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Abstract. Low power image and video processing cir-
cuits are crucial in many applications of computer vision.
Traditional techniques used to reduce power consumption in
these applications have recently been accompanied by cir-
cuit approximation methods which exploit the fact that these
applications are highly error resilient and, hence, the qual-
ity of image processing can be traded for power consump-
tion. On the basis of a literature survey, we identified the
components whose implementations are the most frequently
approximated and the methods used for obtaining these ap-
proximations. One of the components is the median image
filter. We propose, evaluate and compare two approxima-
tion strategies based on Cartesian genetic programming ap-
plied to approximate various common implementations of
the median filter. For filters developed using these approxi-
mation strategies, trade-offs between the quality of filtering
and power consumption are investigated. Under conditions
of our experiments we conclude that better trade-offs are
achieved when the image filter is evolved from scratch rather
than a conventional filter is approximated.
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1. Introduction
An efficient implementation of computer vision algo-

rithms is crucial for many smart embedded systems such as
traffic control systems, driver assistant systems, production
line inspection systems, and robotics. However, providing
high-quality outputs in these applications is usually associ-
ated with high computation cost and non-trivial requirements
on energy. In order to meet real-time constraints and cope
with limited power budget, image and video processing algo-
rithms are often accelerated in application-specific integrated
circuits (ASIC) or field programmable gate arrays (FPGAs).
If additional energy consumption reduction is requested be-
cause of, for example, very limited energy available in remote
sensors, mobile or wearable devices, the circuit approxima-

tion is one of the most promising approaches to deliver a suit-
able solution.

Approximate computing [1] exploits the fact that many
applications (image and video processing in particular) are
highly error resilient. If occasional errors are acceptable by
the users – which is possible because the users as consumers
of the outputs of these applications are often unable to rec-
ognize small imperfections in images or video sequences
– implementations of these applications can be simplified.
The goal is to create such an implementation which shows
the best trade-off between the error, performance and power
consumption. Approximate computing has been progres-
sively developed in recent 5 years and influenced the way
how energy efficient computer systems (ranging from tiny
battery powered devices via common desktop computers to
supercomputers) are now constructed and operated.

In this paper, we focus on approximate circuits that are
used in image and video processing applications. On the ba-
sis of a literature survey, we identified the components whose
implementations are the most frequently approximated and
the methods used for obtaining these approximations. One
of the components is the median-outputting circuit (median
for short) which is typically employed to filter out undesired
artefacts (such as shots) in digital images.

As the circuit approximation problem can be formulated
as a multi-objective optimization problem (with error, perfor-
mance and power consumption as objectives), various ad hoc
and heuristic methods have been introduced to solve it. In
our previous work, we have developed circuit approximation
methods [2], [3] based on Cartesian genetic programming
(CGP) which is a branch of evolutionary algorithms capable
of designing and optimizing digital circuits.

Unfortunately, the quality of approximation methods
has been compared in the literature only rarely (see a survey
of associated methodological problems in [2]); in most cases
only parameters of approximate adders and multipliers were
compared [4]. In this paper, we compare two approximation
strategies based onCGP applied to approximate various com-
mon implementations of the median filter. The first strategy
starts with an exact median filter implementation and tries
to remove some circuit components (comparators) and re-
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connect the remaining ones in such a way that the error of
filtering is minimized. The second strategy employs CGP
to evolve the image filter from scratch; only on the basis of
the training data supplied during the evolution. The goal
is to demonstrate how different approximation strategies can
influence the trade-offs that are obtained between the quality
of filtering and power consumption for target circuits.

The rest of the paper is organized as follows. The re-
search area of approximate computing is introduced in Sec. 2.
Section 3 deals with a survey of circuits that were approxi-
mated for purposes of power consumption reduction in image
and video processing applications. Various aspects of the ap-
proximation strategies used to obtain desired approximations
have been analyzed. Section 4 is devoted to our case study –
approximate circuits for image filtering. We present conven-
tional implementations of image filters, CGP as the method
used to perform desired approximations and two different
approximation strategies based on CGP. Results are summa-
rized in Sec. 5. Conclusions are given in Sec. 6.

