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Abstract. In multi-input multi-output (MIMO) radar sys-
tem, good orthogonality between transmitting waveforms will
fairly simplify the signal processing, along with improve the
targets detection as well as the parameters estimation per-
formance of the system. In this paper, a discrete frequency
and phase coding waveform (DFPCW), which attains good
orthogonality by varying the carrier frequency and initial
phase of each pulse in the pulse train, is designed. The theo-
retical derivations of ambiguity function and cross ambiguity
function of the DFPCW are also given. After then, a generic
algorithm is applied by optimizing the carrier frequency code
sequence and initial phase code sequence to minimize both
the auto-correlation sidelobe peaks and cross-correlation
peaks of the waveforms. The simulation results demonstrate
that DFPCW has better orthogonality and sidelobe prop-
erty compared with the traditional discrete frequency coding
waveform and widely employed frequency modulated con-
tinuous wave, henceforth this new waveform may become to
an alternative option for MIMO radar.
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1. Introduction
Distinct waveforms can be emitted by each transmit-

ting antenna of the multi-input multi-output (MIMO) radar
individually, giving more freedom to systems during trans-
mission [1], [2]. To fulfill the demand of simpler targets de-
tection and parameter estimating, the orthogonal waveforms
transmission has become to a general assumption when an-
alyzing the performance of various MIMO radars as well as
processing signals [3–5]. However, in reality, no transmit-
ted waveform is perfectly orthogonal, thus how to producing
waveforms with good orthogonality is being explored in-
depth when designing a MIMO radar waveform [6], [7].

Generally, there are three distinct diversities that can be
employed when considering the orthogonality between sig-
nals: time diversity, frequency diversity and code diversity
[3], [8]. For orthogonal signals employing staggered time
or multiple frequencies (including carrier frequencies and
Doppler frequencies), the coherence of targets may be de-
creased. Therefore, achieving good orthogonality with code
diversity is preferred in many theoretical analysis and prac-
tical MIMO radar systems. In 2004, Deng employed sim-
ulated annealing algorithm along with optimized the cross-
correlation of waveforms by means of phase modulation,
obtaining a desirable pair of phase coding waveforms pos-
sessing the optimal auto-correlation sidelobe peak (ASP) and
cross-correlation peak (CP) [9], and improvements are given
in [10]. After that, discrete frequency coding waveform
(DFCW)optimizing the frequency coding sequence ofCostas
waveforms, has been studied extensively [11–15]. Replacing
the constant frequency with linear frequency modulation in
the DFCW is also extensive investigated [16–18]. However,
the basis of the above mentioned orthogonal coding wave-
forms [11–18] depends on frequency diversity advantage,
which can only provide limited orthogonality in frequency
domain.

In this paper, we find that a new kind of variable can be
introduced in the cross ambiguity function by a change of the
initial phase of each pulse, offering a new diversity to further
decrease the cross-correlation of waveforms. Based on this,
we propose discrete frequency and phase coding waveform
(DFPCW), which has better orthogonality with the use of ge-
netic algorithm optimizing both the frequency code sequence
and initial phase code sequence of the pulse train. This paper
is structured as follows. Section 2 presents the derivation of
ambiguity function and cross ambiguity function of DFPCW.
Taking advantage of genetic algorithm, the optimal designing
algorithm ofDFPCW is also given. In Sec. 3, we compare the
DFPCWwith several existing orthogonal waveforms, such as
DFCW and frequency modulated continuous wave.
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2. Discrete Frequency and Phase Cod-
ing Waveform
For aMIMO radar systemwith L transmitting antennas,

the normalized DFPCW signal transmitted by the lth antenna
can be expressed as

ul (t) =
1
√

N

N−1∑
n=0

uln (t − nTr) (1)

where

uln (t) =
1
√

T
rect

(
t
T
−

1
2

)
exp

{
j
(
2π f lnt + ϕln

)}
(2)

where N is the number of pulses included in the pulse trains of
the DFPCW, Tr is the pulse repetition interval, T is the pulse
width, rect (·) is the rectangular window, f ln = fc + Fl

n∆ f
and ϕln = Pl

n∆ϕ represent the frequency and the phase
of each pulse, respectively, fc represents the carrier fre-
quency of the radar system, ∆ f and ∆ϕ represent the fre-
quency and phase step size.

