP-DOA has a distinct advantage over MUSIC in terms of
DOA estimation since the latter algorithm is not applicable to
this case. Secondly, compared with l1-SVD and PSBL, AOP-
DOA presents better estimation accuracy within moderate to
high SNR region and presents a relatively higher success
probability in low SNR region. Thirdly, the complexities
of AOP-DOA and RELAX are approximately presented at
the same level, but when the angular separation is small, for
uncorrelated signals, the accuracy and success probability of
AOP-DOA are higher than those of RELAX. Lastly, when
compared with AP-MLE, the proposed AOP-DOA not only
exhibits a much lower computational complexity but also
shows competitive success probability and accuracy.

Compared with AOP-DOA, the AOP&AP-DOA not
only keeps the merits of AOP-AOP, but also can be imple-
mented with a much lower computational cost when proper
adaptive grid refinement strategy is applied. In addition, both
AOP-DOA andAOP&AP-DOA are not restricted by the array
geometry. Extensive experiments have been undertaken to
verify our analysis and demonstrate the performance of our
algorithms in cases of uncorrelated and correlated signals
as compared to the existing ones. Note that only the white
noise scenario is analyzed in this paper. Future work in-
cludes extension of the proposed algorithms to general noise
environments [50], [20].
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Appendix A: Proof of (12)
After AOP-DOA achieves convergence, it follows from

(10) and (11) that
sk (t) = a†(Θk )yk (t) . (27)

Substituting (7) into (27), then we have
sk (t) = a†(Θk )

(
I − EBk,a(Θk )

)
z (t) (28)

Substituting (28) into (3), it follows that

1
L

L∑
l=1




x (tl) −
K∑
k=1

a(Θk )sk (tl)





2

=
1
L

L∑
l=1




x (tl) −
K∑
k=1

Pa(Θk )
(
I − EBk,a(Θk )

)
z (tl)





2

(29)

According to Appendix B, we have

PA(Θ) =

K∑
k=1

Pa(Θk )
(
I − EBk,a(Θk )

)
. (30)

Consequently, (29) can be rewritten as

1
L

L∑
l=1




x (tl)−
K∑
k=1

a(Θk )sk (tl)





2
=

L∑
l=1




x (tl) − PA(Θ)z (tl)





2

L
(31)

Substituting (1) into (31), then we have

1
L

L∑
l=1




x (tl) −
K∑
k=1

a(Θk )sk (tl)





2

=
1
L

L∑
l=1




P⊥A(Θ)z (tl) + n (tl)





2
= tr

{
R̂n

}
= Mσ̂2

(32)

where R̂n =
1
L

∑L
l=1 n (tl)nH (tl) = σ̂2I.

Substituting (8) into (31), then we have

1
L

L∑
l=1




x (tl) −
K∑
k=1

a(Θk )sk (tl)





2

=
1
L

L∑
l=1




P⊥A(Θ)x (tl) + PA(Θ)n (tl)





2
= tr

{
P⊥A(Θ)R̂x

}
+

tr
{
PA(Θ)R̂n

}
= tr

{
P⊥A(Θ)R̂x

}
+ Kσ̂2.

(33)

It follows from (32) and (33) that

1
(M − K )L

L∑
l=1




x (tl) −
K∑
k=1

a(Θk )sk (tl)





2
−

K σ̂2

M − K

=
1

M − K
tr

{
P⊥A(Θ)R̂x

}
= σ̂2.

(34)

Appendix B: Proof of (30)
It follows from (6) and [30] that
K∑
k=1

Ea(Θk ),Bk
A (Θ)

=

K∑
k=1

[
Ea(Θk ),Bk

a (Θ1), · · · ,Ea(Θk ),Bk
a (ΘK )

]

= A (Θ).

(35)

Thus, it holds that
( ∑K

k=1 Ea(Θk ),Bk
− I

)
A (Θ) = 0, and( ∑K

k=1 Ea(Θk ),Bk
− I

)
A (Θ)A† (Θ) = 0. Then,

PA(Θ) =

K∑
k=1

Ea(Θk ),Bk
PA(Θ) . (36)

Note that Pa(Θk )P⊥A(Θ) = 0, Ea(Θk ),Bk
EBk,a(Θk ) = 0 and

PA(Θ) = Ea(Θk ),Bk
+ EBk,a(Θk ) . It follows that Ea(Θk ),Bk

=

Pa(Θk )Ea(Θk ),Bk
= Pa(Θk )

(
I − EBk,a(Θk )

)
, and

Ea(Θk ),Bk
PA(Θ) = Ea(Θk ),Bk

. (37)

Substituting (37) into (36), then

PA(Θ) =

K∑
k=1

Ea(Θk ),Bk
=

K∑
k=1

Pa(Θk )
(
I − EBk,a(Θk )

)
. (38)