2. Approximate Computing
The concept of approximation has been well established

in computer science and engineering for decades. For exam-
ple, a paper with the title “Approximate signal processing”
was published in 1997 [5]. However, new problems emerged
in the last decade that stimulated new research in applying
approximation techniques, but in a slightly different context
than before.

In particular, problems with high power density of inte-
grated circuits led to the end of Dennard scaling, i.e. simulta-
neous doubling the number of transistors on a chip, increasing
operation frequency and reducingVdd have no longerworked
together. The coming era of “dark silicon”, when many tran-
sistors are available on a chip, but cannot be used at the
same time on high operating frequency because of thermal
issues, has forced us to rethink the basic design principles of
computer-based systems [6]. As conventional power reduc-
tion techniques such as dynamic voltage-frequency scaling
and power gating do not scale sufficiently and alternative post
CMOS technologies are not widely adopted, the only solution
seems to be to relax the requirement on precise computing
across the computer stack.

In approximate computing, the requirement of exact
equivalence between the specification and all implementa-
tions levels is relaxed in order to reduce power consump-
tion or improve other system parameters such as perfor-
mance [1], [7].

The approximation can be conducted at the level of
software as well as hardware. Mittal [1] discusses a wide
spectrum of approximation techniques which include pre-
cision scaling, loop perforation, load value approximation,
memorization, task dropping/skipping, memory access skip-
ping, using different SW/HW versions, refresh rate reducing
in memory, inexact read/write and relaxed synchronization.

In the case of digital circuit approximation, voltage over-
scaling and functional approximation are the most popular
techniques. In the case of voltage over-scaling, the circuit is
supplied with lower Vdd than nominal, which reduces power
consumption, but introduces errors for those inputs whose
processing requires attending the critical path of the design.
In the case of functional approximation, a slightly different
function is implemented with respect to the original one, pro-
vided that the error is acceptable and key system parameters
are improved. The errors induced by approximation are mea-
sured using various error metrics such as the average error,
error probability, and worst case error.

The approximate solution is usually obtained by
a heuristic procedure that modifies the original implementa-
tion. In the case of software approximation, programmers can
typically declare which parts of the program can be computed
approximately and specialized compiler and optimizer then
preform requested approximations (see, e.g., EnerJ [8]). In
the case of hardware approximation, either general-purpose
or circuit-specific approximation methods have been applied.
While the aim of general-purpose approximation methods
(e.g. SALSA [9], AXILOG [10], ASLAN [11], ABA-
CUS [12], CGP [2], [3]) is to automatically approximate any
circuit regardless of its structure, the circuit-specific meth-
ods are focused on a rather specific class of circuits (such as
adders or multipliers [4]).

3. ApproximateCircuits for Image and
Video Processing
Based on the analysis of 12 image and data processing

applications, Chippa et al. showed that about 83% runtime
is spent in error resilient computation kernels that are suit-
able for approximation [7]. The most dominant kernels were
the dot product computation and distance computation. The
fact that image and video processing circuits are good targets
for circuit approximation can be documented by dozens of
papers dealing with this topic in the literature.

It has to be noticed that elementary arithmetic circuits
(such and adders and multipliers) are often approximated in-
dependently of a potential application. The objective is to
create a general-purpose library of approximate implementa-
tions showing different trade-offs between power consump-
tion and error. Jiang et al. [4] provided a detailed survey of
approaches developed in this direction. In this paper, we will
deal with approximate adders or multipliers only if they have
been applied in an approximate implementation of image or
video processing system.