{
Fl
n = 0, 1, · · · , Nf − 1

}
and{

Pl
n = 0, 1, · · · , Np − 1

}
represent the frequency and phase

coded values, Nf and Np represent the number of the fre-
quency and phase coding. The frequency and phase diagram
of the DFPCW is shown in Fig. 1.

2.1 Ambiguity Function
The ambiguity function of the lth transmitting signal is

given by [19]

χl (τ, ν) =
∫ +∞

−∞

ul (t) ul
∗

(t + τ) exp
{
j2πνt

}
dt (3)

where τ and ν are the time delay and the Doppler shift,
respectively, superscript ∗ denotes the complex conjugate.
Replacing ul (t) by (1) we have

χl (τ, ν) =
∫ +∞

−∞

*
,

1
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-

× *
,
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exp
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j2πνt

}
dt.

(4)

Fig. 1. Frequency and phase diagram of DFPCW. The (blue) re-
tangular represnts the carrier frquency of each pulse, and
the (red) ellipse represnts the phase of each pulse.

Substituting (2) in (4) gives
χl (τ, ν)

=
1

NT

∫ +∞
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)}
exp

{
j2πνt
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(5)

where |τ | ≤ T and T ≤ Tr/2 are assumed. This can be
simplified by applying the sum rules of integration. Hence

χl (τ, ν) =
1

NT
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exp
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(6)

Since the integrand function is the product of two rectangular
functions, the bounds of the integral are given by{

tu = T − τ + nTr
td = nTr

for τ ≥ 0,{
tu = T + nTr
td = −τ + nTr

for τ < 0.
(7)

Hence the integral in (6) is solved to give the expression of
the ambiguity function of DFPCW

χl (τ, ν) =
N−1∑
n=0

exp
{
−j2π f lnτ

}
exp

{
−jπν (T + τ + 2nTr)

}
×

T − |τ |
NT

sinc (ν (T − |τ |)) , for |τ | ≤ T
(8)

where sinc (x) = sin (πx) / (πx) is the normalized sinc func-
tion. The vanished initial phase terms ϕln in (8) demonstrate
that DFPCW signal has the same ambiguity function with
the DFCW. Hence for a given frequency coding sequence,
the shape of ambiguity function will remain constant even
when the initial phase of the pulse is changed. When the
Doppler shift ν = 0 , the auto-correlation of DFPCW is

χl (τ, 0) =
T − |τ |

NT

N−1∑
n=0

exp
{
−j2π f lnτ

}
(9)

which indicates that the auto-correlation of DFPCW depends
only on the frequency coding sequence. If the number of the
frequencies is the same as that of the pulses, and each of these
pulses has unique frequency, then (9) can be simplified as

χl (τ, 0) =
T − |τ |

T
sin (πN∆ f τ)
N sin (π∆ f τ)

exp
{
jπ (N − 1) ∆ f τ

}
.

(10)

The vanish of frequency coding index n indicates that
in this condition the auto-correlation of the DFPCW is in-
dependent of the frequency coding sequence. To a certain
extent, this property may simplify the optimal design of DF-
PCW, however, the price paid is the sacrifice of the degrees
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of freedom of the solution. By assuming that the time delay
τ = 0 in (8), the zero-delay cut is

χl (0, ν)

= sinc (νT )
sin (πνNTr)
N sin (πνTr)

exp
{
−jπν (T + (N − 1) Tr)

}
.

(11)

From (11), we can find that the Doppler resolution and
Doppler sidelobe behavior of the DFPCW are independent of
the carrier frequency and initial phase. Those Doppler prop-
erties relate with the pulse parameter of the waveform, such
as pulse width, pulse repetition interval and pulse number. In
the following subsection, we will derive the cross ambiguity
function of the designed DFPCW.

