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Abstract. This paper presents an overview of the current 
research trends in the field of substrate integrated wave-
guide (SIW) technology, with particular emphasis on the 
issues related to the emerging applications in the frame-
work of the Internet of Things (IoT) and the fifth genera-
tion of mobile communication (5G). More specifically, 
different techniques adopted to miniaturize SIW cavities 
are described, with the aim of reducing the footprint of 
SIW components and filters. Moreover, the use of innova-
tive materials, like paper, textile and 3D printed dielectric 
substrates, is presented and discussed, and the implemen-
tation of ecofriendly, wearable, and fully 3D structures is 
illustrated. 
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1. Introduction 
The rapid evolution of new applications in the 

framework of the Internet of Things (IoT) [1], [3] and the 
fifth generation of mobile communication (5G) [4], [5] 
poses a set of requirements for the developers of micro-
wave wireless systems. Besides the low cost, the fast de-
sign process, and the simple fabrication technology, the 
future generation of microwave systems needs to exhibit 
easy integration, compact size, as well as the possibility to 
be implemented on unconventional materials (like paper, 
textile, and 3D printed materials).  

The future generation of microwave systems needs to 
integrate in a single device the microwave circuitry, sens-
ing capability, and wireless transmission of data and (pos-
sibly) power. In order to keep the design and fabrication 
costs as low as required by the market, the use of a single, 
suitable technology is mandatory.  

Moreover, specific applications require the use of in-
novative materials that are not commonly used in the fabri-

cation of microwave circuits: wearable components and 
antennas, for instance, can be conveniently integrated on 
garments, by adopting the textile as the substrate material. 
Ecofriendly applications, in the field of agriculture and 
environmental monitoring, can benefit from the use of 
paper (instead of plastic) for the dielectric substrate.  

In this scenario, the substrate integrated waveguide 
(SIW) technology [6], [7] represents a particularly suitable 
candidate, due to its capability to implement passive com-
ponents, active devices, and antennas by using a single 
technology and manufacturing process. High performance 
components in terms of losses are usually realized by using 
waveguide technology. A lot of effort has been devoted to 
mass and weight reduction for this technology [8]–[11], 
even in combination with high dielectric materials [12], 
[13]. The main problems remain their integrability. SIW is 
the integrated version of this technology and is very com-
petitive from the point of view of losses. In fact, the SIW 
technology allows to implement interconnects and cavities 
by using a standard printed-circuit board (PCB) process, 
based on a laminated dielectric substrate and metal vias 
that provide the lateral confinement. SIW technology 
presents several advantages over other planar technologies 
(e.g., microstrip line and coplanar waveguide), such as 
complete shielding, and low loss, while preserving a low 
fabrication cost and a well-established manufacturing 
process. 

One of the major limitations of SIW structures, how-
ever, is related to the dimensions, which depend on the 
operation frequency and the dielectric material. While 
using dielectric substrates with high permittivity allows 
reducing interconnect and cavity size, it has typically 
a detrimental effect on losses, and consequently it leads to 
poor quality factors. For this reason, several solutions have 
been proposed to reduce the size of SIW structures, in-
cluding the substrate integrated folded waveguide [8] and 
the half-mode substrate integrated waveguide [15]. 

This paper presents an overview of recent achieve-
ments in the implementation of novel SIW cavity filters for 
IoT applications, with particular emphasis on the minia-
turization and the use of new materials. The use of folded, 
half-mode and quarter-mode SIW cavities will be discussed 
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Fig. 1. Geometry comparison of a standard and an integrated 
waveguide: (a) Cross section of a standard rectangular 
waveguide; (b) Cross section of a substrate integrated 
waveguides, and electric field of the first two modes. 

and several filters based on these structures will be 
presented. Moreover, the implementation of SIW filters on 
paper (for eco-friendly applications), on textile (for weara-
ble systems), and by 3D printing (to exploit the maximum 
versatility and to tailor the material properties) will be 
presented and discussed through several examples.  