Approximate circuits are also crucial in energy efficient
implementations of image and video processing systems (im-
age classifiers, object detectors) based on (deep) neural net-
works (DNN). As this is rather a specific area [13], [14],
we will not consider it in our survey table, but provide
a brief introduction in this paragraph. In DNNs, approxi-
mations were introduced at levels of the data type quanti-
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Application Type Ref. Module Approx. Component Approx. Method Approx. Level Platform
[26] Median Comparators/Network Ad hoc transistor ASIC
[24] Median Median CGP RTL ASIC
[27] Median Median CGP RTL FPGA
[31] Gaussian Multiplier Ad hoc gate ASIC

Filter [27] Gaussian Adder, Multiplier CGP gate FPGA
[27] Sobel Adder CGP gate FPGA
[32] Sobel OpenCL code truncation RTL FPGA
[11] Sobel Sobel ASLAN gate ASIC
[10] Sobel Verilog code AXILOG RTL ASIC
[16] SAD SAD Logic Isolation gate ASIC

Metrics [9] SAD SAD SALSA gate ASIC
[16] EUD EUD LogicIsolation gate ASIC
[16] DCT DCT Logic Isolation gate ASIC

Transforms [16] FFT FFT Logic Isolation gate ASIC
[9] DCT DCT SALSA gate ASIC
[32] DCT OpenCL code truncation RTL FPGA
[31] JPEG Multiplier Ad hoc gate ASIC

JPEG [29] DCT Adder Ad hoc transistor ASIC
[34] DCT Adder/Multiplier truncation/MINPS full adders ASIC
[12] Block Matching Verilog code ABACUS RTL ASIC

MPEG [11] DCT DCT ASLAN gate ASIC
[33] DCT Adder/Subtractor Ad hoc gate ASIC
[33] ME Adder/Subtractor Ad hoc gate ASIC
[28] SAD in ME Adder Ad hoc gate ASIC, FPGA

HEVC [30] DCT DCT Ad hoc gate ASIC
[19] DCT Adder/Subtractor CGP gate ASIC

SAD (Sum of Absolute Differences) ME (Motion Estimation) MINPS (Mixed Integer Nonlinear Problem Solver)
DCT (Discrete Cosine Transform) FFT (Fast Fourier Transform) EUD (Euclidean distance)

Tab. 1. Circuits approximated in the area of image and video processing.

zation, microarchitecture (e.g. neurons insignificantly con-
tributing to the quality of outputs can be removed), training
algorithm (an iterative process which can be stopped when
good enough results are obtained), the multiply-accumulate-
transform circuits (where the design of approximate multi-
pliers and adders for DNN applications represents an inde-
pendent topic [15], [16]), and memory cells and architecture
(where, e.g., less significant bits can be stored in energy
efficient, but less reliable memory cells [17]). An ultra-
low power deep learning ASIC for IoT was implemented
on a single chip, capable of performing 374 GOPS/W and
consuming less than 300 µW. However, performance of this
solution is limited as it operates at 3.9 MHz only [18]. While
specific low-power electronic circuits can be developed in
ASICs (see, e.g., specialized on-chip memory cells and ar-
chitecture in [18]) to minimize power consumption of DNN,
the optimization of an FPGA solution has to be focused on
microarchitecture and memory subsystem organization that
are composed of (fixed and pre-defined) FPGA primitives.

In our survey, we will primarily focus on functional
approximation which is less technology dependent and pro-
vides more predictable errors than voltage over scaling. The
survey is based on representative papers published in 2011 –
2017 on key relevant conferences and in journals.

The result of our survey is presented in the form of ta-
ble: Table 1 shows that the papers included into the survey
are organized according to the Application Type, where the

following major application types were identified: Filters,
Metrics, Transforms, image compression (JPEG), and video
(de)coders (according to MPEG and HEVC standards). In
these Application Types, we investigated:

• what is approximated, i.e. whether the approximation is
performed at the level of components (such as adders,
multipliers, comparators) or modules (such as filters,
DCT and FFT created using these components),

• how the approximation is conducted, i.e. whether an ad
hoc or general purpose method is taken,

• what is the level of abstraction, where an approximation
is conducted, i.e. whether circuits are approximated at
the transistor, gate, register-transfer (RT) or behavioral
source code level, and

• target platform, i.e. an ASIC or FPGA.