2.2 Cross Ambiguity Function
The cross ambiguity function between the kth and the

lth signal transmitted via the transmitting antenna is defined
as

φkl (τ, ν) =
∫ +∞

−∞
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Substituting (1) into (12), we have
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Assuming T ≤ Tr/2 and |τ | ≤ T . Recalling (2), we obtain
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The sum rules of integration are applied to simplify it
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where f kln =
(
Fk
n − Fl

n

)
∆ f , ϕkln =

(
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)
∆ϕ. For the

given bounds of the integral shown in (7), the cross ambiguity
function can be written as

φkl (τ, ν) =
N−1∑
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Therefore, the cross ambiguity function of DFPCW is a func-
tion of frequency code sequence and phase code sequence, in
particular, when theDoppler shift ν = 0, the cross-correlation
of the two waveform is given below

φkl (τ, 0)

=
(T − |τ |)

NT

N−1∑
n=0

exp
{
j2π

(
ϕkln − f lnτ − f kln nTr

)}

× exp
{
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}
sinc

(
f kln (T − |τ |)

)
(17)

Equation (17) indicates that, the phase difference ϕkln as
well as frequency difference f kln of each pulse has influence
on the cross-correlation between the two signals. Compared
with the traditional DFCW with frequency diversity only, by
introducing phase code, additional degrees of freedomduring
the waveform design are provided, which may be beneficial
for the improvement of the waveform performance.

2.3 Optimal Criteria and Algorithm
As mentioned in Sec. 2.2, the CP of the transmitting

signals is related both to the frequency and phase code se-
quences. In traditional radar waveform design, low ASP of
a waveform is preferred, since the ASP of a strong target may
higher than the mainlobe of a weak target. In MIMO radar
applications, low cross interference between waveforms may
imply better system performance. Thus, we consider to de-
sign the DFPCW with optimal ASP and CP. This paper sets
the summation of ASP and CP as the fitness function

E =
L−1∑
l=0

extr
{���χ

l (τ, 0)��� , τ , 0
}

+ w

L−2∑
k=0

L−1∑
l=k+1

max
{���φ

kl (τ, 0)���
}

(18)

where extr {·} represents extrema, the first term on the right
hand side of the equation is the summation of allASPofwave-
forms, the second term is the addition of all CP of waveforms,
w represents the weight. The setting of w may arbitrary or
base on experience. However, in our algorithm, we first gen-
erate Ng random waveforms to calculate the average level
of the ASP and CP of general DFPCW can achieved. The
detailed procedure of the algorithm is shown in Fig. 2.
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Fig. 2. Flowchart of the algorithm.

3. Simulations and Comparisons
In this section, two different methods of simulation are

explored to analyze the performance of the DFPCW. The first
aims at improving the waveform orthogonality through intro-
ducing the phase coding based on existing DFCW, while the
second is that the frequency coding as well as phase coding
are combined to produce the optimal DFPCW. Comparisons
between DFPCW and DFCW are also discussed.

The design method of DFCW has been introduced in
[11] thoroughly. Since there are no repeated codes in the
sequence, with the ACF of DFCW shown as (10), the side-
lobe level cannot be reduced by simply changing the order
of the codes. Therefore, we allow the repetition of codes,
meanwhile increasing the coding dimension from N! to NN

aims to broadening the search scope of optimal solutions.
Moreover, in general, one prefers to optimize CP rather than
energy when drawing the optimal DFCW because CP may
result in false targets.

This paper brings about the optimal DFCW sequence
with genetic algorithm, the weight w in (18) is calculated
from Ng = 1 000 random waveform pairs, the simulation pa-
rameters are shown in Tab. 1, and the terminating condition

Parameters Values
Waveform number (L) 3
Pulse number (N) 32
Frequency code number (Nf) 32
Phase code number (Np) 32
Carrier frequency ( fc) 4.85 MHz
Pulse duration (T) 0.4 ms
Pulse repetition interval (Tr) 4 ms
Frequency step size (∆ f ) 1 kHz
Weight factor (w) 3.624 7
Population size 100
Crossover fraction 0.8
Migration fraction 0.2
Mutational fraction 0.01

Tab. 1. Simulation Parameters.