2. Miniaturized SIW Cavities  
The substrate integrated waveguide represents an in-

tegrated version of the classical rectangular waveguide 
[6], [7]. As shown in Fig. 1, the main difference in terms of 
dimensions resides in the height: in the standard rectangu-
lar waveguide the height h is usually about a half of the 
width w, while in SIW the dimension h is much smaller 
than w and it corresponds to the thickness of the dielectric 
substrate, used in the PBC fabrication.  

2.1 Folded SIW Cavity 

The basic idea of folded SIW is to reduce the foot-
print by folding the structure around a metal septum [8]. 
This solution allows reducing the footprint of the structure 
by a factor two.  

A folded SIW can be obtained by using a two-layer 
topology (Fig. 2). The metal septum between the two lay-
ers is connected to the side posts on one side, whereas it 
leaves a gap on the opposite side. This leads to a U-shaped 
waveguide. The electric field of the fundamental mode of 
the folded SIW is depicted in Fig. 2 (above) and in practice 
corresponds to the fundamental TE10 mode of the standard 
rectangular waveguide, once the waveguide is folded 
around the metal septum. Conversely, the electric field of 
the second mode of the folded SIW is illustrated in Fig. 2 
(below): this mode corresponds to the TE20 mode of the 
standard rectangular waveguide, after folding the structure 
around the metal septum. 

 

 
Fig. 2. Geometry of a folded SIW and representation of the 

electric field of the first two modes. 

Note that the fundamental mode exhibits an odd 
symmetry with respect to the middle plane between the two 
dielectric layers, while the second mode shows an even 
symmetry. 

Because of its topology, this structure can be easily 
fed by stripline and, thanks to the modal symmetry, the 
stripline excites the fundamental mode but not the second 
(TE20) mode, thus resulting in a wider spurious free 
behavior.  

The gap g between the metal septum and the side 
posts (Fig. 2) affects the resonance of the folded wave-
guide by changing the electrical length of the structure. In 
particular, the narrower the metal septum, the higher is the 
waveguide cutoff frequency. This effect can be exploited 
for obtaining filtering structures as that sketched in Fig. 3 
[16]. In this case, the waveguide sections with a large sep-
tum alternate to waveguide sections with a narrow septum 
(which defines the insets). Large-septum waveguide sec-
tions behave as resonators, narrow-septum waveguide 
sections behave instead as impedance inverters. This leads 
to the classical equivalent circuit shown in Fig. 4, consist-
ing in transmission lines and admittance inverters.  

 
Fig. 3. Geometry of a filter based on the folded SIW cavity 

(from [16]). 
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Fig. 4. Equivalent circuit of folded SIW filter. 
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By using the proposed topology, a two-pole filter 
centered at 4.5 GHz with 1.4 GHz bandwidth has been 
designed and manufactured [16]. The filter design can be 
performed in two different ways: the classical way is based 
on the properly dimensioning of resonator lengths and 
insets, to realize the filtering response of the equivalent 
circuit in Fig. 4. The second technique, described in [16], is 
based on the tuning of the resonant modes of the cavity, by 
modifying the size of the insets.  

The filter has been manufactured by milling tech-
nique, by adopting two layers of Taconic TLX-9 laminate, 
with dielectric permittivity r = 2.5, loss tangent 
tan  = 0.0019, and thickness h = 0.76 mm. The photo-
graph of the prototype is shown in Fig. 5a. The comparison 
between measured and simulated scattering parameters is 
reported in Fig. 5b.  

 
(a) 

 
(b) 

Fig. 5. Second order filter based on a dual-mode folded SIW 
cavity (from [16]): (a) Photograph of the bottom layer; 
(b) Comparison between simulated and measured 
scattering parameters of the filter. 

 
Fig. 6. Geometry of a half-mode SIW and representation of 

the electric field of the fundamental mode.  

2.2 Half-Mode SIW Cavity 

As shown in Fig. 1b, the fundamental mode of the 
SIW structures exhibits a magnetic wall in the vertical 
symmetry plane. This suggests that it is possible to use just 
a half of the SIW if the cut is closed with a magnetic wall.  

