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Abstract. The experimental performance evaluation of 
an optoelectronic oscillator based on a band-pass micro-
wave photonic filter architecture is carried out. The novelty 
of this proposal resides in the fact that the architecture 
used allows enhancing the free spectral range of the opto-
electronic oscillator. Considering the optical spectral 
characteristics of the multimode laser diode used as 
an optical source, the length and the chromatic dispersion 
parameter of the optical fiber which acts as a feedback 
loop, it is possible to determine the appearance of a series 
of spectrally pure microwave signals widely spaced. In 
particular, the experimental results show a phase noise as 
low as –92.69 dBc/Hz at 10 kHz offset frequency from the 
2.26 GHz carrier for an optical delay line of 25.24 km and 
a Q factor of 2.04 × 109. 
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1. Introduction 
Since Optoelectronic Oscillators (OEOs) were pro-

posed by Yao and Maleki [1] in 1996, these systems have 
been attracting a lot of interest for their capabilities in gen-
erating high frequency low phase-noise microwave signals. 
Thanks to these advantages, currently OEOs find applica-
tions in optical and wireless communication, radar, signal 
processing, sensors, metrology and radio astronomy [2], 
[3]. The simplest scheme of an OEO is composed by 
a pump laser (usually a Distributed Feedback Laser DFB), 
and a feedback loop that includes an intensity modulator, 
an optical fiber delay line, a fast photo-detector, a RF 

Band-Pass Filter (BPF), and a RF amplifier [4–7]. Basi-
cally, the principle of operation of an OEO is based on the 
energy stored on the optical fiber delay line, which is usu-
ally from a few meters to tens of kilometers, ensuring in 
this way several oscillation modes. The selection of a par-
ticular single oscillation mode can be obtained by using: 
delay line OEO [8], a dual-loop OEO [9], a dual injection-
locked OEO [5], or a fiber ring resonator [10]. Due to the 
modes are closely spaced, the aforementioned configura-
tions require the use of an ultra-narrow BPF for the selec-
tion of a single mode injecting into the feedback loop. 
However, the use of BPFs results in a lower RF stability 
and higher phase noise [11]. In this regard, some works 
have reported techniques that avoid the use of any electric 
microwave filter. For example, in [12], a novel optically 
tunable OEO scheme by using a tunable laser and an injec-
tion locking of a Fabry-Perot-Laser Diode is described; in 
[11], the use of a Fabry-Perot etalon optical filter as the 
mode selector instead of an RF filter is experimentally 
demonstrated.  

On the other hand, Microwave Photonic Filters 
(MPFs) have several applications to microwave and optical 
systems [13]. About this theme, in the past we have pro-
posed a novel band-pass MPF topology whose frequency 
response in the range of 0.01–10 GHz comprises a series of 
band-pass windows centered at frequencies that can be 
tailored to the function of the intermodal separation that 
characterizes a Multimode Laser Diode (MLD), the length 
and chromatic dispersion parameter of the optical fiber 
used [14]. 

Taking into account the precedent paragraphs, the aim 
of this work is to undertake the experimental performance 
evaluation of an optoelectronic oscillator based on the 
band-pass microwave photonic filter architecture reported 
in [14]. The novelty of this proposal resides in the fact that 
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the architecture used allows enhancing the Free Spectral 
Range (FSR) of the optoelectronic oscillator. Thus, our 
hypothesis resides in demonstrating that the chromatic 
dispersion parameter of the optical fiber delay line, as well 
as the spectral characteristics of the MLD can be used in 
advantageous manner to obtain spectrally pure microwave 
signals widely spaced (in the order of GHz). Therefore, it is 
not necessary in our configuration to employ any electrical 
BPF in the feedback loop. In particular, it is demonstrated, 
experimentally, that using an optical delay line of 
25.24 km, a Q factor of 2.04 × 109 and a phase noise as low 
as –92.69 dBc/Hz at 10 kHz offset frequency are obtained 
from the 2.26 GHz carrier. 

This paper is organized as follows. Section 2 provides 
the basic theory of the OEO operation principle. Experi-
mental procedures and results are described in Sec. 3. Fi-
nally, the main conclusions are included in Sec. 4. 

2. Basic Theory 
Figure 1 depicts a conventional OEO scheme which 

normally consists of a pump laser (DFB), followed by 
a Mach-Zehnder Intensity Modulator (MZ-IM). The light 
from the output of the MZ-IM is injected into an optical 
fiber delay line, and detected by the fast Photo-Detector 
(PD). An electrical amplifier and a BPF are used to provide 
sufficient gain to the loop and to select the desired oscilla-
tion frequency, respectively. Finally, the output of the BPF 
is connected to the electric-input port of the modulator to 
complete the feedback loop, allowing in this way the 
oscillation of the system [1], [2]. 