No.
Frequency Added DFPCW-2code phase code
1F 2F 3F 1P 2P 3P 1F 2F 3F 1P 2P 3P

1 10 22 13 31 31 0 14 11 22 16 24 6
2 7 19 24 31 0 0 19 16 5 3 19 12
3 22 20 26 0 2 0 22 28 13 12 31 26
4 2 27 12 31 31 0 0 23 13 14 21 16
5 24 16 6 31 31 0 17 8 27 12 18 20
6 16 20 13 0 0 31 11 20 1 21 5 15
7 0 11 6 31 0 31 10 0 24 21 17 25
8 13 27 21 31 0 31 0 16 9 10 14 5
9 8 12 22 31 0 2 1 23 15 17 26 20
10 18 26 16 0 31 31 8 21 13 11 20 14
11 21 17 8 0 0 0 16 4 11 17 22 22
12 3 11 22 0 31 0 31 14 21 14 27 9
13 29 16 27 31 0 31 13 10 17 5 12 10
14 14 22 11 31 0 0 22 19 11 11 27 2
15 5 24 31 0 0 31 5 12 18 5 25 8
16 19 7 11 31 31 0 7 26 23 18 22 10
17 4 31 0 31 0 31 9 23 26 21 13 5
18 22 3 18 31 31 31 21 11 8 26 16 23
19 26 14 17 0 0 0 15 8 5 30 0 6
20 12 8 23 0 0 0 12 19 7 7 18 12
21 17 18 12 0 31 0 12 19 30 12 18 25
22 13 28 16 31 0 0 16 13 8 7 6 17
23 9 14 4 0 0 0 16 20 23 14 14 19
24 20 6 28 0 0 0 6 26 19 12 9 19
25 10 25 20 0 31 31 4 13 24 17 28 1
26 14 0 10 0 0 31 22 25 15 9 11 5
27 15 23 31 0 31 31 24 17 3 1 23 31
28 17 9 12 31 16 0 3 17 14 6 13 8
29 11 5 24 0 0 31 4 7 0 27 26 10
30 7 17 22 31 31 31 19 15 10 5 28 12
31 24 14 19 31 10 31 25 18 17 11 5 8
32 15 12 25 31 0 31 28 14 19 7 11 9

Tab. 2. Optimal code sequences of DFCW and DFPCW. The
1F, 2F, and 3F are the frequency code sequences of the
three signals, respectively, while the 1P, 2P and 3P are
the phase code sequences.

of the algorithm iswhen the variation of the fitness function is
less than 10−6 or the optimal individual in the population has
been consistent for 50 generations. The radar system we con-
sidered here is a high frequency surface wave radar applied
to ship detection. The range resolution is about 5 km corre-
sponding to the total bandwidth, and the maximum range is
600 km according to the pulse repetition interval.

3.1 Optimal Waveforms
The optimal frequency sequences of the DFCW ob-

tained by the algorithm given above are shown in the 2nd to
4th columns (with the column header of "Frequency code")
in Tab. 2. And theASPs, CPs and the value of fitness function
are shown in the 2nd to 4th rows (i.e. DFCW) in Tab. 3. Af-
ter optimization, the value of fitness function of the optimal
DFCW reaches 0.602 6. Afterwards, we modulate the initial
phase of each pulse using 32-phase discrete phase code on
condition that the frequency coding remain constant. With
simply changing the phase of each pulse, waveforms can be
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Maps of the ambiguity function and cross ambiguity function of the designed DFPCW. The ambiguity function of signal 1, 2 and 3 is
given in (a), (b) and (c), respectively. (d), (e) and (f) shows the cross ambiguity function of signal 1 and signal 2, signal 1 and signal 3,
and signal 2 and signal 3, respectively.

further optimized. The resulting phase coding sequence are
given in the 5th to 7th columns (with the column header of
"Added phase code") in Tab. 2 and the relevant ASPs as well
as CPs the 5th to 7th rows (i.e. DFPCW-1) in Tab. 3, respec-
tively. The same ASP value of the two waveforms validates
the uniformity of the ambiguity function of DFPCW-1 and
that of DFCW, which matched to (9) we deduced. Clearly,
the DFPCW-1 possesses lower CPs than that of the DFCW,
along with a reduction by 0.036 1 of the fitness value. It is
clear evident that the CP of the optimal DFCW can be further
reduced by using phase coding, which implies that DFPCW-1
has better orthogonality than DFCW.