It can be seen that less complex applications such as im-
age filters can be holistically approximated as a single system.
In the case of more complex applications, the design is firstly
decomposed and selected components then undergo the ap-
proximation process. Some of them can even be removed
to further reduce power consumption. The approximation
is predominately conducted at the gate level, but there are
tools (such as AXILOG, ABACUS and GRATER) in which
requirements on the approximation are specified directly at
the source code (RT or behavioral) level. The actual approx-
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imations are then performed internally by the tool during the
synthesis and netlist optimization.

It remains unclear what is the best performing approx-
imation approach in the area of image and video process-
ing. Unfortunately, approximate solutions have been only
compared with exact solutions, but almost never with other
competitive approximate solutions.

4. Case Study
The purpose of this case study is to compare the impact

of two fundamentally different approximation strategies on
the quality and power consumption of a selected module of
an image processing system. We decided to approximate the
circuits implementing the shot noise image filter. The ap-
proximations will be conducted by CGP which proved to be
highly competitive with respect to other circuit approxima-
tion methods [3], [19].

Section 4.1 provides a brief overview of conventional
implementations of median filters and their extensions. CGP
is then introduced in Sec. 4.2. Two approximation strategies
(AS) are proposed in Sec. 4.3: (AS1) CGP is employed to ap-
proximate circuit implementations of the considered filters.
(AS2) CGP is used to holistically evolve desired image filters
from scratch.

4.1 Median Filters
Conventional implementations of shot noise elimina-

tion filters are usually based on calculating the median over
the pixels belonging to the filtering window.

The median filter (MF) is a special case of order statis-
tic filters which may be implemented in several different
ways [20]. In this paper, we will consider a pipelined imple-
mentation based on a median network which is suitable for
high-performance applications. The median network con-
sists of a sequence of compare-and-swap operations (Fig. 1).
Each compare-and-swap (CS) operation acts as a small 2-
input sorting network which produces a sorted sequence by
outputting the minimum and maximum of the input values.

The weighted median filter is an extension of the com-
mon median filter, which gives more weight to some val-
ues within the filtering window. The center weighted me-
dian filter (CWMF) represents a special case in which only
the central value of the window is counted with additional
weight [21]. Compared to the median filter, this modifi-
cation can preserve more details along the horizontal and
vertical directions while suppressing additive white and/or
impulsive-type noise.

The median filters uniformly replace the value of every
pixel of the filtered image by the median of its neighbors.
Consequently, in addition to the removal of noisy pixels,
these filters also remove desirable details and thus smudge
the resulting image. In order to address this problem, more
advanced concepts were introduced. The adaptive median

Fig. 1. Pipelined implementation of 9-input median filter con-
sisting of compare-and-swap (CS) blocks and registers
(D). All CS blocks contain the output register.

Fig. 2. Adaptive median filter internally computing minimum,
maximum and median over kernels with 3×3 and 5×5
pixels and determining the output value using Selector.

filter (AMF) represents a multi-level approach which tries to
detect and subsequently replace corrupted pixels only [22].
At each level, filtering windows of different sizes are uti-
lized. Usually, two levels working with the 3 × 3 and 5 × 5
filtering window, respectively, are sufficient to obtain a very
good image quality (Fig. 2). Hardware implementation con-
sists of two median filters, circuitry that determines minimal
and maximal values for each filter window, delay buffers to
compensate different latency of median filters and simple
logic.

4.2 Evolutionary Approximation
CGP [23] is a form of genetic programming in which

each candidate solution is modeled using a two-dimensional
array of nc × nr programmable na-input/nb-output nodes
whose functions are taken from a set G. The circuit utilizes
ni primary inputs and no primary outputs. A unique address
is assigned to all primary inputs and to the outputs of all nodes
to define an addressing system enabling circuit topologies to
be specified (Fig. 3). As no feedback connections are allowed
in the basic version of CGP, only combinational circuits can
be created. Each candidate circuit is represented using the
so-called chromosomewhich contains nc×nr×(na+nb)+no
integers. The (na + nb) integers specify one programmable
node: na integers specify destination addresses for its inputs
and nb integers determine the function codes from G. All
possible legal chromosomes constitute the search space.