The Quality factor (QOEO) parameter is defined as the 
ratio between the oscillation frequency (fosc) and the full 
width at half-maximum (ΔfFWHM) of the generated signal, 
and it is [1] 
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The denominator in (1) is given as [1] 
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where τ is the total group delay of the loop given by 
τ = Ln/c, where L and n are the length and refractive index 
of the optical fiber used as optical delay line, respectively, 
and c is the speed of light in free space. The input-noise-to-
signal-ratio () of the oscillator is a function of the input 
noise density (N), the total oscillating power (Posc), and the 
gain of the electrical amplifier (GA), that is [15] 
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The power spectral density (SRF) of the OEO for 
a frequency offset f ´ is defined as [15] 
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Fig. 1. Basic architecture of an optoelectronic oscillator. 

This last relationship is used to compute the phase noise, 
given as [1] 
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The phase noise is determined as a single value measured 
at a frequency offset from the carrier [16], and it is notori-
ously independent of the oscillation frequency. 

On the other hand, it must be noted that the structure 
enclosed within the black dotted box of Fig. 1 corresponds 
to the MPF architecture reported in [14]. In this reference, 
a detailed mathematical analysis was carried out to demon-
strate that, when a MLD is used and a continuous RF signal 
supplied by an electrical signal generator is applied to the 
electric port of the MZ-IM, the filtering of microwave 
signals is accomplished. Therefore, the central frequency fn 
for these filtered signals is a function of the length of the 
optical fiber L, the chromatic fiber-dispersion parameter D 
associated to the optical fiber, the intermodal separation  
of the MLD, and its value can be computed as [14] 

 
DL

n
fn    (6) 

where n is a positive integer (n = 1, 2,…). 

Referring again to the scheme depicted in Fig. 1 and 
considering a MLD as the pump laser (instead of a DFB), 
the continuous RF signal issued by the PD is amplified, 
filtered and connected to the electric port of the MZ-IM 
forming a feedback loop. At this point, two effects are 
manifested: (i) the filtering effect is brought into play, and 
(ii) the MPF system operates as an oscillator. Thus, the 
central frequency of each MPF filtered signal corresponds 
to the oscillation frequency fOEO of the OEO, that is 
fn = fOEO. Now, n of (6) is the nth mode of the oscillation 
frequency. 

3. Proposed OEO and Experimental 
Results 
The schematic diagram of the proposed OEO using 

a MLD as pump laser is shown in Fig. 2. The block 
enclosed into the dotted box is the MPF, whose frequency 
response exhibits a series of filtered microwave band-pass 
windows  characterized  by a bandwidth at –3 dB around of 
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Fig. 2. Proposed OEO using a band-pass microwave photonic 

filter architecture. 

300 MHz. In contrast to Fig. 1, the absence of a BPF in the 
feedback loop is notorious. In the following, we describe in 
detail the operation of the proposed OEO architecture. 

In a first step, the MLD used in this experiment is op-
tically characterized by means of an optical spectrum ana-
lyzer (Agilent, model 86143B). The MLD is operated by 
a temperature-controller, guaranteeing in this way stability 
to thermal fluctuations and a low value of Relative 
Intensity Noise (RIN) [17]. Figure 3 illustrates the emission 
spectrum of the MLD for a current of 20 mA, obtaining the 
optical parameters: λ0 = 1544.25 nm and λ = 1.1 nm. The 
optical central wavelength value guarantees that the MZ-
IM operates in the appropriate optical bandwidth. 

The light issued by the MLD is injected to the MZ-IM 
(Photline, MXAN-LN-20-bandwith-20 GHz, insertion loss 
of 2.7 dB, V = 3.0 V, operating wavelength from 1530 to 
1580 nm) through a Polarization Controller (PC) in order to 
optimize the polarization of the MLD output. The modu-
lated light is launched to a spool of Single-Mode Standard 
Fiber (SM-SF, Corning SM-SF-28,  = 0.22 dB/km, D = 
15.81 ps/nm-km @ 1550 nm) of 25.24 km (available in our 
laboratory). The light coming from the SM-SF is converted 
to its corresponding electrical signal by a fast PD (Miteq, 
model DR-125G-A, bandwidth-13 GHz, and  = 0.9 A/W). 
An electrical amplifier is used to provide sufficient gain 
(approximately 22 dB). The amplified electrical signal is 
separated by means of a power splitter. Port 3 is fed to the 
RF port of the MZ-IM in order to close the OEO feedback 
loop, whereas output of Port 2 is connected to an Electrical 
Spectrum Analyzer (ESA) to evaluate the frequency re-
sponse of the OEO. 

 
Fig. 3. Optical spectrum corresponding to the MLD. 

 
Fig. 4. Measured frequency response of the OEO using 

an MLD as pump laser. 
 

Oscillation 
Frequency

Experimental 
[GHz] 

Theoretical 
[GHz] 

Error 
[%] 

f1 2.26 2.27 0.44 
f2 4.53 4.55 0.43 
f3 6.80 6.83 0.43 

Tab. 1. Experimental and theoretical oscillation frequency of 
the proposed OEO scheme. 