Unfortunately, on the contrary of the electric wall that 
can be created simply by a metallic material, the magnetic 
wall is more difficult to realize. The behavior of the mag-
netic wall can be approximated by exploiting a high im-
pedance load. According to Fig. 6, an abrupt interruption 
of the upper SIW wall results in a high impedance discon-
tinuity. This effect can be considered a sort of virtual mag-
netic wall, and this allows to obtain the half-mode substrate 
integrated waveguide (HMSIW) [15].   

The same concept can be exploited in the design of 
cavity resonators, to be adopted in the implementation of 
filters. Of course, the fact that the impedance is high but 
not infinite leads to an electromagnetic field that is not 
completely confined inside the SIW. Therefore, a small 
leakage due to radiation is present. This effect decreases 
the Q-factor. In any case, lower SIW height h or higher 
dielectric constant allow the implementation of a better 
virtual magnetic wall (with a higher Q-factor).  

By using the HMSIW technology, it is possible to re-
alize a filter with a geometry very similar to that used for 
folded waveguide, as firstly proposed in [17]. In fact, the 
fundamental mode of the HMSIW can be excited by a mi-
crostrip line, same as the fundamental mode of the folded 
SIW can be excited by a stripline. According to Fig. 7, 
wide HMSIW sections can be exploited as resonators, 
while narrower sections can be used to implement admit-
tance inverters. This leads to the implementation of the 
circuit of Fig. 4, where narrower HMSIW sections corre-
spond to lower values of impedance inverters.  

By adopting the proposed geometry, a four-pole filter 
with central frequency at 4.5 GHZ and 1.4 GHz bandwidth 
has been designed and manufactured in [17]. In this case, 
the fabrication required the processing of one single layer 
of Taconic TLX-9 laminate, with a complexity reduction 
compared to the folded SIW filter proposed in the previous 
section. The photograph of the prototype is shown in  
Fig. 8a, and the comparison between measured and simu-
lated scattering parameters is reported in Fig. 8b. 

 
Fig. 7. Geometry of a filter based on the half-mode SIW 

cavity (from [17]). 
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Fig. 8. Four-pole filter based on a half-mode SIW cavity 
(from [17]): (a) Photograph of the prototype; 
(b) Comparison between simulated and measured 
scattering parameters of the filter. 

2.3 Quarter-Mode SIW Cavity 

The concept of HMSIW cavity can be further ex-
tended to obtain a quarter mode SIW cavity (QMSIW). As 
shown in Fig. 9, a quarter mode-SIW cavity can be ob-
tained by cutting a rectangular SIW cavity into four parts 
along the symmetry planes [18]. This is obtained by re-
moving the top metal wall and metal vias of three quarters 
of the cavity, thus reducing the footprint of the cavity by 
75%. 

 
Fig. 9. Geometry of a quarter-mode SIW cavity and 

representation of the electric field of the fundamental 
mode (from [18]). 

 
(a) 

 
(b) 

Fig. 10. Coupling mechanisms in a two-pole filter based on 
quarter-mode SIW cavity (from [18]): (a) Coupling is 
obtained by removing the common posts; (b) Coupling 
is controlled by shifting the two cavities. 

 
(a) 

 
(b) 

Fig. 11. Four-pole filter based on a quarter-mode SIW cavity 
(from [18]): (a) Photograph of the prototype; 
(b) Comparison between simulated and measured 
scattering parameters of the filter. 

The equivalent circuit of Fig. 4 can be implemented 
also by using QMSIW cavities. According to Fig. 10a, the 
coupling between two adjacent QMSIW cavities is ob-
tained by removing the row of common posts. The control 
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of the coupling is obtained by side shifting the two cavities, 
as shown in Fig. 10b. The smaller the shift x, the lower is 
the admittance inverter value. The coupling to input and 
output transmission lines is instead controlled by the value 
of z: the larger the shift z, the lower is the admittance in-
verter value. In fact, small values of z mean that the mi-
crostrip line is connected to the point where the electric 
modal field is large (see Fig. 9), thus determining a large 
external coupling. 