The search is usually performed using a simple (1 + λ)
evolutionary algorithm. In this algorithm, every new popula-
tion consists of the best individual of the previous population
and its λ offspring created using a mutation operator. This
operator randomly modifies up to h randomly selected genes
(integers) of the chromosome. The search is typically termi-
nated after generating a given number of populations.
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Fig. 3. An example of a simple filtering circuit (with filtering
window 3×3 pixels) represented in CGP with parame-
ters: ni = 9, no = 1, nc = 3, nr = 3, na = 2, nb = 1,
G = {buffer (0), min (1), max(2)}. Nodes 14, 16 and
17 are inactive. Chromosome: 1,8,2; 4,6,1; 2,6,0; 6,9,2;
10,11,0; 8,11,1; 12,13,1; 13,14,1; 13,14,1; 15.

In order to evaluate the population, each candidate solu-
tion is evaluated using the so-called fitness function. As the
problem is in principle multi-objective (error versus power
consumption or area), a suitable multi-objective optimiza-
tion algorithm has to be taken [2], [3]. While the circuit area
on a chip can be easily estimated by summing the areas of
components involved in the circuit, the error computation is
more time demanding (see next sections).

4.3 Approximation Strategies based on CGP
Two strategies are compared in this case study:

AS1: Since the median filter is implemented as a net-
work of compare-and-swap operations, an obvious approx-
imation strategy is to remove some of them and reconnect
the remaining ones in such a way that the error of filtering is
minimized. We propose to seedCGPwith the best known im-
plementations of median filters and evolve approximate me-
dian filters containing fewer comparators than needed in the
fully functional implementation. The fitness is constructed
according to [24]. AS1, therefore, works at the level of com-
parators.

AS2: Thewhole imagefiltering function is evolvedwith
CGP from scratch. The function set G contains all suitable
two-input components, not only the minimum and maximum
functions. CGP thus holistically develops a new image filter
with the aim to minimize the error of filtering on the training
data. Following the approach developed for the evolutionary
design of image filters [25], the error is measured by means
of the mean absolute error (MAE) between the outputs O f

produced by a candidate filter and reference (golden) outputs
Og for a given training data set, formally:

MAE =
1
K

K∑
i=1
|O f (i) −Og (i) | (1)

where K is the number of filtered pixels.

As this approach is not biased by a conventional solution
(median filter), there is a chance to discover an implemen-
tation showing better filtering properties and lower power
consumption.

It has to be noticed that these approximation strategies
differ from the approximate median filters proposed in the lit-
erature because: paper [26] utilizes approximate transistor-
level circuits to implement the comparators (our compara-
tors are always exact) and papers [3], [27] do not initial-
ize CGP with existing median implementations, but rather
evolve approximate circuits form scratch using insufficient
resources.

5. Results
This section presents the setup used to perform desired

approximations, parameters of evolved circuits and a com-
parison of approximate and original filters in terms of power
consumption, area and filtering quality. In order to obtain pa-
rameters of evolved filters, we described the filters in VHDL
and synthesized them using Synopsys Design compiler with
45 nm PDK. The filters were implemented as pipelined cir-
cuits with 8 bit operands. The goal of the synthesis was to
produce implementations operating at least at 1 GHz. Sec-
tion 5.1 deals with the implementation cost of conventional
and approximate filters. The filtering quality is compared
in Sec. 5.2.