Figure 4 depicts the OEO frequency response 
measured by the ESA (Anritsu, model MS2830A-044). The 
presence of a series of stable signals located at 
f1 =2.26 GHz (14.63 dBm, SNR = 31.63 dB), f2 = 4.53 GHz 
(–9.25 dBm, SNR = 7.75 dB), and f3 = 6.80 GHz  
(–3.93 dBm, SNR = 13.07 dB) is clearly appreciable. These 
experimental results are in good agreement with the 
theoretical results obtained applying (6), that are: 
f1 = 2.27 GHz, f2 = 4.55 GHz, f3 = 6.83 GHz. Experimental 
and theoretical results are summarized in columns two and 
three of Tab. 1, respectively.  

Due to the periodicity of the optical spectrum (see 
Fig. 3), the experimental microwave signals are perfectly 
spaced at 2.27 GHz, in contrast, the FSR reported in [8] is 
closely spaced at 150 kHz (DFB as pump laser). In the 
latter, adding a BPF in the feedback loop of the OEO is 
necessary, while our system does not require. Given that 
the optical fiber, which plays the role of optical delay, is 
very sensitive to the surrounding environment, measure-
ments were carried out in a climate-controlled room (25°C) 
in order to guarantee accuracy and stability for the micro-
wave signals. 

In particular, the microwave signal centered at 
2.26 GHz was selected in order to achieve the performance 
evaluation of this optoelectronic oscillator. The procedure 
of computation of Q at the oscilation frequency of 
2.26 GHz is described below. 

Initially, the input noise density is mesured experi-
mentally determining N = 1  10-13 W/Hz. From Fig. 4, the 
total oscillating power is determined as Posc = 0.029 W. 
Knowing that the gain of the amplifier used is 22.45 dB, 
then GA = 175.79. Afterwards, considering L = 25.24 km 
and n = 1.47 for the optical fiber, thus τ = 124 µs. The 
knowledge of these parameters  allows, in the first step, the 
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Fig. 5. Phase noise measurement. 

 

Frequency 
Offset [Hz] 

Theoretical 
[dBc/Hz] 

Experimental 
[dBc/Hz] 

102 –67.55 –69.65 
103 –107.55 –91.75 
104 –147.55 –92.69 
105 –187.55 –94.76 

Tab. 2. Phase noise measurement of the OEO at 2.26 GHz. 

use of (3) to obtain the input-noise-to-signal-ratio of the 
oscillator ( = 1.065  10-7 Hz-1). This result is substituted 
in (2) to compute the full width at half-maximum of the 
generated signal (ΔfFWHM = 1.10 Hz). Then, the quality 
factor Q is determined by using (1), obtaining QOEO = 
2.04  109 that is in good agreement with values reported in 
the literature [5, 15, 18]. Subsequently, the power spectral 
density and the phase noise is determined by (4) and (5), 
respectively.  

Figure 5 depicts the phase noise measured by the ESA 
and the presences of spurious peaks, according to the liter-
ature, are attributed to the delay by the long optical fiber in 
the feedback loop [19]. Finally, the theoretical and experi-
mental phase noise measurements are listed in Tab. 2. 

4. Conclusions 
We have carried out the experimental performance 

evaluation of an optoelectronic oscillator based on a band-
pass MPF architecture. The key novelty of the proposed 
OEO scheme is the advantageous use of the chromatic 
dispersion parameter of the optical fiber, as well as the 
optical spectral characteristics of the MLD to select a par-
ticular oscillation frequency. The band-pass MPF acts as 
an oscillation frequency selector. Thus, the oscillation 
frequency is linked to the band-pass frequency response of 
the MPF that allows a wide FSR without any additional 
electronic microwave filter. In particular, the microwave 
signal at 2.26 GHz was analyzed, obtaining a high quality 
factor (Q = 2.04 × 109) and a phase noise as low as  
–92.69 dBc/Hz at 10 kHz offset frequency. Improvement is 
still possible if an RF low noise amplifier is used. Even 
more, the simplicity of the proposed OEO resides in the 
fact that, in contrast to previous reported works, it is not 
necessary to use additional optical devices, e.g., optical 

sources, Erbium Doped Fiber Amplifiers (EDFAs), optical 
filters, among others. Note that knowing the intermodal 
separation of the MLD, the length of the optical fiber and 
its associated chromatic dispersion parameter, it is possible 
to determine the theoretical oscillation frequency by means 
of (6). The intermodal separation of the MLD is a fixed 
value and it is provided by the manufacturer, the chromatic 
dispersion parameter could be tailored by using Photonic 
Crystal Fibers (PCFs) [20], however, the simplest way to 
select the oscillation frequency is by choosing an appropri-
ate length of optical fiber. For example, for lengths of 10, 
15 and 20 km, the corresponding FSRs are: 5.73, 3.83 and 
2.87 GHz, respectively. Currently, we are working on 
a self-sustaining architecture for an optical fiber communi-
cation system in order to justify the use of a long length 
optical fiber. Inclusively, the feedback loop in an OEO 
scheme allows generating its own RF source, providing 
privacy and security in communication systems. 
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