A four-pole filter centered at 4 GHz and with an FBW 
of 16% has been designed and manufactured in [18]. A di-
electric substrate Taconic RF-35, with r = 3.5, tan  = 
0.0018, and thickness t = 0.508 mm, was adopted for the 
fabrication. A photograph of the manufactured prototype is 
shown in Fig. 11a. Measured results are plotted in Fig. 11b, 
where also the simulated results and the response of the 
equivalent circuit are reported. 

3. SIW Based on New Materials 
The use of new materials and fabrication technologies 

is expected to be a key point of the next generation of 
wireless systems. The spread of wearable systems will lead 
to the use of fabric-based components, where the micro-
wave structures are embedded in the garments. Examples 
of SIW components and antennas in textile have been re-
ported in [19] and [20]. The need to implements eco-sus-
tainable wireless systems is expected to be a strong re-
quirement for some applications, for instance in the field of 
agriculture and environmental sensing. SIW circuits based 
on paper substrates and implemented by different tech-
niques have been described in [21]–[23]. Finally, the addi-
tive manufacturing represents an emerging area of re-
search, where the microwave components are fabricated by 
3D printing, in a single-pass, low-cost manufacturing pro-
cess. The fused-deposition modeling has been adopted for 
the implementation of SIW components and antennas [24], 
[25], by exploiting the possibility to synthetize the required 
dielectric material by properly adjusting the infill percent-
age during the printing.  

3.1 Paper-based SIW Filters 

The use of paper for the implementation of micro-
wave components is particularly interesting, as paper is 
a cheap material, it is flexible and therefore potentially 
suitable to the implementation of conformal circuits and 
antennas, and it is eco-friendly, for those applications 
(agriculture, environmental monitoring, …) where reduc-
ing the ecological impact is critical.  

SIW technology is particularly suitable to the imple-
mentation on paper, and two different techniques can be 
adopted. The use of inkjet printing was proposed in [22]: 
an inkjet printer, that uses a special ink with silver parti-
cles, realizes the top and bottom metal layers of the SIW, 
and the vias consist of brass rivets. Another approach was 

adopted in [23]: aluminum foils are pasted at the top and 
bottom sides of a thick paper sheet by using epoxy glue, to 
define the top and bottom metallization of the SIW struc-
ture; subsequently, a classical milling technique is adopted, 
and the metal vias are realized by conductive paste. The 
latter solution avoids the sintering process of the conduc-
tive ink and reduces the fabrication to a well establish PCB 
process. 

The filters presented in the previous section and based 
on classical plastic substrates can be implemented on pa-
per. The filters presented in this section have been fabri-
cated by using the technology described in [23], based on 
the standard milling processing of a paper layer with alu-
minum foils. The paper substrate exhibits a thickness of 
500 m, relative dielectric permittivity r = 2.2, and loss 
tangent tan  = 0.04.  

Two-pole filter on paper, based on a half-mode SIW 
cavity and operating at the central frequency of 4.5 GHz, 
was proposed in [20]. The photograph of the prototype is 
shown in Fig. 12a: the filter is quite compact, with a length 
less than 40 mm, including the input/output microstrip 
transitions. The simulated and measured frequency re-
sponse is reported in Fig. 12b, showing a measured inser-
tion loss is 5.0 dB at the frequency of 4.5 GHz. 
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(b) 

Fig. 12. Two-pole filter on paper, based on a half-mode SIW 
cavity (from [26]): (a) Photograph of the prototype; 
(b) Comparison between simulated and measured 
scattering parameters of the filter. 
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(a) 

 
(b) 

Fig. 13. Quarter-mode SIW filter on paper, fabricated by 
milling technique (from [23]): (a) Photograph of the 
prototype; (b) Comparison between simulated and 
measured scattering parameters of the filter. 

A quarter-mode SIW filter on paper, operating at the 
frequency of 4 GHz, was firstly presented in [23]: it con-
sists of two side-coupled quarter-mode SIW cavities, fed in 
the corners by microstrip lines with tapered transitions.  
Fig. 13 shows the photograph of the prototype and the 
simulated and measured frequency response of the filter. 