5.1 Implementation Cost
Conventional (Exact) Filters: Table 2 summarizes

the synthesis results for various median filters discussed in
Sec. 4.1 –median filter operating on 3×3 (5×5) filter window
denoted as MF9 (MF25), center weighted median filter oper-
ating on 3 × 3 pixels with the weight equal to 3 (CWMF9),
and adaptive median filter (AMF25). While MF9 consists
of 19 compare-and-swap operations (ops), AMF25 requires
nearly ten times more operations. Each compare-and-swap
operation is implemented using an 8-bit magnitude compara-
tor and two 8-bit multiplexers. For each filter, the number
of compare-and-swap operations, total power consumption
and occupied area are presented. Contributions to power and
area are given separately for registers and logic. The delay is
intentionally omitted in all tables because timing constrains
were met in all cases.

The key observation is that logic consumes less than
20% of the total power consumption. This is due to the
pipeline nature of the circuits. The area on a chip increases
with the increasing complexity (i.e. with the number of
compare-and-swap operations) of the filters. As expected,

power [mW] area [µm2 × 103]

filter ops total regs logic total regs logic

MF9 19 6.8 80% 19% 7.8 65% 34%
CWMF9 28 12.1 81% 18% 13.6 64% 35%
MF25 99 45.0 86% 13% 37.9 50% 49%
AMF25 182 58.1 85% 14% 52.8 53% 46%

Tab. 2. Results of synthesis for conventional filters.
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the common median filter operating with 3 × 3 pixels is the
cheapest solution. If we extend the filter window to 5×5, the
power consumption increases more than 6 times and the area
on a chip increases nearly 5 times. The adaptive median filter
represents the most complex and power-demanding filter in
our study. Its power consumption is more than 8 times higher
compared to MF9. The implementation costs of CWMF is
between MF9 and MF25 since CWMF9 is, in fact, a median
network with 11 inputs whose three inputs are connected to
the central pixel of the filter window. The power as well as
the area on a chip are doubled compared to MF9.

Filters Approximated with AS1: In order to obtain
approximate median filters, CGP was seeded with the known
optimal implementations of 9-input, 11-input and 25-input
median networks exhibiting theminimal number of compare-
and-swap operations. CGP operated with na = nb = 2,
λ = 20, h = 5, and 107 (6.105 respectively) generations
were produced for 9-input (25-input, respectively) circuits.
The function set contained 8-bit compare-and-swap func-
tions and identity function. The error was determined as the
position distance with respect to the exact median according
to [24]. The goal of CGP was to minimize the position error
under constrained area (experimented with max. 20% – 95%
area of the exact implementation). As the statistical evalua-
tion of this type of evolutionary design has been performed
in the literature [24], we will report just the best evolved
solutions.

Several hundreds of approximate implementations were
produced by CGP in total. We identified ten Pareto-dominant
solutions for each type of filter and synthesized them using
Synopsys Design compiler to obtain their electrical param-
eters. Table 3 summarizes the total number of operations,
power consumption and area for selected approximate filters.
The obtained reduction with respect to the (exact) original
solution is included in the ‘red.’ columns.

Table 3 shows that pruning of the number of compare-
and-swap operations and their rearranging enables to sig-
nificantly reduce not only the area on a chip but also the
power consumption. The filtering quality will be reported
in Sec. 5.2. For example, 9-input approximate median filter
MF9 #9 exhibits a 75% reduction in power consumption and
a 69% reduction in the area compared to the accurate optimal
implementation. Overall, more than 75% of power budget
is due to switching activity of registers. The majority of the
area on a chip is utilized by registers.

Table 3 also includes parameters of approximate adap-
tive median filters. These approximate filters were obtained
by replacing the exact 9-input median and 25-input median
with their selected approximate implementations. The rest
of the circuitry remained unchanged. Three variants of ap-
proximate adaptivemedian filter are presented –AMF25 #19,
AMF25 #79 andAMF25 #99. The first variant consists of the
exact 9-input approximate median network MF9, the second
of approximate MF9 #7 and third employs MF9 #9. In all
cases, approximate MF25#9 is employed. The approximate

ops power [mW] area [µm2 × 103]