Waveforms S1 S2 S3 Fitness

DFCW
S1 0.065 4 0.035 3 0.032 6

0.602 6S2 0.035 3 0.069 7 0.025 5
S3 0.032 6 0.025 5 0.135 9

DFPCW-1
S1 0.065 4 0.030 8 0.028 1

0.566 5S2 0.030 8 0.069 7 0.022 6
S3 0.028 1 0.022 6 0.135 9

DFPCW-2
S1 0.094 2 0.029 4 0.018 1

0.542 5S2 0.029 4 0.073 1 0.032 5
S3 0.018 1 0.032 5 0.085 4

Tab. 3. ASPs, CPs and fitness values of DFCW and DFPCWs.
S1, S2 and S3 are the individual signals in a waveform
set, respectively. For each waveform, the values on the
diagonal of the 3×3 subtable are the ASP of each signal
in the waveform set. The other six values in the subtable
are the CPs between two signals.

The above mentioned design method split the optimiz-
ing process into two parts, offering advantages such as lower
space requirement for solutions and shorter time taken to
get the solutions. However, the method may result in lo-
cal optimization. To avoid this problem, the frequency code
sequences and phase code sequences are optimized simul-
taneously and thus achieved the more desirable waveforms.
The resulting optimal coding sequences are given in 8th to
13th in Tab. 2, and the ASPs, CPs and fitness value after op-
timization are shown in the 8th to 10th rows (i.e. DFPCW-2)
in Tab. 3.

The optimal designed DFPCW is shown in Fig. 3. In
Fig. 3(a), 3(b), and 3(c), although the sidelobe peaks are
clearly observable, the “thumbtack” feature of the mainlobe
is evident. The narrow shape of the mainlobe indicates that
the DFPCW possesses good resolution both in time-delay
and Doppler shift. The grating lobes at Doppler frequency of
about ±250 Hz are negligible, since in practice no artificial
vehicle can reach those high velocities. The cross ambiguity
peaks in Fig. 3(d), 3(e), and 3(f) are randomly distributed
due to the random property of the frequency and phase code,
however, most of the peaks are less than 0.05 demonstrating
that the mutual interference between DFPCWs is low.

3.2 Comparison with Existing Waveforms
Comparisons with existing waveforms are also given

using the parameters listed in Tab. 1. In Fig. 4, we compare
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(a)

(b)

Fig. 4. Comparisons of the designed DFPCW with existing
waveforms. (a) is the autocorrelation of the four wave-
forms, where the ASPs of Deng’s DFCW, New DFCW,
FMCW and DFPCW are 0.193 3, 0.135 9, 0.213 4 and
0.094 2, respectively. (b) is the cross-correlation of
the four waveforms, where the CPs of Deng’s DFCW,
New DFCW, FMCW and DFPCW are 0.040 9, 0.035 3,
0.040 2 and 0.028 5, respectively.

the DFPCW with the Deng’s DFCW, New DFCW and fre-
quency modulated continuous wave (FMCW) in the aspects
of auto-correlation function and cross-correlation function.
As Deng’s DFCW considers optimal a continuous wave, we
modified this waveform in our optimal criteria obtaining the
newDFCW(a pulse trainwaveformutilizing frequency diver-
sity). The FMCWset employed here contains twowaveforms
having opposite frequency modulation [20].

Figure 4(a) demonstrates that, the mainlobe of those
four waveforms are nearly the same, however, the ASP of
DFPCW is dramatically lower than that of the other wave-
forms. From Fig. 4(b), we find that the Deng’s DFCWs have
the highest CP, which may due to the changed simulation
condition (including pulse duration, bandwidth, etc.) in this
paper. However, the New DFCW obtained by employing
genetic algorithm with the simulation condition as shown in
Tab. 1 presents better orthogonality. Obviously, the DFPCW

has lowest peak value, compared with the new designed op-
timal DFCW and FMCW.

4. Conclusions
In this paper, a novelDFPCWconsisting of both discrete

frequency code and initial phase code is proposed, followed
by boosting the orthogonality of waveforms benefits from
the diversity characteristics. By changing the initial phase
of each pulse, the DFPCW achieved lower CP than that of
the DFCW, on the premise that they have the same auto-
correlation features. Furthermore, the fitness value drove
lower to 0.542 5 when achieving both the frequency opti-
mization and the phase optimization simultaneously. Both
the two results show that DFPCW is superior to DFCW.
The Comparison with widely employed FMCW also validate
the superiorities of the designed waveform. In the future,
a waveform contains more diversities rather than only fre-
quency diversity and phase diversity employed here will be
investigated.
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