3.2 SIW Filters on Textile 

The deployment of wearable electronic devices is 
gaining increasing popularity, with applications in a variety 
of different fields, ranging from healthcare to rescue of 
workers in harsh environments [28]. Among the different 
solutions for the implementation of wearable devices, the 
direct use of textile as the substrate for the microwave 
components and antennas represents a particularly inter-
esting solution, with the results of a perfect integration of 
the electronics in the garments.  

SIW structures have been implemented on textile 
[19], [20], by using a layer of expanded cell rubber as the 
dielectric substrate, a conductive fabric (specifically, elec-
tro textile) for the metal layers, and brass rivets for the 
metal vias. Multilayer topologies are possible, by stacking 
different dielectric layers, with conductive fabric glued in 
between. The dielectric textile material adopted in this 
work exhibits a dielectric permittivity εr = 1.575 and a loss 
tangent  tan δ = 0.0238,  and  the  single-layer  textile  with 

 
(a) 

 
(b) 

 
(c) 

Fig. 14. Folded SIW filter on textile (from [20]): 
(a) Photograph of a folded SIW waveguide on textile; 
(b) Geometry of the filter; (c) Comparison between 
simulated and measured scattering parameters. 

a thickness of h = 3.94 mm. The photograph of a folded 
SIW structure is shown in Fig. 14a. 

A two-pole SIW filter on textile, based on a folded 
SIW cavity with insets in the middle metal septum, was 
proposed in [20]. It was designed to operate at the fre-
quency of 2.45 GHz, in the industrial, scientific and medi-
cal (ISM) band. The geometry of the filter is shown in  
Fig. 14b, and its simulated and measured frequency re-
sponse is reported in Fig. 14c. The 3 dB bandwidth of the 
filter is 725 MHz and the insertion loss is 2.3 dB at 
2.45 GHz. 

3.3 SIW Filters by 3D Printing 

Additive manufacturing techniques are becoming 
very popular in the microwave community, because they 
allow a great versatility in terms of shapes, materials, and 
fabrication process. 

SIW structures based on 3D printing has been pro-
posed in last few years, starting from the first 3D wave-
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guide [24] to microfluidic sensors based on a 3D printed 
SIW cavity [29], and broadband slab SIW structures [25].  

Among the variety of 3D printing techniques, the 
fused deposition modeling (FDM) is particularly interest-
ing, as it allows to print structures with different material 
density (infill) from 100% to roughly 10% [30]. This fea-
ture permits to control the dielectric permittivity and loss 
tangent. In fact, in FDM process, the material is heated and 
extruded through a nozzle, and deposited to form a two-
dimensional pattern. Stacked 2D layers results into the 
final 3D printed structure. One unique feature of the 3D 
printing is the capability of changing the density of the 
printed object, by varying the spacing during the filament 
deposition.  

The flexibility of FDM technique can be conveniently 
exploited in the design of SIW cavity filters. In [27], ABS 
filament with dielectric permittivity r = 2.7 and loss 
tangent tan  = 0.02 was adopted. By using 40% infill 
factor, the dielectric permittivity is reduced to r = 1.6 and 
the loss tangent is simultaneously reduced to tan  = 0.008. 
The effects are a larger size of the circuit dimensions, as 
well as an increase in the quality factor of the resonant 
cavities. Based on this concept, two examples of three-pole 

 
(a) 

 
(b) 

 
(c) 

Fig. 15. 3D printed SIW filter with different infill (from [27]): 
(a) Geometry of the filter with 100% infill; 
(b) Geometry of the filter with 40% infill; 
(c) Photograph of the two prototypes. 

filters were designed in [27]: the former with 100% infill 
(Fig. 15a) and the latter with 40% infill (Fig. 15b). While 
the smaller infill leads to increased component dimensions 
(Fig. 15c), it also guarantees an increased Q-factor and 
lower insertion loss, as demonstrated in [27]. 
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