filter total red. total red. regs total red. regs

MF9
#5 15 21% 4.6 31% 78% 5.6 27% 68%
#7 12 36% 3.0 55% 76% 4.1 48% 71%
#9 8 57% 1.7 75% 75% 2.4 69% 73%
CWMF9
#5 25 10% 8.7 27% 80% 10.3 24% 66%
#7 19 32% 6.9 43% 82% 7.7 42% 63%
#9 13 53% 3.6 70% 78% 4.5 66% 68%
MF25
#6 64 35% 32.5 27% 89% 26.4 30% 45%
#8 50 49% 20.1 55% 87% 17.7 53% 51%
#9 42 57% 14.5 67% 81% 16.4 56% 64%
AMF25
#19 125 31% 27.6 52% 81% 31.4 40% 64%
#79 118 35% 23.9 58% 81% 27.7 47% 64%
#99 114 37% 22.5 61% 81% 26.0 50% 64%

Tab. 3. Results of synthesis for filters approximated in AS1.

AMFs occupy nearly half of the area and achieve up to 61%
power saving with respect to AMF.

Filters Approximated with AS2: CGP started with
a randomly generated initial population and used two-input
8-bit functions (such as minimum, maximum, addition, ab-
solute difference, conditional assignment) and other settings
(nc = 7, nr = 9, na = 2, nb = 1, λ = 7, h = 15) according
to [25]. All filters were evolved using fitness function (eq. 1)
and appropriate training and golden images consisting of
384×256 pixels, i.e. K = 98, 304.

Parameters of the best performing filters evolved under
AS2 are summarized in Tab. 4. Two noise-specific filters are
included in our comparison – a salt-and-pepper noise filter
(denoted EVO #1) and a random-valued impulse noise fil-
ter (denoted EVO #2). Please, refer to Sec. 5.2 for details
dealing with noise description. Both filters operate on the
filter window consisting of 5 × 5 pixels. EVO #1 consists of
27 8-bit components (including 17 min/max functions) and
occupies approximately the same area as MF9 but consumes
about 50% more power. This is an interesting result because
it operates on nearly three times higher number of inputs.
EVO #2 is a more complex circuit having 33 8-bit compo-
nents (including 20 min/max functions). Considering the
fact that both filters have 25 inputs, they exhibit significantly
lower implementation cost and power compared to MF25.
Their filtering quality will be discussed in Sec. 5.2.

In order to improve the quality of output images, an en-
semble of filters is often employed. In this evaluation, a bank
of filters was constructed using 3 best filters evolved for each
type of noise [25] (i.e. BNK #1 for salt-and-peper and BNK
#2 for random shot noise). As Fig. 4 shows these filters
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power [mW] area [µm2 × 103]

filter total regs logic total regs logic

EVO #1 10.2 86% 13% 7.5 55% 44%
BNK #1 39.7 90% 9% 25.5 45% 54%
EVO #2 16.1 85% 14% 11.8 55% 44%
BNK #2 52.5 90% 9% 33.3 44% 55%

Tab. 4. Results of synthesis for filters approximated in AS2.
Fig. 4. Bank of filters composed of 3 different evolved filters.

Fig. 5. Mean PSNR on 30 test images and different noise intensities obtained for conventional and approximate filters: salt-and-pepper noise
(left) and impulse noise (right).

Fig. 6. Mean PSNR and power consumption of selected image filters: salt-and-pepper noise (left) and impulse noise (right).

operate in parallel over the filter window. If the majority of
the filters of the bank indicates that the processed pixel is
a shot, then the median value is calculated from the outputs
of these filters and sent to the primary output of the bank.
Otherwise, the original value of the processed pixel is sent to
the primary output of the bank. While BNK #1 occupies sig-
nificantly lower area on a chip compared toMF25 or AMF25,
BNK#2 is comparable to AMF25.

5.2 Filtering Quality
The quality of the proposed filters was evaluated using

a set of 30 test images corrupted by means of two common
types of noise – salt-and-pepper noise and random shot noise.

While the salt-and-pepper noise removal represents a typical
benchmark problem which can be satisfactory addressed us-
ing adaptive median filter, the random shot noise removal is
known to be a significantly harder problem. The reason is
that the values of noisy pixels for salt-and-pepper noise are
equal to either 0 or 255. In the case of the random shot noise,
a noisy pixel can gain an arbitrary value from the whole range
(i.e. 0 – 255). Therefore, it is more difficult to detect this
noise because the deviation of a noise pixel can be very close
to its original value.

Figure 5 shows the filtering quality of common and ap-
proximate filters in terms of the mean peak signal-to-noise
ratio (PSNR). As 7 noise intensities (ranging from 1% to
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30%) were considered, every filter was, in fact, applied to 2
(noise type) × 30 (images) × 7 (noise intensity) = 420 im-
ages. Resulting trade-offs between power consumption and
filtering quality for noise intensity 1%, 15% and 30% are
illustrated in Fig. 6.

The most interesting observations are as follows. Re-
garding the filtering quality, the mean PSNR indicates that
filters evolved in AS2 significantly outperform other filters
especially if the noise intensity is lower (15-20% depending
on the noise type). For highly corrupted images, the bank of
evolved filters can be employed to even improve the quality
of filtering.

AMF performs well on salt-and-pepper noise, but it is
rather poor for random shot noise; however, it is a very ex-
pensive solution. When approximate filters are introduced
to AMF, the mean PSNR remains practically the same as for
AMF25. The output quality depends mainly on the quality
of MF9 (see the resulting PSNR for AMF25 #79 and AMF25
#99), but the difference is below 1 dB even when MF9 #9
consisting of eight compare-and-swap operations was em-
ployed. Anyway, approximate versions of AMF significantly
reduced power consumption of the original AMF. It has to
be emphasized that filters evolved in AS2 still consume only
around 50% of the power budget of AMF25#19.

CWMF9 and its approximations provide very good re-
sults for random shot noise. Hence, CWMF9 (or CWMF#7
having a slightly worse PSNR) seems to be a solution of
the first choice for energy constrained applications because it
provides 25% benefit in power compared to EVO#2.

If low power consumption is the key design objective
then approximate versions of MF9 show the best trade-off.

6. Conclusions
On the basis of the literature survey, we reported ap-

proximate circuits and approximationmethods that have been
applied in the area of image and video processing. We
observed that the approximations are conducted at differ-
ent levels of abstraction (from transistors via gates to RT)
and focused either on the whole modules (such as filters or
DCT) or elementary components (such as adders and multi-
pliers) of these modules. In addition to ad hoc approxima-
tion methods, many general-purpose approximation methods
have been used. Only in rare cases the approximation meth-
ods were mutually compared in terms of quality of produced
approximate circuits.

In order to investigate the impact of approximation
methods on the quality of resulting approximate circuits,
the median circuit approximation problem was chosen. We
compared two CGP-based approximation strategies based
on removing and rearranging some components (AS1) and
complete redesigning of the circuit (AS2). Three conven-
tional median-based circuits (MF, CWMF, and AMF) were
included to our study. The approximations were performed
for two types of noise and evaluated for 7 noise intensities.

As all circuits were implemented as pipelined struc-
tures operating at least at 1 GHz, the approximation and
optimization was focused on obtaining the best trade-offs be-
tween power consumption and filtering error. In the case of
AS1, approximate circuits consistently show slightly worse
filtering quality, but significantly reduced power consumption
with respect to their exact counterparts. The best trade-offs
were obtained with AS2, i.e. when CGP was not biased by
conventional designs and could deliver new well-optimized
filtering structures.

We can conclude that complete resynthesizing of the
circuit rather than approximating a conventional solution pro-
vides better trade-offs, especially if good filtering quality is
desired. While this approach (SA2) was applicable to image
filtering circuits, it is not currently applicable for complex
circuits (such as the whole HEVC coder) because the design
process based on CGP is not fully scalable. Improving its
scalability will be one of our future research objectives.
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